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In this supplementary appendix we provide detailed results and further discussion, which is not

presented in the paper due to constraints in the length of the manuscript.

We report the following six items:

1. Table S.1: Descriptive statistics of the weekly returns of the constituents of the SP500 index:

Cross-sectional frequency distribution (500 �rms) of the unconditional moments (time series

mean, standard deviation, skewness, and kurtosis) and cross-sectional summary statistics of

the unconditional jump from January 1, 1990 to December 27, 2000.

2. Table S.2: Estimation results of the duration model f1(JtjFt�1; �1)

3. Table S.3: Estimation results of the model for conditional returns f2(ytjJt;Ft�1; �2)

4. Section 4: Technical trading rules

5. Section 5: Wang�s (2001) Monte Carlo method to compute VaR for the VCR-Mixture trading

Rule

6. Section 6: White�s (2000) reality check and Hansen�s (2005) extension.
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1 Table S.1: Descriptive statistics

In Table S.1, we summarize the unconditional moments (mean, standard deviation, skewness, and

kurtosis) of all 500 �rms, in the estimation sample. The frequency distribution of the unconditional

mean is unimodal with a weekly mean return of 0:029%. For the unconditional standard deviation,

the median value is 5:25%. The coe¢ cient of skewness is predominantly negative with a median

value of �0:12. All the �rms have a large coe¢ cient of kurtosis with a median value of 10:34. We

calculate the Box-Pierce statistics up to the fourth order to test for autocorrelation in returns and

we �nd mild autocorrelation for about one-third of the �rms. However, the Box-Pierce test up to

fourth order for autocorrelation in squared returns indicates strong dependence in second moments

for all the �rms in the SP500 index.

2 Table S.2: Estimation results for f1(JtjFt�1; �1)

In Table S.2, we report the cross-sectional frequency distributions of the estimates �̂1 � (�̂; �̂; �̂
0
)0

for the duration model

pt = [	N(t�1) + �
0
Xt�1]

�1

	N(t) = �DN(t)�1 + �	N(t)�1

�
0
Xt�1 = �1 + �2yt�11(zt�1 � 0:5) + �3yt�11(zt�1 > 0:5)

for all the 466 �rms in the estimation sample.

3 Table S.3: Estimation results for f2(ytjJt;Ft�1; �2)

In Table S.3, we report the estimation results corresponding to the model

f2(ytjJt;Ft�1; �2) =

�
N(�1t; �

2
1t) if Jt = 1

N(�0t; �
2
0t) if Jt = 0

;

�1t � E(ytjFt�1; Jt = 1) = �1 + 1yt�1 + �1zt�1;

�0t � E(ytjFt�1; Jt = 0) = �0 + 0yt�1 + �0zt�1;

�21t = �20t = �
2
t = E(�

2
t jFt�1; Jt) = ! + ��2t�1 + ��2t�1;

�t�1 = (yt�1 � �1;t�1)Jt�1 + (yt�1 � �0;t�1)(1� Jt�1)

�2 = (�1; 1; �1; �0; 0; �0; !; �; �)
0:

for the 466 �rms. We report the cross-sectional frequency distributions of the parameters estimates

in the conditional mean and conditional variance.
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Table S.1 
Descriptive statistics of weekly returns of the SP500 firms 

January 1, 1990-December 27, 2000 
Cross-sectional frequency distribution of unconditional moments 
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Series: MEAN 
Sample 1 500 
Observations 500 
Mean     0.029868 
Median   0.017000 
Maximum   0.463000 
Minimum  -0.877000 
Std. Dev.   0.114643 
Skewness  -1.332909 
Kurtosis   13.23695 
Jarque-Bera  2331.285 
Probability  0.000000 
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Series: STD 
Sample 1 500 
Observations 500 
Mean     5.524196 
Median   5.256000 
Maximum   19.14200 
Minimum   2.020000 
Std. Dev.   2.286806 
Skewness   1.158602 
Kurtosis   5.945845 
Jarque-Bera  292.6550 
Probability  0.000000 

