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1 Introduction

Much research in empirical and theoretical econometrics has been centered around the estimation and testing

of various functions such as regression functions (e.g., conditional mean and variance) and density functions.

A traditional approach to studying these functions has been to first impose a parametric functional form

and then proceed with the estimation and testing of interest. A major disadvantage of this approach is that

the econometric analysis may not be robust to the slight data inconsistency with the particular parametric

specification and this may lead to erroneous conclusions. In view of these problems, in the last four decades

or so a vast amount of literature has appeared on the nonparametric and semiparametric approaches to

econometrics, e.g., see the books by Härdle (1990), Fan and Gijbels (1996), and Pagan and Ullah (1999).

The basic point in the nonparametric approach to econometrics is to realize that, in many instances, one

is attempting to estimate an expectation of one variable, y, conditional upon others, x. This identification

directs attention to the need to be able to estimate the conditional mean of y given x from the data yt and

xt, t = 1, . . . , n. A nonparametric estimate of this conditional mean simply follows as a weighted averageP
tw(xt, x)yt, where w(xt, x) are a set of weights that depend upon the distance of xt from the point x at

which the conditional expectation is to be evaluated.

Based on these nonparametric estimation techniques of the conditional expectations, in recent years

a rich literature has evolved on the consistent model specification tests in econometrics. For example,

various test statistics for testing a parametric functional form have been proposed by Bierens (1982), Ullah

(1985), Robinson (1989), Eubank and Spiegelman (1990), Yatchew (1992), Wooldridge (1992), Gozalo (1993),

Härdle and Mammen (1993), Hong and White (1995), Zheng (1996), Bierens and Ploberger (1997), and Li

and Wang (1998). Also, see Ullah and Vinod (1993), Whang and Andrews (1993), Delgado and Stengos

(1994), Lewbel (1993, 1995), Äit-Sahalia et al (1994), Fan and Li (1996), Lavergne and Vuong (1996), and

Linton and Gozalo (1997) for testing problems related to insignificance of regressors, non-nested hypothesis,

semiparametric versus nonparametric regression models, among others. Most of these tests, especially the

test for a parametric specification, are developed under the following goodness of fit measures: (i) compare

the expected values of the squared error under the null and alternative hypotheses (e.g., Ullah (1985) type

F statistic), (ii) calculate the expected value of the squared distance between the null and alternative model

specifications (e.g., Härdle and Mammen (1993), Ullah and Vinod (1993), Aït-Sahalia (1994)), and (iii)

calculate the expected value of the product of the error under the null with the model specified under the

alternative (e.g., conditional moment tests of Bierens (1982), Zheng (1996), Fan and Li (1996), and Li and

Wang (1998). All these three alternative goodness of fit measures are equal to zero under the null hypothesis

of correct specification. For details, see Pagan and Ullah (1999).
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We note here that the asymptotic as well as the simulation based finite sample properties of the most

of the above mentioned test statistics have been extensively analyzed for the cross sectional models with

independent data. However, not much is known about the asymptotic as well as the small sample performance

of these test statistics for the case of time series models with weak dependent data, although see the recent

works of Chen and Fan (1999), Hjellvik and Tjøstheim (1995, 1998), Hjellvik et al (1999), Kreiss et al (1998),

Berg and Li (1998) and a very important contribution by Li (1999) where he develops the asymptotic theory

results of Li-Wang-Zheng (LWZ) test under the goodness of fit measure (iii). The modest goal of this paper

is to conduct an extensive monte carlo study to analyze the size and power properties of two kernel based

tests for time series models. One of them is the bootstrap version of Ullah-type goodness of fit test (i) due to

Cai, Fan, and Yao (2000, henceforth CFY), and another is the nonparametric conditional moment goodness

of fit test (iii) of LWZ. We examine the bootstrap performances of these two goodness of fit tests because

of the asymptotic validity results of using bootstrap methods for these statistics due to CFY (2000) and

Berg and Li (1998). Berg and Li (1998) also support the better performance of LWZ over the Härdle and

Mammen (1993) type tests considered for time series data in Hjellvik and Tjøstheim (1995, 1998), Hjellvik

et al (1998), and Kreiss et al (1998). For the purpose of our simulation study we consider the testing of

linearity against a large class of nonlinear time series models which include threshold autoregressive, bilinear,

exponential autoregressive models, smooth transition autoregressive models, GARCH models, and various

nonlinear autoregressive and moving average models. Both naive bootstrap and wild bootstrap procedures

are used for our analysis. We also compare the bootstrap results with the results using the asymptotic

distribution for LWZ test.

The plan of the paper is as follows. In Section 2, we present the nonparametric kernel regression estimators

and the tests of CFY and LWZ based on them. Then in Section 3, we present the monte carlo results. Finally,

Section 4 gives conclusions.

2 Nonparametric regression and specification testing

2.1 Nonparametric regression

Let {yt, xt}, t = 1, . . . , n, be stochastic processes, where yt is a scalar and xt = (xt1, . . . , xtk) is a 1×k vector
which may contain the lagged values of yt. Consider the regression model

yt = m(xt) + ut (1)

where m(xt) = E (yt|xt) is the true but unknown regression function and ut is the error term such that

E(ut|xt) = 0.
If m(xt) = g(xt, δ) is a correctly specified family of parametric regression functions then yt = g(xt, δ)+ut
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is a correct model and, in this case, one can construct a consistent least squares (LS) estimator of m(xt)

given by g(xt, δ̂), where δ̂ is the LS estimator of the parameter δ.

