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1 Introduction

We propose a new non-linear model of expected returns that combines time series information

with cross-sectional information on �rm-speci�c returns. Though this general purpose is not novel,

for instance the empirical testing of classical asset pricing models such as CAPM and APT has

been carried out combining time series and cross-sectional information, the introduction of cross-

sectional information embedded in the cross-sectional ranking of returns is new. Our objective

is the development of a time series model for the cross-sectional rankings that will be helpful to

forecast expected returns, which in turn will be the basis of some trading strategies.

Let yi;t be the return of �rm i at time t; and fyi;tgMi=1 be the collection of asset returns of the

M �rms that constitute the market at time t: For each time t, we order the asset returns from the

smallest to the largest, and we de�ne zi;t, the Varying Cross-sectional Rank (VCR) of �rm i within

the market, as the proportion of �rms that have a return less than or equal to the return of �rm i.

We write

zi;t �M�1
MX
j=1

1(yj;t � yi;t); (1)

where 1(�) is the indicator function, and for M large, zi;t 2 (0; 1]:

A graphical introduction to our main idea is contained in Figure 1, in which zi;t is the shaded

area of the cross-sectional histogram of returns. A stylized description of the problem that we aim

to analyze is as follows. For one period to the next, the VCR changes. We draw a histogram

to represent the VCR of realized asset returns, which is time-varying. Our objective is to model

the dynamics of the VCR zi;t jointly with the dynamics of the asset return yi;t. To illustrate the

di¤erent dynamics of yi;t and zi;t, we choose four points in time. Consider the movements of yi;t

and zi;t going from t1 to t4:We observe that from t1 to t2; the overall market has gone down as well

as the return and the VCR of asset i, yi;t1 > yi;t2 and zi;t1 > zi;t2 : However, from t2 to t3; the asset

return has decreased yi;t2 > yi;t3 but its VCR has improved zi;t2 < zi;t3 : In relation to its peers,

asset i is a better performer. The opposite happens on going from t3 to t4: The overall market is

going up; for asset i; the return increases yi;t3 < yi;t4 but its VCR is unchanged zi;t3 = zi;t4 . In this

case the asset, even though it is a good performer, comparatively speaking, has been outperformed

by its peers. Note that the time series yi;t conveys univariate information about asset i but the time

series zi;t implicitly conveys information about the full market and, in this sense, it is a multivariate

measure. Our interest is the jointly time series modeling of the return yi;t and the VCR zi;t.

The important question is whether there is time dependence in zi;t: In our preliminary investi-
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gation, we have observed that, though there is no linear dependence of the ARMA type, there are

some assets that tend to stick to the upper or lower ranks (broadly de�ned) of the cross-sectional

distribution of returns while some others tend to move around very frequently. It seems that there

is some time persistence in rank (high or low) though not of the linear type. In addition, from a

cross-sectional perspective, the rank is a dependent variable. Any movement, small or large, in an

asset return will a¤ect not only the rank of this asset but also the rank of the remaining assets.

Only in the exceptional and improbable case that all asset returns move in the same direction

and by more or less similar amount, the overall ranking will not be a¤ected. Because of this high

cross-sectional dependence, we consider that small movements in the asset ranking will not contain

signi�cant information and that we should focus in the large movements in ranking, which most

likely are the result of news in the overall market and/or of news concerning a particular asset.

For these reasons, we analyze the variability in VCR rather than the VCR itself. Focusing on large

rank movements, we de�ne, at time t; a sharp jump as a binary variable that takes the value one

when there is a minimum (upward or downward) movement of 0.5 in the ranking of asset i , and

zero otherwise:

Ji;t � 1( jzi;t � zi;t�1j � 0:5): (2)

A jump of this magnitude brings the asset return above or below the median of the cross-sectional

distribution of returns. Note that our notion of jumps di¤ers from the more traditional meaning of

the word in the context of continuous-time modelling of the univariate return process. A jump in

the cross-sectional rank implicitly depends on numerous univariate return processes.

