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Abstract

In this paper we examine under what cir-
cumstances the information accumulated dur-
ing market closing time and conveyed to the
price formation at market opening may be ex-
ploited to predict where the stock price will be
at the end of the trading day. In our sam-
ple of three financial time series, we find that,
in spite of linear uncorrelatedness, there ex-
ists a strong nonlinear dependence structure in
the conditional mean of the intra-daily returns.
To model this structure we use the functional-
coefficient (FC) model of Cai, Fan, and Yao
(2000) where the coefficients are time-varying
and dependent on the state of stock return
volatility. Out-of-sample forecast performances
of the FC models and linear models where the
coefficients are constant are also compared us-
ing the criteria of mean square forecast errors,
trading returns, and directional forecasts.

1. Introduction

Research on financial time series has long
been based on the widely documented tenet
that future asset prices returns are unpre-
dictable whether one knows the past values of
the series or even enlarged sets including other
currently available public information. In sta-
tistical terms the assumption is that returns
follow a martingale difference process. Many
authors have attempted to show that if one
breaks down the sample period, uses nonlin-
ear models, introduces new explanatory vari-
ables, reproduces market behavior by chartists
(Brock et al., 1991) some degree of predictabil-
ity is possible, although, as Granger (1992) ar-
gued, it may not lead to profitability of the
outcome.

Several authors (e.g., Lo and MacKin-
lay, 1999; Sullivan, Timmerman and White
1999) have guarded against the so called data-
snooping biases, i.e. the possibility that differ-
ent analyses conducted on the same data sets

may eventually uncover some sort of pattern
that may be interpreted as evidence of pre-
dictability, and White (2000) has suggested a
bootstrap—based reality check test to evaluate
out—of—sample forecast performance.

More recently, also due to the increasing
diffusion of ultra—high frequency data, the is-
sue of market efficiency and market predictabil-
ity has received considerable attention. Among
others, Lo and MacKinlay (1999) claim that
the larger quantity of information that is avail-
able to the markets and collected for analy-
sis can reveal patterns which may cast some
doubts about the correctness of the martingale
difference hypothesis for asset returns even af-
ter taking data—snooping biases into consider-
ation.

When working with daily data, it is cus-
tomary that returns are measured on the basis
of the closing prices. Amihud and Mendelson
(1987) and Stoll and Whaley (1990) offered a
rationale for this practice, arguing that returns
measured as open-to-open are affected by spe-
cific trading mechanisms at work when markets
open, resulting in a number of unappealing sta-
tistical features of the corresponding time se-
ries. In spite of this, opening prices are reck-
oned to be still of interest, since they convey
the outcome of information accumulation dur-
ing closing times as well and/or the feature of
trading to convey a flow of information which
was interrupted during closing times (Romer,
1993, Dow and Gorton, 1993). This informa-
tion may be relevant when evaluating the be-
havior of intra-daily return, even without re-
sorting to high frequency data.

In this paper, we will concentrate on one
aspect of the price formation which can prove
of interest for the study of market predictabil-
ity, namely how one can use the information
included in the price of an asset recorded when
market opens, after many hours of potential
information accumulation in the absence of ac-
tive trading. In fact, we compute daily returns
as usual as the log-difference of stock prices at
market closing time but we decompose them



into two components, namely an overnight re-
turn (measured as the log-difference of the
opening price and the price at the previous
trading day closing time), and an intra-daily
return measured as the log—difference of prices
recorded the same trading day (at closing
and opening time). The issue is then under
what conditions the overnight return may con-
tain useful information to predict the intra—
daily return. Empirical evidence reported here
shows that, depending on the overall daily re-
turn volatility, there is a correlation between
overnight and intra-daily returns which can
help in predicting the latter conditional on the
value assumed by the former. This predictabil-
ity is unlikely to be picked up by linear mod-
els which have constant coefficients. Rather,
the model must be capable of reproducing the
empirical regularity that coefficients depend on
volatility. The candidate model which seems to
include this needed flexibility is the functional
coefficient model proposed by Cai et al. (2000,
henceforth CFY), the coefficients of which are
time-varying and can be made dependent on
the degree of volatility prevailing that day.