In general, if the parametric regression g(xt, δ) is incorrect or the form of m(xt) is unknown then g(xt, δ̂)

may not be a consistent estimator of m(xt). For this case, an alternative approach to estimate the unknown

m(xt) is to use the consistent nonparametric kernel regression estimator which is essentially a local constant

LS (LCLS) estimator. To obtain this estimator take Taylor series expansion of m(xt) around x so that

yt = m(xt) + ut (2)

= m(x) + et

where et = (xt−x)m(1)(x)+ 1
2(xt−x)2m(2)(x)+ · · ·+ut and m(s)(x) represents the s-th derivative of m(x)

at xt = x. The LCLS estimator can then be derived by minimizing

nX
t=1

e2tKtx =
nX
t=1

(yt −m(x))2Ktx (3)

with respect to constantm(x), whereKtx = K
¡
xt−x
h

¢
is a decreasing function of the distances of the regressor

vector xt from the point x = (x1, . . . , xk), and h→ 0 as n→∞ is the window width (smoothing parameter)

which determines how rapidly the weights decrease as the distance of xt from x increases. The LCLS

estimator so estimated is

m̂(x) =

Pn
t=1 ytKtxPn
t=1Ktx

= (i0K(x)i)−1i0K(x)y (4)

where K(x) is the n×n diagonal matrix with the diagonal elements Ktx (t = 1, . . . , n), i is an n× 1 column
vector of unit elements, and y is an n × 1 vector with elements yt (t = 1, . . . , n). The estimator m̂(x) is

due to Nadaraya (1964) and Watson (1964) (NW) who derived this in an alternative way. Generally m̂(x)

is calculated at the data points xt, in which case we can write the leave-one out estimator as

m̂(x) =

Pn
t0=1,t0 6=t yt0Kt0tPn
t0=1,t0 6=tKt0t

, (5)

where Kt0t = K
¡xt0−xt

h

¢
. The assumption that h→ 0 as n→∞ gives xt−x = O(h)→ 0 and hence Eet → 0

as n → ∞. Thus the estimator m̂(x) will be consistent under certain smoothing conditions on h,K, and
m(x). In small samples however Eet 6= 0 so m̂(x) will be a biased estimator, see Pagan and Ullah (1999) for
details on asymptotic and small sample properties.

An estimator which has a better small sample bias and hence the mean square error (MSE) behavior is the

local linear LS (LLLS) estimator due to Stone (1977) and Cleveland (1979), also see Fan and Gijbels (1996)

and Ruppert and Wand (1994) for their properties. In the LLLS estimator we take first order Taylor-Series

expansion of m(xt) around x so that

yt = m(xt) + ut = m(x) + (xt − x)m(1)(x) + vt (6)
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= α(x) + xtβ(x) + vt

= Xtδ(x) + vt

where Xt = (1 xt) and δ(x) = [α(x) β(x)0]0 with α(x) = m(x) − xβ(x) and β(x) = m(1)(x). The LLLS

estimator of δ(x) is then obtained by minimizing

nX
t=1

v2tKtx =
nX
t=1

(yt −Xtδ(x))2Ktx (7)

and it is given by

δ̃(x) = (X0K(x)X)−1X0K(x)y. (8)

where X is an n× (k + 1) matrix with the tth row Xt (t = 1, . . . , n).
The LLLS estimator of α(x) and β(x) can be calculated as α̃(x) = (1 0)δ̃(x) and β̃(x) = (0 1)δ̃(x). This

gives

m̃(x) = (1 x)δ̃(x) = α̃(x) + xβ̃(x). (9)

Obviously when X = i, δ̃(x) reduces to the NW’s LCLS estimator m̂(x). An extension of the LLLS is the

local polynomial LS (LPLS) estimators, see Fan and Gijbels (1996).

In fact one can obtain the local estimators of a general nonlinear model g(xt, δ) by minimizing

nX
t=1

[yt − g(xt, δ(x))]2Ktx (10)

with respect to δ(x). For g(xt, δ(x)) = Xtδ(x) we get the LLLS in (8). Further when h = ∞,Ktx = K(0)
is a constant so that the minimization of K(0)

P
[yt − g(xt, δ(x))]2 is the same as the minimization ofP

[yt − g(xt, δ)]2, that is the local LS becomes the global LS estimator δ̂.
The LLLS estimator in (8) can also be interpreted as the estimator of the functional coefficient (varying

coefficient) linear regression model

yt = m(xt) + ut (11)

= Xtδ(xt) + ut

where δ(xt) is approximated locally by a constant δ(xt) ' δ(x). The minimization of
P
u2tKtx with respect to

δ(x) then gives the LLLS estimator in (8), which can be interpreted as the LC varying coefficient estimator.

An extension of this is to consider the linear approximation δ(xt) ' δ(x)+D(x)(xt−x)0 where D(x) = ∂δ(xt)
∂x0t

evaluated at xt = x. In this case

yt = m(xt) + ut = Xtδ(xt) + ut (12)

' Xtδ(x) +XtD(x)(xt − x)0 + ut
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= Xtδ(x) + [(xt − x)⊗Xt]vecD(x) + ut
= Xx

t δ
x(x) + ut

where Xx
t = [Xt (xt − x) ⊗Xt] and δx(x) = [δ(x)0 (vecD(x))0]0. The LL varying coefficient estimator of

δx(x) can then be obtained by minimizing

nX
t=1

[yt −Xx
t δ

x(x)]2Ktx (13)

with respect to δx(x) as

δ̇x(x) = (Xx0K(x)Xx)−1Xx0K(x)y. (14)

From this δ̇(x) = (I 0)δ̇x(x), and hence

ṁ(x) = (1 x 0)δ̇x(x) = (1 x)δ̇(x). (15)

The above idea can be extended to the situations where ξt = (xt zt) such that

E(yt|ξt) = m(ξt) = m(xt, zt) = Xtδ(zt), (16)

where the coefficients are varying with respect to only a subset of ξt; zt is 1 × l and ξt is 1 × p, p = k + l.
Examples of these include functional coefficient autoregressive model (Chen and Tsay 1993, CFY 2000),

smooth coefficient model (Li, Huang, and Fu 1997), random coefficient model (Raj and Ullah 1981), smooth

transition autoregressive model (Granger and Teräsvirta 1993), exponential autoregressive model (Haggan

and Ozaki 1981), and threshold autoregressive model (Tong 1990). Also see Section 3.