 Standard Deviation 

0 

50 

100 

150 

200 

250 

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 

Series: SKEW 
Sample 1 500 
Observations 500 
Mean    -0.625946 
Median  -0.118000 
Maximum   8.636000 
Minimum  -15.97200 
Std. Dev.   1.636561 
Skewness  -3.109677 
Kurtosis   28.00459 

Jarque-Bera  13831.45 
Probability  0.000000 

    Skewness 
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Series: KURT 

Sample 1 500 
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Mean     19.26952 

Median   10.34500 

Maximum   178.8320 

Minimum  -0.324000 

Std. Dev.   21.46704 

Skewness   3.972950 

Kurtosis   24.23618 

Jarque-Bera  10710.68 

Probability  0.000000 

 Kurtosis 
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Table S.1 (cont.) 
Descriptive statistics of the SP500 firms 

January 1, 1990-December 27, 2000 
 
 

Cross-sectional summary statistics of the unconditional jump:  
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 ≡)(hpi  percentage number of jumps over a maximum of 573 weeks for firm i 
 
Cross-sectional 

moments  
(over 466 firms) 

25.0=h  50.0=h  75.0=h  90.0=h  

Mean 56% 27% 9% 2% 
Median 56% 25% 6% 0.9% 
Max. 70% 49% 32% 20% 
Min. 30% 2% 0% 0% 

 
Entry explanation:  for instance, choose the number in bold “Median = 56%” (second 
column, third row). It means that 50% of the SP500 firms have had a jump of at least 
0.25 in the cross-sectional ranking of returns in 56% of the weeks between Jan.1 1990 
and Dec. 27, 2000 or alternatively, there is a jump of at least 0.25 every 1.8 weeks. The 
smaller the jump, the larger the summary statistic is. 
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Table S.2 

Cross-sectional frequency distribution of the estimates of the duration model 
when ( )5.01 1 ≥−= −ttt zzJ    
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Series: ALPHA 
Sample 1 466 
Observations 466 

Mean     0.336601 
Median  0.347000 
Maximum  0.989000 
Minimum  0.011000 
Std. Dev.   0.137334 
Skewness   0.243171 
Kurtosis   5.830162 

Jarque-Bera  160.1165 
Probability  0.000000 
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Sample 1 466 
Observations 466 

Mean     0.124251 
Median  0.074500 
Maximum  0.989000 
Minimum  0.010000 
Std. Dev.   0.165666 
Skewness   2.853888 
Kurtosis   12.80408 

Jarque-Bera  2498.901 
Probability  0.000000 



 6 

Table S.2 (cont.) 
Cross-sectional frequency distribution of the estimates of the duration model 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Median Values of Parameter Estimates of 1θ   in the ACH Model );|( 111 θ−ℑttJf  

Industry Sectors  
in the SP500 index 

% of 
firms 

βα ˆˆ +  2δ̂  3δ̂  p̂  Unconditional 
p  

Consumer Goods 25.2 0.456 0.542 -0.573 0.257 0.246 
Energy   5.5 0.359 0.769 -0.840 0.347 0.297 
Finance 16.5 0.444 0.959 -0.488 0.257 0.239 
Health Care     11.2 0.387 0.501 -0.672 0.326 0.295 
Industrials 11.2 0.451 0.586 -0.946 0.238 0.215 
Information Technology 17.7 0.334 0.318 -0.413 0.447 0.380 
Material   6.4 0.437 0.587 -0.690 0.290 0.248 
Utilities   6.4 0.497 0.851 -1.101 0.132 0.137 
All sectors   100.0 0.422 0.571 -0.641 0.267 0.253 
Note:  tp̂  is the conditional probability of jumping obtained from equation (10) for every 
firm in the sample; p̂ is the median value of tp̂  calculated over firms and over time; and 