The structure of the paper is as follows:
we first discuss the nature of opening prices
and review some of the evidence present in
the literature (Section 2). In Section 3 we
discuss the structure of the functional coeffi-
cient model and various strategies followed to
capture some features present in the data. In
Section 4 we compare the out—of—sample per-
formance of the various estimated nonlinear
models against a linear benchmark, using the
methods of Diebold and Mariano (1995), West
(1996) and White (2000). Section 5 contains
some concluding remarks.

2. Overnight Surprises and Intra—daily
Returns

To establish notation, let Ct be the closing
price at time t, t = 1, . . . , n, and Ot the open-
ing price for the same day. Accordingly, the
daily returns are approximated by the differ-
ence between the logarithms of closing prices,
that is, rt = lnCt − lnCt−1, . Clark (1973)
considers rt as the sum (over a random number
of trades nt) of independently and identically
distributed price movements with mean 0 and
constant variance σ2. Accordingly, conditional
on nt, the variance of the daily returns is ntσ

2.
As noted by Gallo and Pacini (1998), though,
one should keep into account that among these

nt trades, the first recorded price movement
(occurring at market opening time) has dif-
ferent characteristics than the intra-day price
movements. This different nature is a conse-
quence of the price formation mechanisms at
work around market opening time: next to the
trading mechanisms specific to the exchange
considered (cf. Cao, Ghysels, and Hathaway,
2000 for a discussion of pre-opening behavior
at the NASDAQ), the overnight accumulation
of information plays a special role. For ex-
ample, cross-listings of the same company on
other stock exchanges around the world convey
some information available at opening time,
and news released when markets are closed
have not been translated into price movements.

Let us thus consider the decomposition of
the daily returns rt by adding and subtracting
the log of opening prices:

rt = (lnCt − lnOt) + (lnOt − lnCt−1)
≡ ρt + ηt,

so that ρt is the intra-daily return and ηt is the
overnight return.

The series we use are the S&P500 in-
dex (1/3/1994 - 7/25/2001, 1909 daily ob-
servations) and two large caps stocks traded
on the New York Stock Exchange which can
be deemed representative of actively traded
stocks: Citicorp and General Electric (both be-
tween 1/3/1994 and 8/4/2000, for a total of
1666 daily observations).

Like daily stock returns, also intra—daily
returns exhibit volatility clustering, asymmet-
ric response of volatility to the sign of returns
and some moderate autocorrelation (not re-
ported here). In addition, one should stress
that when overall returns rt are low (in abso-
lute value) the “half-day” returns ηt and ρt
are bound to be negatively correlated (since
ηt ≈ −ρt when |rt| ≈ 0. Since E|rt|2 ≈ ht
(the conditional variance), absolute returns are
connected to volatility, and hence a relationship
between ηt and ρt should be detectable when
daily volatility is low. Thus, enlarging the in-
formation set It−1 available at closing time to
include ηt should be relevant in modelling the
conditional mean of ρt, at least for some states
of volatility.

If the conjecture is correct, a linear con-
stant parameter model,

ρt = a0 + a1ηt + εt, (1)



should be incorrectly specified for the condi-
tional mean of the intra-day return ρt; in par-
ticular, the coefficients a0 and/or a1 may hap-
pen to be statistically insignificant, whereas
they may be time—varying. In view of what
we argued above, the coefficient a1 should cap-
ture a systematic pattern in the correlation be-
tween ηt and ρt and the volatility of the daily
return process rt. In synthesis, we want to in-
vestigate if the following statement holds for
in-sample goodness-of-fit and for out-of-sample
prediction:

Hypothesis: The impact of overnight sur-
prises ηt on the intra-daily return ρt depends
on the conditional volatility of the daily return
rt.

Under this hypothesis, the coefficient a1 is not
zero, not constant, and can be expressed as a
function of some volatility measure of rt, while
the characteristics of a0 are open to investi-
gation. A suitable model which provides the
needed flexibility of time-varying nonlinear re-
sponse to some state variable (in our case daily
volatility) is the functional coefficient model
proposed by CFY.