To estimate δ(zt) we can again do a local constant approximation δ(zt) ' δ(z) and then minimizeP
[yt − Xtδ(z)]2Ktz with respect to δ(z), where Ktz = K( zt−zh ). This gives the LC varying coefficient

estimator

δ̃(z) = (X0K(z)X)−1X0K(z)y (17)

where K(z) is a diagonal matrix of Ktz, t = 1, . . . , n. When z = x, (17) reduces to the LLLS estimator δ̃(x)

in (8).

CFY (2000) consider a local linear approximation δ(zt) ' δ(z)+D(z)(zt−z)0. The LL varying coefficient
estimator of CFY is then obtained by minimizing

nX
t=1

[yt −Xtδ(zt)]2Ktz =
nX
t=1

[yt −Xtδ(z)− [(zt − z)⊗Xt]vecD(z)]2Ktz (18)

=
nX
t=1

[yt −Xz
t δ
z(z)]2Ktz

with respect to δz(z) = [δ(z)0 (vecD(z))0]0 where Xz
t = [Xt (zt − z)⊗Xt]. This gives

δ̈z(z) = (Xz0K(z)Xz)−1Xz0K(z)y, (19)
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and δ̈(z) = (I 0)δ̈z(z). Hence

m̈(ξ) = (1 x 0)δ̈z(z) = (1 x)δ̈(z). (20)

For the asymptotic properties of these varying coefficient estimators, see CFY (2000). When z = x, (19)

reduces to the LL varying coefficient estimator δ̇x(x) in (14).

2.2 Nonparametric tests for functional forms

Consider the problem of testing a specified parametric model against a nonparametric (NP) alternative

Ho : E(yt|ξt) = g(ξt, δ)

H1 : E(yt|ξt) = m(ξt).

In particular, if we are to test for neglected nonlinearity in the regression models, set g(ξt, δ) = ξtδ. Then

under H0, the process {yt} is linear in mean conditional on ξt

H0 : P [E(yt|ξt) = ξtδ] = 1 for some δ ∈ Rp. (21)

The alternative of interest is the negation of the null, that is,

H1 : P [E(yt|ξt) = ξtδ] < 1 for all δ ∈ Rp. (22)

When the alternative is true, a linear model is said to suffer from ‘neglected nonlinearity’. Note that

ξt = (xt zt) = xt when zt = xt.

Using the nonparametric estimation technique to construct consistent model specification tests was first

suggested by Ullah (1985). The idea is to compare the parametric residual sum of squares (RSSP),
P
û2t , ût =

yt − g(ξt, δ̂) with the nonparametric RSS (RSSNP),
P
ũ2t , where ũt = yt − m̈(ξt). The test statistic is

T =
(RSSP −RSSNP)

RSSNP
=

P
û2t −

P
ũ2tP

ũ2t
, (23)

or simply T 0 = (RSSP− RSSNP). We reject the null hypothesis when T is large. √nT has a degenerate

distribution under H0. Yatchew (1992) avoids this degeneracy by splitting sample of n into n1 and n2 and

calculating
P
û2t based on n1 observations and

P
ũ2t based on n2 observations. Lee (1992) uses density

weighted residuals and compares
P
wtû

2
t with

P
ũ2t . Fan and Li (1992) uses different normalizing factor and

show the asymptotic normality of nhp/2T 0.

An alternative way is to use the bootstrap method as suggested by CFY (2000). The bootstrap allows the

implementation of (23) and it involves the following steps to evaluate p-values of T to test for g(ξt, δ) = Xtδ.

1. Generate the bootstrap residuals {ũ∗t } from the centered NP residuals (ũt− ū) where ū = n−1
P
ũt.
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(a) For naive bootstrap, {ũ∗t } is obtained from randomly resampling {ũt − ū} with replacement.

(b) For wild bootstrap, ũ∗t = a(ũt − ū) with probability r = (
√
5 + 1)/2

√
5 and ũ∗t = b(ũt − ū) with

probability 1 − r (t = 1, . . . , n), where a = −(√5 − 1)/2 and b = (√5 + 1)/2. See Li and Wang
(1998, pp. 150-151).

2. Generate the bootstrap sample {y∗t }nt=1 :

(a) When xt is lagged dependent variables (e.g., see Blocks 1, 2, 5, 6 in Section 3), generate initial

values of y∗t for t = 1, . . . , k, from N(ȳ, σ̂2Y ), and then get y
∗
t ≡ X∗t δ̂ + ũ∗t recursively for t =

k + 1, . . . , n.

(b) When xt is exogenous (Blocks 3, 4 in Section 3), then x
∗
t = xt and y

∗
t ≡ Xtδ̂ + ũ∗t (t = 1, . . . , n).

3. Using the bootstrap sample {y∗t }nt=1, calculate the bootstrap test statistic T ∗ using, for the sake of
simplicity, the same h used in estimation with the original sample as done in CFY (2000).

4. Repeat the above steps B times and use the empirical distribution of T ∗ as the null distribution of

T . We use B = 500. The bootstrap p-value of the test T is simply the relative frequency of the event

{T ∗ ≥ T} in the bootstrap resamples.