R

J
p

R

t
t∑

=≡ 1  is the unconditional probability of jumping for which we report the median 

values calculated over the cross-section of firms. 
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Series: DELTA1 
Sample 1 466 
Observations 466 
Mean     2.248946 
Median   1.930000 
90% Percentile     4.012 
Maximum   15.76100 
Minimum  -4.349000 
Std. Dev.   1.867285 
Skewness   2.342543 
Kurtosis   15.06336 
Jarque-Bera  3251.802 
Probability  0.000000 
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Series: DELTA2 
Sample 1 466 
Observations 466 
Mean     0.727378 
Median   0.570500 
90% percentile 1.671 
Maximum   4.426000 
Minimum  -3.097000 
Std. Dev.   0.789339 
Skewness   1.357703 
Kurtosis   7.779848 
Jarque-Bera  586.7789 
Probability  0.000000 

0 

20 

40 

60 

80 

100 

-4 -3 -2 -1 0 1 2 3 

Series: DELTA3 
Sample 1 466 
Observations 466 
Mean    -0.774004 
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10% Percentile     -1.83 
Maximum   3.179000 
Minimum  -4.153000 
Std. Dev.   0.826253 
Skewness  -0.755392 
Kurtosis   5.999295 
Jarque-Bera  218.9858 
Probability  0.000000 



 7 

 
 

Table S.3 
Cross-sectional frequency distribution of the estimates of the nonlinear model for 

expected returns when ( )5.01 1 ≥−= −ttt zzJ  
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Conditional mean parameter estimates 

 
Median Values of Parameter Estimates of 2θ  in the Non-linear Model 

);,|( 212 θ−ℑttt Jyf   
Industry Sectors 

in the SP500 index 
% of firms 

1γ̂  0γ̂  1η̂  0η̂  τρ ˆˆ +  

Consumer Goods 25.2 -0.445 0.345 -0.375 -0.010 0.909 
Energy   5.5 -0.591 0.384 -0.252 0.022 0.940 
Finance 16.5 -0.422 0.347 -0.369 0.058 0.972 
Health Care 11.2 -0.319 0.365 -0.658 0.031 0.899 
Industrials 11.2 -0.415 0.338 -0.358 0.056 0.885 
Information Technology 17.7 -0.419 0.480 -0.422 0.015 0.920 
Material   6.4 -0.444 0.353 -0.473 -0.036 0.965 
Utilities   6.4 -0.575 0.136 -0.069 0.208 0.909 
All sectors 100.0 -0.44 0.358 -0.378 0.029 0.925 
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Std. Dev.   0.248578 
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Probability  0.000001 
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Std. Dev.   0.513634 
Skewness  -1.043064 
Kurtosis   4.735894 
Jarque-Bera  143.0088 
Probability  0.000000 
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Probability  0.000007 



4 Technical Trading Rules

In addition to the three model based trading rules (VCR-Mixture Trading Rule, VCR Trading

Rule, and Buy-and-Hold-the-Market Trading Rule), discussed in the paper, we also consider four

classes of technical trading rules considered by Sullivan, Timmermann and White (1999): Filter-

Rule, Moving-Average-Rule, Channel-Break-Out-Rule, and Support-and-Resistance-Rule. All of

these four trading rules are based on the SP500 index and they can be considered as rules that

exploit the momentum in returns. For each of the four technical trading rules, we consider four

parameterizations as explained below.

Filter-Rule(x): If the weekly closing price of a particular security moves up at least x per cent,

buy and hold the security until its price moves down at least x per cent from a subsequent high,

at which time simultaneously sell and go short. The short position is maintained until the weekly

closing price rises at least x per cent above a subsequent low at which time one covers and buys.

The neutral position is obtained by liquidating a long position when the price decreases y percent

from the previous high, and covering a short position when the price increases y percent from the

previous low. We apply one of the rules of Sullivan et al. (1999) to de�ne subsequent high (low).

A subsequent high (low) is the highest (lowest) closing price achieved while holding a particular

long (short) position. We also allow for the holding of the asset for c weeks ignoring any signals

generated from the market. We consider fx : 0:05; 0:10; 0:20; 0:50g; y = 0:5x; and c = 1.