3. The Functional-Coefficient Model

The linear model (1) exploits the informa-
tion available at opening time, denoted as I+t−1,
in a very restrictive fashion. We can think of
a more general model in which the conditional
mean of ρt, be it E(ρt|I+t−1), is a generic func-
tion of this information set, denoted as g(I+t−1).
We can then write

ρt = g(I
+
t−1) + εt,

where {εt} is a martingale difference sequence
with respect to I+t−1. The key to forecasting is
to manage and specify suitably the conditional
mean g(I+t−1), which is generally a non-zero,
time-varying function but is of complicated and
unknown form. The functional-coefficient (FC)
model of CFY, whose coefficients are time-
varying and state-dependent, can be viewed as
a linear model with time-varying and state-
dependent coefficients, a special case of the
more general state-dependent model of Priest-
ley (1980), while retaining a good degree of flex-
ibility, since it encompasses the models of Tong
(1990) and Chen and Tsay (1993). It has the
advantages of capturing a fine structure of the

underlying dynamics and of giving good out-of-
sample forecasts. A key feature of this model
is that it makes use of a variable Ut which is
function of the same information set I+t−1 as
a ‘threshold variable’ on which the functional-
coefficients depend; that is, for the case at hand
we have,

ρt = a0(Ut) + a1(Ut)ηt + εt (2)

where the aj(Ut)’s, j = 0, 1, are the functional
coefficients depending on Ut.

The coefficient functions {aj(·)} are esti-
mated by a locally linear regression method
(e.g., Fan and Gijbels, 1996). For any given
point U0, we can approximate the functions
aj(Ut)’s locally by a linear function:

aj(Ut) ≈ αj + βj(Ut − U0), j = 0, 1,
for Ut in a neighborhood of U0, where αj and
βj are constants. The local linear estimator at
point U0 is given by âj(U0) = α̂j . The coeffi-

cients {(α̂j , β̂j)}1j=0 are chosen as those values
which minimize the sum of weighted squares

nX
t=1

{ρt − a0 − a1ηt}2Kh(Ut − U0),

where Kh(·) = K(·/h)/h for a given kernel
function K(·) and bandwidth h. Note that here
n denotes the number of observations used for
in-sample estimation.

Since we are interested in out-of-sample
predictive ability of the FC model, we can se-
lect h using an out-of-sample cross-validation
procedure, as suggested by CFY. Let m and Q
be two positive integers such that n > mQ. The
basic idea is first to use Q sub-series of lengths
n − qm (q = 1, . . . , Q) to estimate the coeffi-
cient functions and then to compute the one-
step forecast errors of the next segment of the
time series of length m based on the estimated
models. That is, we choose h to minimize the
average of the mean square forecast errors

AMS(h) =
1

Q

QX
q=1

AMSq(h)

where

AMSq(h)=
1

m

n−qm+mX
t=n−qm+1

{ρt-â0,q(Ut)-â1,q(Ut)ηt}2

and {âj,q(·)}1j=0 are computed from the sam-

ple {ηt, ρt, Ut}n−qmt=1 . Following CFY, we use



m = [0.1n], Q = 4, and the Epanechnikov ker-
nel K(u) = 3

4(1 − u2)1(|u| < 1), where 1(·)
is the indicator function. As often occurs, the
particular choice of the kernel function is not
crucial for the results.

3.1 The choice of Ut

It is obviously important to choose an ap-
propriate variable Ut when estimating the FC
model. Knowledge of the data structure or
of some economic theory may be helpful, but
when no prior information is available, Ut may
be chosen as a function of given explanatory
variables or may be chosen using some data-
driven methods as AIC-based selection and
cross-validation.

In the absence of a specific theory, here we
adopt an heuristic approach by choosing the
following variables for Ut:

• The daily return, as level, square and ab-
solute value; the level preserves the sign of
the returns and would signal a dependence
of the coefficients on the size and sign of
the returns. Squared returns and returns
in absolute value are more closely related
to volatility.

• The spread between daily absolute returns
and their moving average of length N . A
moving average of absolute returns can be
seen as a rough measure of local volatility
and the spread from it represents whether
the most recent return is above or below
this “average” volatility. For the problem
analyzed here the spread may signal an
incoming increase or decrease in volatil-
ity. Various lengths can be specified: here
we chose N = 5, 10 and 20 trading days.
Absolute returns are considered in form-
ing the moving average rules instead of
the squared returns, since the former has
very interesting statistical properties (e.g.
stronger evidence of long memory), as em-
phasized in Granger (1998, p. 269) and
Granger and Ding (1995).