Kreiss et al (1998) provide more detailed reasons why the bootstrap works in general nonparametric

regression setting. They proved that asymptotically the conditional distribution of the bootstrap test statistic

is indeed the distribution of the test statistic under the null hypothesis. As mentioned by CFY (2000) it may

be proved that the similar result holds for T as long as δ̂ converges to δ at the rate n−1/2.We use both naive

bootstrap (Efron 1979) and wild bootstrap (Wu 1986, Liu 1988). The wild bootstrap method preserves the

conditional heteroskedasticity in the original residuals. For wild bootstrap, see also Shao and Tu (1995, p.

292), Härdle (1990, p. 247), or Li and Wang (1998, p. 150).

Another test of the parametric specification follows from the combined regression

yt = g(ξt, δ) +E(ut|ξt) + εt (24)

where εt = ut − E(ut|ξt) such that E(εt|ξt) = 0. The test for the parametric specification is then the

conditional moment test for E(ut|ξt) = 0, which is identical to testing

E[utE(ut|ξt)f(ξt)] = 0, (25)

where f(ξt) is the density of ξ. A sample estimator of the left hand side of (25) is

L0 =
1

n

nP
t=1
ûtE(ût|ξt)f̂(ξt) (26)

=
1

n(n− 1)hp
nP
t=1

nP
t0=1,t0 6=t

ûtût0Kt0t
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where E(ût|ξt) =
P
t0 6=t ût0Kt0t/

P
t0 6=tKt0t from (5) and f̂(ξt) = [(n−1)hp]−1

P
t0 6=tKt0t is the kernel density

estimator; Kt0t = K(
ξt0−ξt
h ). The asymptotic test statistic is then given by

L = nhp/2
L0√
ω̂
∼ N(0, 1) (27)

where ω̂ = 2(n(n−1)hp)−1Pt

P
t0 6=t û

2
t û
2
t0K

2
t0t is a consistent estimator of the asymptotic variance of nh

p/2L0,

see Zheng (1996), Fan and Li (1996), Li and Wang (1998), Fan and Ullah (1999), and Rahman and Ullah

(1999), for details. Also, see Pagan and Ullah (1999, Ch. 3) and Ullah (1999) for the relationship of this test

statistic with other nonparametric specification tests. Based on the asymptotic results of Fan and Li (1996,

1997, 1999) and Li (1999) for dependent data, Berg and Li (1998) establish the asymptotic validity of using

the wild bootstrap method for L for time-series. The bootstrap p-values for L to test for the adequacy of

the linear parametric model, g(ξt, δ) = Xtδ, can be computed as follows.

1. Generate the bootstrap residuals {û∗t } from ût = yt −Xtδ̂ :

(a) For naive bootstrap, {û∗t } is obtained from randomly resampling {ût} with replacement.

(b) For wild bootstrap, û∗t = aût with probability r and û
∗
t = bût with probability 1 − r as for T

discussed above.

2. Generate the bootstrap sample {y∗t }nt=1 :

(a) When xt is lagged dependent variables (Blocks 1, 2, 5, 6), generate initial values of y
∗
t for t =

1, . . . , k, from N(ȳ, σ̂2Y ), and then get y
∗
t ≡ X∗t δ̂ + û∗t recursively for t = k + 1, . . . , n.

(b) When xt is exogenous (Blocks 3, 4), then x
∗
t = xt and y

∗
t ≡ Xtδ̂ + û∗t (t = 1, . . . , n).

3. Using the bootstrap sample {y∗t }nt=1, calculate the bootstrap test statistic L∗.

4. Repeat the above steps B times and use the empirical distribution of L∗ as the null distribution of L.

We use B = 500. The bootstrap p-value of the test L is the relative frequency of the event {L∗ ≥ L}
in the bootstrap resamples.

3 Monte carlo

In this section we examine the finite sample properties of the T test and the L test especially with the

empirical null distributions being generated by the bootstrap method. Asymptotic critical values are also

used for the L test. To generate data we use the following models, all of which have been used in the related

literature. Most of them are univariate while there are some multivariate situations. There are six blocks.
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The error term εt below is i.i.d. N(0, 1) unless otherwise is indicated. The models will be referred by the

name in parentheses in bold.

BLOCK 1 (Lee, White, and Granger, 1993)

Linear (AR)

yt = 0.6yt−1 + εt

Linear AR with GARCH (AR0)

yt = 0.6yt−1 + εt

ht ≡ E(ε2t |yt−1) = (1− α− β) + αε2t−1 + βht−1

Bilinear (BL)

yt = 0.7yt−1εt−2 + εt

Threshold Autoregressive (TAR)

yt = 0.9yt−1 + εt |yt−1| ≤ 1

= −0.3yt−1 + εt |yt−1| > 1

Sign Nonlinear Autoregressive (SGN)

yt = sign(yt−1) + εt

where sign(x) = 1 if x > 0, 0 if x = 0, and −1 if x < 0. This is a process examined in Granger and Teräsvirta
(1999), which is a first-order nonlinear autoregressive model but has such misleading linear property that

estimated autocorrelations are similar to those of a long-memory process.