Moving-Average-Rule(l; s): This rule involves going long (short) when the short period moving

average (s) rises above (falls below) the long period moving average (l). Its idea is to smooth out

the series and locate the initiation of trend (when s penetrates l). We consider four sets of local

moving averages with f(l; s) : (10; 2); (20; 2); (10; 4); (20; 4)g; a �xed percentage band �lter to rule

out false signals with the band b = 0:05 for all cases, and c = 1 as for the �lter rule.

Channel-Break-Out-Rule(n; x): A channel is said to occur when the high over the previous n

time periods is within x percent of the low over the previous n time periods, not including the

current price. The strategy is to buy when the closing price exceeds the channel, and to go short

when the price moves below the channel. Long and short positions are held for a �xed number of

days, c = 1. A �xed percentage band, b = 0:05, is applied to the channel as a �lter. We consider

the four sets of parameters f(n; x) : (4; 0:05); (10; 0:05); (4; 0:10); (10; 0:10)g.

Support-and-Resistance-Rule(n): Buy when the closing price exceeds the maximum price over

the previous n time periods, and sell when the closing price is less than the minimum price over

the previous n time periods. We consider fn : 2; 4; 8; 16g; and a �xed percentage band b = 0:05.
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5 Wang�s (2001) Monte Carlo Method

For the VCR-Mixture Trading Rule, where we are interested in the VaR of a portfolio of K asset,

each one following a mixture of conditional normal distributions, the computation of the VaR is

not straightforward because a mixture of normals does not belong to the location-scale family. We

implement the analytical Monte Carlo method of Wang (2001), which is described in some detail

here.

We follow proposition 4.1 of Wang (2001) to calculate V aR�t+1(�̂t) for a portfolio consisting of

assets whose weekly returns is a conditionally mixed normal distribution. A brief exposition of the

procedure follows.

Let Yt = (Y1t; :::; Ynt)0 is a random vector of weekly return where Yrt (r = 1; :::; n) are (condi-

tionally) univariate mixed normal distribution with kr component (in our case kr = 2 for all r). Let

the conditional variance covariance matrix of Yt be �Yt , and �ijt(Yt) the ij
th element of that matrix.

While we parametrically model the diagonal terms of �Yt , the o¤-diagonal elements are obtained by

calculating time varying sample covariance (that is �ijt(Yt) = 1
t�2
Pt�1
s=1(Yis � �Yi)(Yjs � �Yj), where

�Yr =
1
t�2
Pt�1
s=1 Yrs): The conditional density of Yrt is

f(yrtjFt�1) =
kiX
h=1

prth
1

2��rth
exp

 
�1
2

�
yrt � �rth
�rth

�2!

where �rth and �rth represent the conditional mean and conditional variance of the r
th component

of normal mixture and prth is the probability associated with r
th component of the mixture (in our

setting prt1 = probability of sharp jump, and prt2 = 1� prt1). We are interested in the behavior of

the random variable Dt = n�1
Pn
r=1 !rYrt, where !r is the weight attached to the r

th asset in the

portfolio.

The conditional VaR is obtained from the following numerical function.

� = Pr(Dt � V aR�t+1(�̂t)) =
k1X
h1=1

:::

knX
hn=1

p1h1 :::pnhn�

 
V aR�t+1(�̂t)� �h1:::hnt

�h1:::hnt

!

where �(�) is the cdf of a standard normal distribution, �h1:::hnt = �nr=1!r�rthr ; �h1:::hnt =

�nr=1�
n
s=1!r!s�rthr�sths�rst(Zt), where

�rst(Zt) =

 
�rst(Yt)� �krh=1�

ks
l=1prthpstl(�rth � �rt)(�sth � �s)

�krh=1�
ks
l=1prthpstl�rth�stl

!
for r 6= s, and �rst(Zt) = 1 for r = s, and �rt and �st are the conditional mean of Yrt and Yst
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respectively. Note that right hand side of above equation is a monotonic increasing function in

V aR�t+1(�̂t) thus it can be calculated numerically.