• The daily high-low spread which can be
seen as an alternative measure of volatility
(cf. Garman and Klass, 1980, and Parkin-
son, 1980, for estimating the variance of re-
turns from high—low range data; and, more
recently, Gallant et al., 1999);

• The estimated conditional variance of rt,
σ2t ≡ V ar(rt|It−1) modelled according to

three specifications of the GARCH fam-
ily: these are special cases of the threshold
GARCH (TGARCH) model of Glosten et
al. (1993),

σ2t = ω+βσ2t−1+αe
2
t−1+γe

2
t−11(et−1 ≥ 0),

where et ≡ rt− a0− a1rt−1. The GARCH
model of Bollerslev (1986) is the case with
γ = 0. J.P. Morgan’s Riskmetrics (1996)
model, which suggests an exponentially
weighted moving average (EWMA) of past
squared innovations as an estimate of the
variance, can also be seen as another spe-
cial case where we do not resort to estima-
tion but we choose parameters as ω = 0,
β = 0.94, α = 1− β, γ = 0.

• The trading volume: the relationship be-
tween variability of returns and trading
volumes has been analyzed by several au-
thors (Epps and Epps, 1976, Cornell, 1981,
Tauchen and Pitts, 1983, Cooper, 1999)
and often modelled jointly.

Summarizing, in the empirical implemen-
tation, we include the following eleven choices
for Ut, all included in the information set It−1:

U1,t = rt−1,
U2,t = r

2
t−1,

U3,t = |rt−1|,
U4,t = |rt−1|−N−1

PN
j=1 |rt−j |, N = 5,

U5,t = |rt−1|−N−1
PN

j=1 |rt−j |, N = 10,

U6,t = |rt−1|−N−1
PN

j=1 |rt−j |, N = 20,
U7,t = (High-Low Spread)t−1,
U8,t = Riskmetrics EWMA,
U9,t = GARCH,
U10,t = TGARCH, and
U11,t = (Trading Volume)t−1.

In Tables 1-3, the FC model using Uk will
be denoted as FCk (k = 1, . . . , 11). For S&P500
index, the trading volume data is not available
and thus U11 will not be used.

3.2 Testing for functional-coefficients

To provide evidence for the usefulness of
the FC model, we apply CFY’s goodness-of-fit
test for a specific parametric model against an
FC alternative, based on bootstrap. We con-
sider the linear constant parameter model (1)
as the null hypothesis and the functional coef-
ficient model (2) as the alternative, i.e.,

H0 : aj(Ut) = aj , j = 0, 1, (3)



to test for parameter constancy. Under H0,
the process {ρt} is linear in conditional mean.
When H0 in (3) does not hold, the coeffi-
cients are functionals of Ut and the linear model
suffers from ‘neglected nonlinearity’. CFY
test consists of comparing the residual sum of
squares (RSS) under the null hypothesis

RSS0 ≡
nX
t=1

ε̂2t =
nX
t=1

(ρt − â0 − â1ηt)2

with RSS under the alternative

RSS1 ≡
nX
t=1

ε̃2t =
nX
t=1

(ρt− â0(Ut)− â1(Ut)ηt)2.

The statistic is Tn = (RSS0 − RSS1)/RSS1.
We reject the null hypothesis for large values
of Tn.

Fan, Zhang, and Zhang (2001, Theorem
5) show the asymptotic normality of Tn with
a suitable normalization. An important conse-
quence of this result is that we do not have to
derive theoretically the normalizing factors in
order to be able to use the test, but we can
directly simulate the distribution of the test
statistic Tn under the null hypothesis via boot-
strap:

1. Generate the bootstrap residuals {ε∗t }
from the centered residuals (ε̃t− ε̃) where

ε̃= n−1
P

ε̃t and define ρ
∗
t ≡ â0+â1ηt+ε∗t .

2. Construct the bootstrap sample
{ρ∗t , Ut}nt=1 and calculate the boot-
strap statistic T ∗n . This step is repeated
over the number of desired replications.