Rational Nonlinear Autoregressive (NAR)

yt =
0.7 |yt−1|
|yt−1|+ 2 + εt

BLOCK 2 (Lee, White, and Granger, 1993)

MA(2) (M1)

yt = εt − 0.4εt−1 + 0.3εt−2

Heteroskedastic MA(2) (M2)

yt = εt − 0.4εt−1 + 0.3εt−2 + 0.5εtεt−2

Note that M2 is linear in conditional mean as the forecastable part of M2 is linear, and the final term

introduces heteroskedasticity.
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Nonlinear MA (M3)

yt = εt − 0.3εt−1 + 0.2εt−2 + 0.4εt−1εt−2 − 0.25ε2t−2

AR(2) (M4)

yt = 0.4yt−1 − 0.3yt−2 + εt

Bilinear AR (M5)

yt = 0.4yt−1 − 0.3yt−2 + 0.5yt−1εt−1 + εt

Bilinear ARMA (M6)

yt = 0.4yt−1 − 0.3yt−2 + 0.5yt−1εt−1 + 0.8εt−1 + εt

BLOCK 3 (Lee, White, and Granger, 1993)

Square (SQ)

yt = x
2
t + at

Exponential (EXP)

yt = exp(xt) + at

These are bivariate models where xt = 0.6xt−1 + εt, at ∼ N(0, 52),and at, εt are independent.

BLOCK 4 (Zheng, 1996)

Five models with ξt = (xt1 xt2) are considered in this block. Let ut1 and ut2 be drawn from IN(0, 1).

Two regressors xt1 and xt2 are defined as xt1 = ut1 and xt2 = (ut1 + ut2)/
√
2.

Linear (Z1)

yt = 1 + xt1 + xt2 + εt

Linear with conditionally heteroskedastic error (Z10)

yt = 1 + xt1 + xt2 + εt

ht ≡ E(ε2t |ξt) = (1 + x2t1 + x2t2)/3

Quadratic (Z2)

yt = 1 + xt1 + xt2 + xt1xt2 + εt

Concave (Z3)

yt = (1 + xt1 + xt2)
1/3 + εt

Convex (Z4)

yt = (1 + xt1 + xt2)
5/3 + εt
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BLOCK 5 (Cai, Fan, and Yao, 2000)

Exponential AR (EXPAR)

yt = a1(yt−1)yt−1 + a2(yt−1)yt−2 + εt

a1(yt−1) = 0.138 + (0.316 + 0.982yt−1) exp(−3.89y2t−1)

a2(yt−1) = −0.437− (0.659 + 1.260yt−1) exp(−3.89y2t−1)

εt ∼ IN(0, 0.22)

Threshold AR (TAR)

yt = a1(yt−2)yt−1 + a2(yt−2)yt−2 + εt

a1(yt−2) = 0.4I(yt−2 ≤ 1)− 0.8I(yt−2 > 6)

a2(yt−2) = −0.6I(yt−2 ≤ 1) + 0.2I(yt−2 > 1)

εt ∼ IN(0, 1)

BLOCK 6 (Teräsvirta, Lin, and Granger, 1993)

Logistic smooth transition AR (LSTAR)

yt = 1.8yt−1 − 1.06yt−2 + (0.02− 0.9yt−1 + 0.795yt−2)F (yt−1) + εt

F (yt−1) = [1 + exp{−100(yt−1 − 0.02)}]−1

εt ∼ IN(0, 0.022)

Exponential smooth transition AR (ESTAR)

yt = 1.8yt−1 − 1.06yt−2 + (−0.9yt−1 + 0.795yt−2)F (yt−1) + εt

F (yt−1) = [1− exp{−4000y2t−1}]−1

εt ∼ IN(0, 0.012)

To estimate ût for the linear model and ũt for the NP model, the information set used are ξt = yt−1 for

Block 1, ξt = (yt−1 yt−2) for Blocks 2, 5, and 6, ξt = xt for Block 3, and ξt = (xt1 xt2) for Block 4.

For the T test, as suggested by CFY (2000), we select h using out-of-sample cross-validation. Let m

and Q be two positive integers such that n > mQ. The basic idea is first to use Q sub-series of lengths

n− qm (q = 1, . . . , Q) to estimate the coefficient functions δq(zt) and then to compute the one-step forecast
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errors of the next segment of the time series of length m based on the estimated models. That is to choose

h minimizing the average of the mean square forecast errors

AMS(h) =

QX
q=1

AMSq(h) (28)

where

AMSq(h) =
1

m

n−qm+mX
t=n−qm+1

[yt −Xz
t δ̈
z
q (z)]

2 (29)

and δ̈zq (·) are computed from the sample {yt ξt}n−qmt=1 . We use m = [0.1n], Q = 4, and the Epanechinikov

kernel K(z) = 3
4(1 − z2)1(|z| < 1). We use a scalar ‘threshold variable’ zt (with l = 1) for all models:

zt = yt−1 for Blocks 1, 2, and 6, zt = xt for Block 3, and zt = xt1 for Block 4. For Block 5, zt = yt−1 for

EXPAR and zt = yt−2 for TAR.

For the L test, as in Li and Wang (1998, p. 154), we use a standard normal kernel. Note that ξt is an

1× p vector, and p = 1 for Blocks 1, 3 and p = 2 for Blocks 2, 4, 5, 6. Thus the smoothing parameter h is
chosen as hi = cσ̂in

−1/5 (i = 1) for Blocks 1 and 3, and hi = cσ̂in−1/6 (i = 1, 2) for Blocks 2, 4, 5, 6, where

σ̂i is the sample standard deviation of i-th element of ξ. The three values of c = 0.5, 1, and 2 are used, and

the corresponding estimated rejection probability will be denoted as Lc. In computing L, h
p shown in (26)

and (27) is replaced with
Qp
i=1 hi.

Test statistics are denoted as T j and Ljc, with the superscripts j = A,B,W referring to the methods of

obtaining the null distributions of the test statistics; asymptotics (j = A), naive bootstrap (j = B), and

wild bootstrap (j = W ). Monte carlo experiments are conducted with 500 bootstrap resamples and 1000

monte carlo replications.

Table 1 gives the estimated size of the tests for the data generating processes (DGP) which are linear in

conditional mean with the conditional homoskedastic errors. The size performance of the tests are different

for dependent processes (AR, M1, M4) than for independent process (Z1). For Z1 process, the naive bootstrap

CFY test TB tends to under-reject the null while the wild bootstrap test TW tends to over-reject the null.