The analytical problem now consists in modeling the joint distribution of the return yi;t and

the jump Ji;t, i.e. f(yi;t; Ji;tjFt�1) where Ft�1 is the information set up to time t � 1: Since

f(yi;t; Ji;tjFt�1) = f1(Ji;tjFt�1)f2(yi;tjJi;t;Ft�1), our task will be accomplished by modelling the

marginal distribution of the jump and the conditional distribution of the return conditioning on

the jump. As Ji;t is a Bernoulli variable, the marginal distribution of the jump is f1(Ji;tjFt�1) =

p
Ji;t
i;t (1 � pi;t)(1�Ji;t) where pi;t � Pr(Ji;t = 1jFt�1) is the conditional probability of a jump in the

cross-sectional ranks. We model pi;t within the context of a dynamic duration model speci�ed in

calendar time as in Hamilton and Jordà (2002). The calendar time approach is necessary for our

analysis because asset returns are reported in calendar time (days, weeks, etc.) and it has the

advantage of incorporating any other available information also reported in calendar time.

The important implication of modeling f(yi;t; Ji;tjFt�1) = f1(Ji;tjFt�1)f2(yi;tjJi;t;Ft�1) is that

the marginal return distribution, say g(yi;tjFt�1); is a mixture distribution where the mixture
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weights are given by pi;t: The result is therefore a highly nonlinear model for the expected return

E(yi;t+1jFt). We assess the performance of the nonlinear model in an out-of-sample forecasting

exercise within the context of investment decision making. We consider two types of criteria. In

the �rst type, we deal with an investor whose interest is to maximize pro�ts and risk-adjusted

pro�ts of a portfolio long in stocks. The second type criteria is to consider an investor who worries

about potential large losses and wishes to add a Value-at-Risk (VaR) evaluation to her trading

strategy. Based on the one-step ahead forecast of returns provided by our mixture model, we

design a trading rule that will be compared to a set of di¤erent trading rules within the framework

of White (2000). It will be shown that the proposed trading rule is superior to the other trading

rules.

The organization of the paper is as follows. In section 2, we provide the joint modelling of

asset returns and jumps in VCR. We present the estimation results for the weekly returns of the

constituents of the SP500 index. In section 3, we assess the out-of-sample performance of our

model. We explain the trading rules, forecast evaluation criteria, and the statistical framework to

compare di¤erent trading rules. Finally, in section 4 we conclude.1

2 Jumps in Cross-sectional Rank and Asset Returns

In this section, our purpose is to build an econometric model that combines time information and

cross-sectional information about �rm-speci�c returns. First we discuss the model for the cross-

sectional jump f1(Ji;tjFt�1) and then the model for the returns f2(yi;tjJi;t;Ft�1).

A natural starting point to incorporate the rank in our empirical analysis is to understand its

most basic time series properties. In our sample of weekly returns for the constituents of the SP500

index, which will be explained in more detail in the following sections, we have found that there is

no linear dependence either in zi;t or in (zi;t��zt)2 and consequently, further modeling of the ARMA-

GARCH type of zi;t have yielded insigni�cant parameter estimates.2 It might be possible to �nd a

non-linear model for zi;t but we will not pursue this route as we do not have much guidance from

any theoretical or empirical model of the cross-sectional ranking in the present literature. Instead,

as we mention in the introduction, we have observed that while some assets tend to stick to the

1Due to constraints on the size of the manuscript, we also provide a supplementary appendix that contains
intermediate results and further discussion about the methodology used in the paper.

2For only eight �rms in our estimation sample the p-value of the Box-Pierce-Ljung Q(4) for zi;t is smaller than
5%. Within the 466 �rms, the average p-value is 0.48, the minimum is 0.001 and the maximum is 0.99. For (zi;t� �zt)2
the minimum p-value of the LM tests for ARCH(4) is 0.06, the maximum 0.98 and the average p-value is 0.41. These
results seem to indicate that there is no statistical evidence of linear dependence in the �rst and second moments of
the VCR.
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upper or lower ranks (above or below the median) some others tend to move around very frequently.

For example in the empirical section we �nd that the stocks in the information/technology sector

tend to jump more often as compared to the stocks in the utility sector. Our objective is to model

the persistence/dynamics of the VCR in a non-linear fashion, by introducing a duration variable

that measures how long the asset return remains in the upper or lower ranks.