3. Reject the null hypothesis H0 in (3) when
the test statistic Tn computed over the
original data is greater than the 100×(1−
α) percentile of the conditional distribu-
tion of T ∗n given {ρt, Ut}nt=1. The bootstrap
p-value of Tn is approximately the relative
frequency of the event {T ∗n ≥ Tn} in the
bootstrap resamples.

3.3 Results on the FC models

The bootstrap p-values of Tn are reported
in the tables. Both the naive-bootstrap (Efron,
1979) and the wild-bootstrap (Wu 1986, Liu
1988) procedures are used, whose p-values are
denoted as PB and PW , respectively. The
bandwidth h for a FC model is chosen such that
AMS(h) is minimized, among the 11 values of

h = 2jn−1/5 where j = −5,−4,−3,−2,−1,
0, 1, 2, 3, 4, and 5. All Ut’s are standardized
by dividing them by their unconditional stan-
dard deviations. In the second columns of Ta-
bles 1-3, reported are the values of j chosen.
The p-values, computed from 100 bootstrap
resamples and reported in brackets, indicate
strong rejection of H0 in (3) in favor of the FC
models in most cases. Indeed, the estimated
statistics Tn are positive for all cases indicat-
ingRSS0 > RSS1. Thus, the result that we get
in estimation is that neglected nonlinearity in
the linear model may be explored using the FC
model. Most choice of Ut delivers significant
improvement in goodness-of-fit with many p-
values are close to zero. Comparing the choices
of Ut in terms of Tn and its p-values, it may
be interesting to note that FC9 with Ut being
estimated from GARCH is the worst model for
S&P500 and GE. FC9 is also the second worst
for Citicorp. In general, asymmetric TGARCH
seems to work better. Whether this nonlinear-
ity can be exploited even in an out-of-sample
prediction exercise is an issue explored in the
next section.

4. Out-of-Sample Predictive Ability of
FC Models

In addition to specification testing and es-
timation, out-of-sample forecast evaluation is
also important to make the analysis robust to
the possible consequences of structural changes
and data snooping. To evaluate the nonlin-
ear models in terms of out-of-sample predictive
ability, in Section 4.1, we first discuss three
forecast evaluation criteria — mean squared
forecast error, mean trading returns, and mean
correct directional forecasts. Our primary ob-
jective is to compare the FC model with the
linear constant parameter model in (1). When
several models using the same data are com-
pared for predictive ability, it is crucial to
take into account the dependence among the
forecasts from various models because of the
data-snooping problem, which occurs when a
model is searched extensively until a match
with the given data is found. Conducting infer-
ence without taking into account specification
search is commonly referred to as ‘data-mining’
and can be extremely misleading (cf. Lo and
MacKinlay 1999, Ch.8). White (2000) develops
a test to compare multiple models in predic-
tive ability accounting for specification search,
built on West (1996) and Diebold and Mariano



(1995). Section 4.2 provides a short discussion
of the method.

4.1 Forecast evaluation criteria

Our evaluation of out-of-sample forecasts
proceeds as follows. There are P predictions
in all for each model. Suppose one-step predic-
tions are to be made for P prediction periods,
indexed from R through n, so that n = R+P−
1. Here, P and R may increase as the sample
size n increases. The first forecast is based on
the model parameter estimator β̂R, formed us-
ing observations 1 though R, the next based on
the model parameter estimator β̂R+1, formed
using observations 2 though R+1, and so forth,
with the final forecast based on the model pa-
rameter estimator β̂n. Based on the estimated
models using a series of rolling samples, each of
size R, one-step ahead forecasts are generated
for P post-samples, resulting in P forecasts to
evaluate each model. Let {ρ̂t+1}nt=R be an esti-
mated forecast of {ρt+1}nt=R using information
{I+t }nt=R.We compare the forecasts in terms of
mean squared forecast errors (MSE)

MSEP ≡ P−1
nX
t=R

(ρt+1 − ρ̂t+1)
2.

However, our main aim is to investigate prof-
itability of using a FC model relative to that
of using a benchmark linear model. Because
the investors are ultimately trying to maximize
profits rather than minimize forecast errors,
MSE may not be the most appropriate eval-
uation criterion. We consider two additional
forecast evaluation criteria.