6 Reality Check

Let l be the number of competing trading rules (k = 1; : : : ; l) to compare with the benchmark rule

(indexed as k = 0). For each trading rule k, one-step predictions are to be made for P periods from

R + 1 through T using a rolling sample, as explained in the previous sections. Consider a generic

loss function L(Y; �) where Y consists of variables in the information set. In our case, we have six

forecast evaluation functions: MTR;SR;MSR; V1; V2; and V3: As the �rst three forecast evaluation

functions, MTR;SR;MSR; are to be maximized, while the last three forecast evaluation functions

based on VaR, V1; V2; and V3; are to be minimized, the generic loss function L(Y; �) denotes one

of the six loss functions, �MTR;�SR;�MSR;V1; V2; and V3; so that the following discussion is

based on minimization of the objective function L(Y; �):

The best trading rule is the one that minimizes the expected loss. We test a hypothesis about

an l � 1 vector of moments, E(f); where f � f(Y; �) is an l � 1 vector with the kth element

fk = L0(Y; �) � Lk(Y; �); � � plim �̂T , and L0(�; �) is the loss under the benchmark rule, Lk(�; �)

is the loss provided by the kth trading rule. A test for a hypothesis on E(f) may be based on the

l � 1 statistic �f � P�1
PT�1
t=R f̂t+1; where f̂t+1 � f(Yt+1; �̂t):

Our interest is to compare all the trading rules with a benchmark. An appropriate null hypoth-

esis is that all the trading rules are no better than a benchmark, i.e., H0 : max1�k�lE(fk) � 0: This

is a multiple hypothesis, the intersection of the one-sided individual hypotheses E(fk) � 0; k =

1; : : : :; l: The alternative is that H0 is false, that is, the best trading rule is superior to the bench-

mark. If the null hypothesis is rejected, there must be at least one trading rule for which E(fk)

is positive. Suppose that
p
P (�f � E(f)) d! N(0;
) as P (T ) ! 1 when T ! 1; for 
 positive

semi-de�nite. White�s (2000) test statistic for H0 is formed as �V � max1�k�l
p
P �fk; which con-

verges in distribution to max1�k�lGk under H0; where the limit random vector G = (G1; : : : ; Gl)0

is N(0;
). However, as the null limiting distribution of max1�k�lGk is unknown, White (2000,

Theorem 2.3) shows that the distribution of
p
P (�f� ��f) converges to that of

p
P (�f �E(f)); where

�f� is obtained from the stationary bootstrap of Politis and Romano (1994). By the continuous

mapping theorem this result extends to the maximal element of the vector
p
P (�f� ��f) so that the

empirical distribution of �V � = max1�k�l
p
P ( �f�k � �fk) is used to compute the p-value of �V (White,

2000, Corollary 2.4). This p-value is called the �Reality Check p-value�.
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The inclusion of �fk in �V � = max1�k�l
p
P ( �f�k � �fk) guarantees that the statistic satis�es the

null hypothesis E( �f�k � �fk) = 0 for all k. This setting makes the null hypothesis the least favorable

to the alternative and consequently, it renders a very conservative test. When a highly misspeci�ed

model is introduced, the reality check p-value becomes very large and, depending on the variance

of �fk, it may remain large even after the inclusion of better models. Hence, the White�s reality

check p-value may be considered as an upper bound for the true p-value. In Hansen (2005) the

statistic �V � = max1�k�l
p
P ( �f�k � �fk) is modi�ed as

�V � = max
1�k�l

p
P ( �f�k � g( �fk))

Di¤erent g(�) functions will produce di¤erent bootstrap distributions that are compatible with the

null hypothesis. If g( �fk) = max( �fk; 0); the null hypothesis is the most favorable to the alternative,

and the p-value associated with the test statistic under the null will be a lower bound for the true

p-value. Hansen (2005) recommended setting g(�) as a function of the variance of �fk , i.e.

g( �fk) =

�
0 if �fk � �Ak
�fk if �fk > �Ak

where Ak = 1
4P

1=4
p
var( �fk) with the variance estimated from the bootstrap resamples.
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