The LWZ tests work better for Z1 than for AR, M1, and M4, for all three values of c. For the three dependent

processes (AR, M1, M4), both bootstrap procedures work relatively well with c = 0.5: L0.5 is better than

L1.0 which is better than L2.0, and the size of L is quite sensitive to the choice of c and hence bandwidth

h. On the other hand, for the independent process Z1, the LWZ tests work well with all c = 0.5, 1, and 2.

Both bootstrap tests LBc and L
W
c are better than the asymptotic test LAc . This tells that the optimal choice

of c for time series is more important than for independent processes. The two bootstrap procedures are

generally similar because the errors are homoskedastic in Table 1.

For parametric models, Davidson and MacKinnon (1999) show that the size distortion of a bootstrap
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test is at least of the order n−1/2 smaller than that of the corresponding asymptotic test. For nonparametric

models, h also enters the order of refinement. Li and Wang (1998) show that if the distribution of Lj (j =

A,B,W ) admit an Edgeworth expansion then the bootstrap distribution approximates the null distribution

of L with an error of order n−1/2hp/2 improving over the normal approximation. Since L is asymptotically

normal under the null, the bootstrap tests LB and LW are more accurate than the asymptotic test LA, as

confirmed in the simulation. See Hall (1992) for further discussion on Edgeworth expansions and the extent

of the refinements in various contexts.

Table 2 gives the estimated size of the tests for the data generating processes (DGP) which are linear

in conditional mean with conditional heteroskedastic errors. For AR0, we consider GARCH errors with five

different parameter values: (α,β) = (0.5, 0.0), (0.7, 0.0), (0.1, 0.89), (0.3, 0.69), and (0.5, 0.49). The condition

for the existence of the unconditional fourth moment is 3α2+2αβ+ β2 < 1 (Bollerslev, 1986). Accordingly,

the condition is α < 0.577 if β = 0; β < 0.890 if α = 0.1; β < 0.606 if α = 0.3; and β < 0.207 if α = 0.5.

Thus, for a given values of β or α+β, the series becomes more leptokurtic as α increases. Table 2 shows that

with β = 0 fixed, the size distortion is larger with the larger α. With α+ β = 0.99 fixed, the size distortion

is larger also as α increases. The size distortion generally gets worse as n increases. This is most apparent

with LB as the naive bootstrap does not preserve the conditional heteroskedasticity in resampling.

Generally, as discussed in Lee et al (1993, p. 288), the conditional heteroskedasticity will have one

of two effects: either it will cause the size of a test to be incorrect while still resulting in a test statistic

bounded in probability under the null, or it will directly lead (asymptotically) to rejection despite linearity

in mean. The test statistic L is a conditional moment test based on the fact that E(ut|ξt) = 0 under

the null hypothesis (21) which will then imply equation (25) for L. As this moment condition will hold

even under the presence of the conditional heteroskedasticity (which can be shown by the law of iterated

expectations), L should not have power to reject the null for the DGPs AR0 and Z10 which are linear in

conditional mean with conditionally heteroskedastic errors. Note that the asymptotic test LAc works well

with the conditionally heteroskedastic errors. However, the size of the naive bootstrap test LBc is adversely

affected by the conditional heteroskedasticity, which is more serious with a larger sample size.

Two remedies may be considered: one may either (1) remove the effect of the conditional heteroskedas-

ticity or (2) remove the conditional heteroskedasticity itself. The first is relevant to L whose size is adversely

affected. The effect of the conditional heteroskedasticity can be removed using a heteroskedasticity-consistent

covariance matrix estimator or using the wild bootstrap that preserves the heteroskedasticity in resampling.

We use the wild bootstrap here. The results in Table 2 show that the LWZ test with the wild bootstrap LWc

generally has the adequate size for the both DGPs AR0 and Z10.

On the other hand, T is not a conditional moment test as it is not based on any moment conditions. T is
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constructed to compare the two residual sums of squares RSSP and RSSNP. As RSSNP is estimated from the

functional coefficient (FC) model, if the FC model absorbs some of the conditional heteroskedasticity the size

of the CFY test T will be incorrect, which we may observe in Table 2. Note that the size distortion generally

tends to get more severe as n increases especially for AR0. The use of the wild bootstrap reduces the size

distortion but only by small margin. In this case one may attempt the second remedy by removing the

conditional heteroskedasticity itself whenever one is confidently able to specify the form of the conditional

heteroskedasticity ht = var(yt|ξt). Then we may compare the weighted parametric residual sum of squares

(WRSSP),
P
û2t/ht, ût = yt − g(ξt, δ̂) with the weighted nonparametric RSS (WRSSNP),

P
ũ2t/ht, where

ũt = yt − m̈(ξt). When ht is a known function the CFY (2000) bootstrap procedure can be applied to the
modified T statistic with the weighted RSS’s. However, when ht is unknown, it needs to be estimated. Use

of misspecified conditional variance model in the procedure will again adversely affect the size of the test.

Furthermore, if the alternative is true, the fitted conditional heteroskedasticity model can absorb some or

even much of the neglected nonlinearity in conditional mean model. Conceivably, this could have adverse

impact on the power of T statistic. Consideration of the second remedy together with the wild bootstrap

could raise issues that take us well beyond the scope of the present study and their investigation is left for

other work.

Table 3 presents the power of the tests T and L at 5% level. The results at 1% and 10% levels are

available but not presented to save space. As the results obtained can be considerably influenced by the

choice of nonlinear models, we try to include as many different types of nonlinear models as possible. Neither

T nor L is uniformly superior to the other. T has relatively superior power for BL and ESTAR, and has

power comparable to L in other cases.