Our second criterion is the mean trading
return (MTR) of a strategy defined as

MTRP ≡ P−1
nX
t=R

St+1ρt+1,

where St+1 is a signal function at time t for the
next period t+1 representing the recommended
trading position. The estimation of St+1 will be
carried out based on the linear models and the
FC models. The signal function is

St+1 = 1(ρ̂t+1 > 0)− 1(ρ̂t+1 < 0),
which takes a value of +1 (for a buy signal),
−1 (for a sell signal), or 0. If ρt+1 is predicted
to be positive, then St+1 = 1. Four interest-
ing cases may worth mentioning. First, for
the martingale model, we have ρt+1 = 0 and

St+1 = 0 for all t. Hence, MTRP = 0. Second,
the Buy-and-Hold strategy, which is defined
with St+1 = 1 for all t, has the mean trading
returnMTRBuy-HoldP = P−1

Pn
t=R ρt+1. Third,

if ρt+1 and its forecast ρ̂t+1 have the same signs
for all t, i.e., if we could make the perfect direc-
tional forecasts for all t, then St+1ρt+1 = |ρt+1|
for all t, and MTRPerfectP = P−1

Pn
t=R |ρt+1|.

The third forecast evaluation criterion is
about the directional forecasts. The forecast
ρ̂t+1 of ρt+1 is correct in direction (sign) if
ρ̂t+1ρt+1 > 0. The probability that a model
generates a correct directional prediction of
ρt+1 is Pr(ρ̂t+1ρt+1 > 0), which can be esti-
mated by mean correct directional prediction
(MCD)

MCDP ≡ P−1
nX
t=R

1(ρ̂t+1ρt+1 > 0).

4.2 Comparing forecasting models

Model comparison via forecast criteria can
be conveniently formulated as hypothesis test-
ing of some suitable moment conditions. Con-
sider an l× 1 vector of moments, E(ψ∗), where
ψ∗ = ψ(Z,β∗) is an l × 1 vector with ele-
ments ψ∗k ≡ ψk(Z,β

∗) for a random vector

Z = (ρ, η, r, U)0 and β∗ ≡ plim β̂n. The appro-
priate null hypothesis is that the best model
is no better than a benchmark, expressed for-
mally as

H0 : max1≤k≤lE(ψ∗k) ≤ 0. (4)

This is a multiple hypothesis, the intersection
of the one-sided individual hypotheses E(ψ∗k) ≤
0, k = 1, . . . , l. The alternative is that H0 is
false, that is, that the best model is superior
to the benchmark. White’s (2000) results for
testingH0 in (4) hold whenever the l×1 sample
moment vector

ψ̄ = P−1
nX
t=R

ψ(Zt+1, β̂t)

has a continuous limiting distribution.
West (1996, Theorem 4.1) shows that un-

der proper regularity conditions,
√
P (ψ̄ −E(ψ∗))→ N(0,Ω) in distribution

as P ≡ P (n)→∞ when n→∞, where Ω is a
l × l matrix

Ω = lim
n→∞ var[P

− 1
2

nX
t=R

ψ(Zt+1, β̂t)],



which is a complicated expression as Ω depends
on the estimated parameter β̂t.

When we compare a single model (l = 1)
with a benchmark we can use Diebold and
Mariano’s (1995) test and West’s (1996) test,
with an appropriate estimator of Ω. When we
compare multiple forecasting models (l > 1)
against a given benchmark model, however, se-
quential use of Diebold and Mariano (1995) and
West (1996) tests may result in a data-snooping
bias since the test statistics are mutually de-
pendent due to the use of the same data. To
account for possible bias due to data snoop-
ing, we use White’s (2000) procedure. White’s
(2000) test statistic for H0 in (4) is formed as
follows:

V̄ ≡ max
1≤k≤l

√
P ψ̄k,

which converges in distribution to
max1≤k≤l Zk under H0, where the limit
random vector Z = (Z1, . . . , Zl)0 is N(0,Ω).
White (2000) suggests to use the stationary
bootstrap of Politis and Romano (1994, PR)
to obtain the null distribution of V̄ . This gives
appropriate p-values for testing the null hy-
pothesis that the best model has no predictive
superiority relative to the benchmark (White,
2000, Corollary 2.4). The p-value is called
the ‘Reality Check p-value’ for data snooping.
White (2000, Proposition 2.5) also shows that
the test’s level can be driven to zero at the
same time the power approaches to one as V̄
diverges at rate P

1
2 under the alternative.

In our application, we will evaluate the
predictive ability of l = 10 or l = 11 FC mod-
els using the three criteria. For example, if we
compare the FCk model with the benchmark
linear model using mean trading returns, then
we set

ψ̄k =MTR
k
P −MTRBenchmarkP , k = 1, ..., l.

4.3 Results of predictive ability tests

We compare the FC models of (2) with a
benchmark linear models in (1). PRC denotes
the p-values of White (2000) test computed
using PR’s stationary bootstrap. The Boot-
strap Reality Check p-values are computed
with 1,000 bootstrap resamples and the boot-
strap smoothing parameter q = 0.5. See PR
or White (2000) for the details. The other val-
ues of q (say, q = 0.25, 0.75) give similar p-
values (not reported). The bootstrap p-value
of White’s (2000) test with l = 1 are reported

next to the values of criterion functions, and
the ‘bootstrap reality check p-values’ to com-
pare the ten or eleven FC models (l = 10 or
11) with the benchmark are reported in the last
rows of Tables 1-3, which is to test for the null
hypothesis that the best of the ten FC models
has no predictive superiority over the bench-
mark linear model. The difference between the
p-values with l = 1 and l = 10 (or 11) gives an
estimate of the data-snooping bias, which may
be substantial, and enables to quantify the ef-
fects of blind specification search and eliminate
our illusions to confuse the spurious with the
salient.

The statistically significant nonlinearities
in conditional mean found in in-sample analysis
are not generally carried over to significant out-
of-sample forecasts, after accounting for data-
snooping. As expected the choice of the loss
function directly affects the forecast evaluation
results. Some significant out-of-sample fore-
cast improvement of the FC models is found
in terms of MCD, for Citicorp and GE. The
predictive performance of the FC models in
terms of MSE is generally dominated by a lin-
ear model.

5. Conclusions

This article has demonstrated the relation
between the impact of overnight returns on the
intra-daily returns and volatility in daily stock
returns on the S&P500 index and on two large
U.S. firms (Citicorp and GE). In terms of in-
sample goodness of fit, we do find some signifi-
cant evidence that the impact of the overnight
surprises on the intra-daily returns may de-
pend on the state of daily volatility. How-
ever, the statistically significant nonlinear re-
sponses of intra-daily return to the overnight
surprises found in the in-sample analysis are
not generally carried over to significant out-
of-sample forecasts, after accounting for data-
snooping. As expected the choice of the loss
function directly affects the forecast evaluation
results. There are many possible reasons for
the rather disappointing results. One is that
the nonlinear models used are not the most
suitable ones. Another possible reason is that
nonlinearities may be exogenous, arising from
outliers, structural shifts, and government in-
tervention, which may render various nonlin-
earity tests to reject while not being useful for
out-of-sample forecasts. It is also possible that
the nonlinearity in conditional mean of these



series may not be strong enough to be exploited
for forecasting. It is important to explore these
possible reasons, but this is beyond the scope
of this paper, and has to be left for further re-
search.
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Table 1. S&P500
Test for FC (in-sample) Comparing Predictive Ability (out-of-sample)

Model j Tn PB PW MSEP PRC MTRP PRC MCDP PRC
L 1.752 0.022 0.507
FC1 4 0.030 (0.00) (0.00) 1.709 (0.198) 0.002 (0.655) 0.497 (0.707)
FC2 5 0.024 (0.00) (0.00) 1.675 (0.118) 0.058 (0.083) 0.507 (0.467)
FC3 3 0.027 (0.00) (0.00) 1.719 (0.245) 0.027 (0.416) 0.508 (0.421)
FC4 4 0.024 (0.00) (0.00) 1.693 (0.173) 0.040 (0.216) 0.509 (0.367)
FC5 4 0.025 (0.00) (0.00) 1.727 (0.300) 0.005 (0.887) 0.499 (0.871)
FC6 4 0.024 (0.00) (0.00) 1.716 (0.225) 0.029 (0.373) 0.503 (0.654)
FC7 5 0.010 (0.02) (0.08) 1.699 (0.189) 0.067 (0.028) 0.524 (0.016)
FC8 5 0.023 (0.00) (0.00) 1.673 (0.128) 0.046 (0.159) 0.504 (0.627)
FC9 3 0.007 (0.08) (0.24) 1.855 (0.808) 0.027 (0.436) 0.514 (0.185)
FC10 5 0.011 (0.00) (0.03) 1.743 (0.424) 0.046 (0.184) 0.511 (0.297)