4 Conclusions

We have presented a unified framework for various nonparametric kernel regression estimators, based on

which we have considered two nonparametric tests T and L for neglected nonlinearity in regression models.

We investigate them in several aspects: (1) T vs. L, (2) dependent process (AR) vs. independent process

(Z1), (3) conditional homoskedasticity (AR and Z1) vs. conditional heteroskedasticity (AR0 and Z10), (4)

naive bootstrap (B) vs. wild bootstrap (W).

When the errors are conditionally heteroskedastic, the wild bootstrap LWZ test LW works pretty well.

However, the use of the wild bootstrap for TW does not correct the size problem. This difference of the

two statistics is due to the different construction of the test statistics: L is constructed based on a moment

condition implying linearity in conditional mean, while T is constructed to detect any possible improvement
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in terms of residual variance via a nonparametric model over a linear model. Hence, the LWZ test can be

robustified to the presence of conditional heteroskedasticy in testing for the linearity in conditional mean,

while T will have power to detect neglected nonlinearity in conditional mean as well as the conditional

heteroskedasticity. The choice of the bandwidth c in Lc is more important for time series processes than for

independent process.
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TABLE 1. Size

Panel A 5% nominal level of significance
Block DGP n TB TW LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1 AR 50 .044 .043 .013 .027 .030 .001 .018 .015 .000 .002 .002

100 .034 .031 .015 .029 .027 .007 .020 .018 .001 .009 .012
200 .028 .026 .023 .036 .036 .007 .026 .023 .001 .009 .010

2 M1 50 .046 .064 .021 .028 .027 .008 .022 .018 .000 .002 .002
100 .015 .030 .028 .030 .035 .012 .028 .026 .000 .007 .006
200 .024 .025 .030 .032 .045 .006 .018 .020 .000 .003 .007

2 M4 50 .047 .070 .022 .025 .026 .008 .019 .016 .000 .003 .004
100 .023 .032 .025 .030 .029 .009 .018 .021 .000 .006 .006
200 .014 .019 .034 .041 .037 .015 .031 .030 .001 .006 .004

4 Z1 50 .019 .131 .031 .060 .063 .010 .062 .057 .001 .060 .050
100 .019 .099 .027 .044 .044 .013 .049 .047 .000 .053 .058
200 .014 .117 .023 .043 .044 .011 .043 .045 .000 .045 .045

Panel B 10% nominal level of significance
Block DGP n TB TW LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1 AR 50 .072 .090 .033 .063 .063 .005 .042 .044 .000 .010 .013

100 .069 .072 .035 .075 .074 .010 .052 .048 .001 .023 .024
200 .062 .057 .042 .085 .082 .013 .063 .059 .001 .033 .030

2 M1 50 .071 .122 .053 .075 .074 .014 .052 .044 .000 .013 .011
100 .035 .073 .050 .072 .070 .025 .054 .054 .000 .017 .014
200 .045 .063 .063 .087 .091 .021 .049 .058 .000 .021 .022

2 M4 50 .077 .112 .040 .061 .058 .016 .035 .035 .000 .013 .012
100 .047 .069 .045 .068 .066 .020 .038 .039 .001 .018 .015
200 .042 .040 .065 .085 .083 .030 .065 .063 .001 .018 .017

4 Z1 50 .044 .196 .051 .119 .118 .018 .110 .103 .001 .097 .099
100 .043 .160 .043 .087 .090 .020 .113 .108 .000 .112 .115
200 .045 .182 .045 .097 .093 .022 .087 .097 .001 .096 .106

Notes: Test statistics are denoted as T j and Ljc, with the superscripts j = A,B,W refer to the methods of

obtaining the null distributions of the test statistics; using the asymptotics (A), naive bootstrap (B), and

wild bootstrap (W ). The number of bootstrap resamples = 500 and number of monte carlo replications =

1000. The 95% asymptotic confidence interval of the estimated size is (.036, .064) at 5% nominal level of

significance and (.081, .119) at 10% nominal level of significance.



TABLE 2. Size under conditional heteroskedasticity

Panel A 5% nominal level of significance
Block DGP n TB TW LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1 AR0 50 .196 .164 .029 .048 .037 .010 .047 .024 .000 .022 .006

α = .5 100 .304 .179 .045 .061 .052 .025 .065 .042 .005 .058 .023
β = .0 200 .450 .195 .033 .059 .042 .028 .074 .044 .010 .075 .034

1 AR0 50 .283 .234 .042 .071 .036 .025 .098 .037 .005 .076 .018
α = .7 100 .452 .267 .061 .108 .056 .051 .127 .053 .015 .120 .037
β = .0 200 .662 .309 .074 .111 .073 .072 .137 .069 .034 .175 .059

1 AR0 50 .057 .068 .014 .026 .024 .002 .017 .014 .000 .006 .001
α = .1 100 .079 .060 .025 .038 .040 .013 .027 .027 .000 .011 .011
β = .89 200 .165 .076 .043 .058 .055 .024 .056 .047 .004 .036 .021

1 AR0 50 .154 .147 .030 .051 .038 .012 .052 .024 .001 .026 .006
α = .3 100 .274 .141 .040 .071 .050 .020 .070 .037 .004 .049 .020
β = .69 200 .568 .228 .059 .091 .053 .044 .118 .047 .016 .133 .037

1 AR0 50 .229 .190 .034 .057 .032 .023 .070 .036 .003 .045 .017
α = .5 100 .441 .242 .051 .092 .046 .039 .102 .043 .015 .112 .029
β = .49 200 .711 .324 .093 .148 .070 .089 .189 .077 .046 .220 .060