(0.344) (0.356) (0.247)
TABLE 2. Citicorp
Test for FC (in-sample) Comparing Predictive Ability (out-of-sample)

Model j Tn PB PW MSEP PRC MTRP PRC MCDP PRC
L 5.616 -0.134 0.462
FC1 4 0.021 (0.00) (0.07) 13.620 (1.000) 0.042 (0.088) 0.509 (0.046)
FC2 4 0.027 (0.00) (0.00) 20.400 (0.984) 0.015 (0.131) 0.505 (0.055)
FC3 4 0.016 (0.00) (0.14) 13.077 (1.000) 0.072 (0.064) 0.509 (0.043)
FC4 4 0.012 (0.02) (0.34) 13.205 (1.000) 0.035 (0.118) 0.498 (0.094)
FC5 4 0.014 (0.03) (0.12) 13.484 (1.000) 0.022 (0.113) 0.498 (0.095)
FC6 3 0.026 (0.00) (0.03) 13.480 (1.000) -0.014 (0.191) 0.494 (0.125)
FC7 5 0.007 (0.03) (0.21) 12.587 (1.000) 0.054 (0.088) 0.502 (0.076)
FC8 2 0.054 (0.00) (0.00) 17.677 (0.999) 0.004 (0.154) 0.503 (0.070)
FC9 5 0.005 (0.15) (0.55) 12.504 (1.000) 0.046 (0.095) 0.503 (0.069)
FC10 5 0.009 (0.00) (0.24) 17.292 (0.980) 0.055 (0.069) 0.506 (0.042)
FC11 5 0.002 (0.76) (0.82) 12.976 (1.000) 0.072 (0.063) 0.506 (0.048)

(1.000) (0.106) (0.068)
TABLE 3. GE

Test for FC (in-sample) Comparing Predictive Ability (out-of-sample)
Model j Tn PB PW MSEP PRC MTRP PRC MCDP PRC
L 3.293 0.064 0.480
FC1 4 0.034 (0.00) (0.00) 6.111 (1.000) 0.076 (0.443) 0.523 (0.042)
FC2 5 0.020 (0.00) (0.04) 6.572 (1.000) 0.074 (0.475) 0.523 (0.042)
FC3 5 0.017 (0.00) (0.07) 5.723 (1.000) 0.086 (0.392) 0.526 (0.036)
FC4 5 0.014 (0.00) (0.20) 13.875 (0.921) 0.070 (0.449) 0.523 (0.036)
FC5 5 0.019 (0.00) (0.05) 5.711 (1.000) 0.070 (0.472) 0.521 (0.040)
FC6 4 0.027 (0.00) (0.00) 7.468 (0.990) 0.058 (0.502) 0.520 (0.053)
FC7 4 0.010 (0.02) (0.37) 6.462 (1.000) 0.077 (0.423) 0.518 (0.052)
FC8 5 0.020 (0.00) (0.07) 6.600 (1.000) 0.073 (0.455) 0.521 (0.040)
FC9 4 0.003 (0.56) (0.72) 6.662 (1.000) 0.122 (0.264) 0.531 (0.023)
FC10 0 0.085 (0.00) (0.00) 5.745 (1.000) 0.082 (0.396) 0.520 (0.059)
FC11 0 0.080 (0.00) (0.00) 5.749 (1.000) 0.074 (0.488) 0.523 (0.041)

(1.000) (0.363) (0.038)

Notes: (1) Both naive and wild bootstraps are
used, whose p-values are denoted as PB and
PW , respectively. The bandwidth h is chosen
to minimize AMS(h), among the 11 values of
h = 2jn−1/5 where j = −5,−4, . . . , 4, and 5.
(2) PRC denotes denote the p-values of White

(2000) test. The PRC values in all rows (except
in the last row) are to compare each of FCk
with the benchmark linear model L. The PRC
values in the last row are to compare the best
of the eleven FC model with the benchmark
model L.