4 Z10 50 .264 .367 .048 .089 .053 .033 .117 .062 .006 .170 .065
100 .382 .357 .040 .079 .045 .031 .127 .051 .011 .170 .055
200 .506 .386 .046 .077 .055 .045 .125 .053 .019 .193 .051

Panel B 10% nominal level of significance
Block DGP n TB TW LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1 AR0 50 .287 .241 .046 .104 .079 .019 .106 .068 .002 .056 .026

α = .5 100 .398 .258 .063 .119 .093 .043 .118 .075 .007 .104 .047
β = .0 200 .548 .295 .067 .113 .086 .049 .124 .091 .020 .125 .073

1 AR0 50 .374 .308 .067 .131 .086 .047 .158 .082 .011 .123 .055
α = .7 100 .562 .363 .102 .183 .123 .072 .193 .102 .027 .182 .074
β = .0 200 .747 .409 .108 .179 .122 .090 .237 .132 .054 .259 .120

1 AR0 50 .097 .117 .024 .066 .067 .005 .039 .041 .000 .013 .014
α = .1 100 .146 .108 .040 .068 .068 .018 .061 .052 .002 .029 .023
β = .89 200 .247 .123 .062 .098 .092 .043 .091 .075 .009 .069 .051

1 AR0 50 .228 .204 .048 .105 .079 .022 .090 .058 .001 .047 .022
α = .3 100 .363 .213 .068 .123 .091 .034 .118 .070 .006 .093 .038
β = .69 200 .653 .321 .091 .163 .101 .071 .185 .103 .032 .188 .081

1 AR0 50 .327 .271 .050 .126 .073 .035 .116 .072 .009 .081 .037
α = .5 100 .537 .330 .078 .160 .092 .061 .163 .072 .020 .162 .060
β = .49 200 .776 .434 .137 .231 .142 .120 .265 .138 .066 .286 .112

4 Z10 50 .372 .465 .085 .152 .112 .055 .209 .114 .011 .257 .138
100 .483 .436 .077 .149 .098 .055 .207 .097 .017 .260 .109
200 .614 .464 .081 .149 .106 .076 .196 .108 .027 .271 .120

Notes: AR0 is AR with GARCH(1,1) ht = (1 − α − β) + αε2t−1 + βh2t−1. Z10 is Z1 with ht ≡ E(ε2t |ξt) =
(1 + x2t1 + x

2
t2)/3.



TABLE 3 Power (5% level)
Block DGP n TB TW LA0.5 LB0.5 LW0.5 LA1.0 LB1.0 LW1.0 LA2.0 LB2.0 LW2.0
1 BL 50 .380 .319 .043 .069 .040 .027 .084 .031 .003 .082 .015

100 .616 .428 .062 .121 .044 .053 .162 .052 .026 .179 .042
1 TAR 50 .311 .329 .408 .482 .461 .228 .410 .398 .001 .069 .074

100 .717 .645 .876 .902 .908 .791 .884 .881 .095 .527 .546
1 SGN 50 .392 .408 .536 .629 .621 .334 .529 .534 .005 .145 .143

100 .838 .796 .962 .971 .972 .890 .955 .960 .183 .678 .710
1 NAR 50 .073 .098 .042 .062 .061 .020 .052 .047 .000 .021 .026

100 .045 .048 .038 .057 .057 .019 .060 .057 .004 .036 .039
2 M2 50 .083 .121 .047 .060 .048 .015 .027 .025 .000 .010 .009

100 .076 .120 .046 .060 .050 .030 .063 .050 .002 .027 .019
2 M3 50 .216 .238 .081 .101 .091 .089 .141 .125 .019 .157 .128

100 .484 .448 .184 .211 .205 .270 .359 .346 .177 .479 .419
2 M5 50 .691 .644 .302 .344 .309 .276 .425 .362 .019 .255 .155

100 .956 .893 .640 .680 .651 .749 .855 .798 .346 .802 .652
2 M6 50 .640 .618 .201 .242 .184 .115 .253 .153 .001 .124 .034

100 .881 .789 .500 .540 .478 .466 .657 .474 .091 .449 .171
3 SQ 50 .303 .498 .172 .290 .250 .169 .418 .361 .050 .561 .476

100 .703 .819 .425 .582 .535 .491 .725 .681 .355 .861 .815
3 EXP 50 .362 .499 .197 .294 .229 .197 .385 .294 .108 .481 .373

100 .644 .758 .373 .477 .398 .407 .602 .507 .326 .728 .621
4 Z2 50 .977 .994 .773 .842 .697 .892 .972 .892 .863 .997 .974

100 1.000 1.000 .979 .992 .968 .999 1.000 .995 1.000 1.000 1.000
4 Z3 50 .054 .255 .072 .134 .128 .056 .206 .195 .007 .283 .258

100 .161 .410 .168 .255 .253 .193 .414 .411 .080 .541 .534
4 Z4 50 .999 1.000 .998 .999 .992 1.000 1.000 .996 1.000 1.000 1.000

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 EXPAR 50 .784 .755 .399 .358 .344 .305 .281 .259 .014 .068 .061

100 .969 .958 .753 .748 .746 .798 .828 .810 .267 .515 .462
5 TAR 50 .209 .263 .119 .141 .131 .082 .143 .147 .002 .062 .059

100 .389 .398 .203 .228 .224 .225 .317 .308 .050 .251 .239
6 LSTAR 50 .669 .679 .159 .156 .147 .044 .109 .094 .000 .013 .008

100 .945 .920 .504 .512 .503 .340 .452 .425 .012 .158 .121
6 ESTAR 50 .316 .316 .098 .111 .106 .041 .061 .056 .001 .013 .008

100 .615 .584 .259 .280 .289 .181 .255 .249 .008 .044 .039