For these reasons, in (2) we de�ne a sharp jump as a binary variable that takes the value one

when the there is a minimum (upward or downward) movement of 0.5 in the ranking of asset i on

going from time t � 1 to t, and zero otherwise. The choice of the magnitude of the jump is not

arbitrary. The sharpest jump that we can consider is 0:5.3 In every time period, we need to allow

for the possibility of a jump, either up or down, in the following period regardless of the present

rank of the asset. For instance, if we choose a jump greater than 0:5, say 0:7, and zi;t = 0:4; then the

probability of jumping up or down in the next time period is zero. Note that the de�ned jump does

not imply that the return will be above or below the median. As an example, if zi;t�1 = 0:4 and

zi;t = 0:6, then Ji;t = 0 but the return at time t will be above the cross-sectional median of returns.

However, if Ji;t = 1; then the asset return has moved either above or below the median. Note

that an upward (downward) jump implies neither a higher (lower) return, nor a larger (smaller)

variance. This is so because the cross-sectional rank is the result of the interaction of the relative

movements of all individual assets in the market.

Our objective is to model the joint conditional probability density function of returns and jumps

f(yi;t; Ji;tjFt�1; �), where Ft�1 is the information set up to time t� 1; which may contain the past

realizations of returns, jumps, and VCRs. To simplify notation, we drop the subindex i; but in

the following analysis it should be understood that the proposed modelling is performed for every

single �rm in the market. We factor the joint probability density function as the product of the

marginal density of the jump and the conditional density of the return

f(yt; JtjFt�1; �) = f1(JtjFt�1; �1)f2(ytjJt;Ft�1; �2);

where � = (�01 �
0
2)
0: For a sample fyt; JtgTt=1; the joint log-likelihood function is

TX
t=1

ln f(yt; JtjFt�1; �) =
TX
t=1

ln f1(JtjFt�1; �1) +
TX
t=1

ln f2(ytjJt;Ft�1; �2):

3Smaller jumps can be also considered. Since rank is a highly dependent variable, considering small jumps will
trigger many movements in the assets�rank that may not be the result of signi�cant news but just a direct consequence
of the dependence property. By focusing in large jumps, we aim to model information. Nevertheless we o¤er some
summary statistics for smaller jumps than 0.5 in the supplementary appendix (Table S.1).
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Let us call L1(�1) =
PT
t=1 ln f1(JtjFt�1; �1) and L2(�2) =

PT
t=1 ln f2(ytjJt;Ft�1; �2): The maximiza-

tion of the joint log-likelihood function can be achieved by maximizing L1(�1) and L2(�2) separately

without loss of e¢ ciency by assuming that the parameter vectors �1 and �2 are �variation free�in

the sense of Engle et al. (1983).

2.1 Modelling the jump in cross-sectional rank

On modelling f1(Ji;tjFt�1), our paper also connects with the literature in microstructure of �nancial

markets and duration analysis (Engle and Russell, 1998). This line of research aims to model events

(e.g., trades) and waiting times between events. The question in duration analysis is the length of

time between two events given some information set. In this paper, the event is the jump in VCR of

the asset return. When we model the expected duration between jumps (or its mirror image pi;t),

our analysis is performed in calendar time, as in Hamilton and Jordà (2002), to allow the analysis

of information that is reported in a calendar basis.

In order to model the conditional probability of jumping, we de�ne a counting process N(t) as

the cumulative number of jumps up to time t; that is, N(t) =
Pt
n=1 Jn: This is a non-decreasing

step function that is discontinuous to the right and to the left and for which N(0) = 0: Associated

with this counting process, we de�ne a duration variable DN(t) as the number of periods between

two jumps. Note that because our interest is to model the jump jointly with returns and these

are recorded on a calendar basis (daily, weekly, monthly, etc.), the duration variable needs to be

de�ned in calendar time instead of event time as it is customary in duration models. The question

of interest is, what is the probability of a jump at time t in the VCR of the asset return of �rm i

given all available information up to time t� 1? This is the conditional hazard rate pt

pt � Pr(Jt = 1jFt�1) = Pr(N(t) > N(t� 1)jFt�1); (3)

which is the conditional probability of a jump. From (3), we note that pt is time-varying because

it depends on the information set Ft�1, and it is cross-sectional because Jt depends on the VCR

of the asset return in relation to the other �rms in the market. Furthermore, because Jt = 1; pt

assesses the possibility of being in the upper ranks (winner) or in the lower ranks (loser) of the

cross-sectional distribution of asset returns.

It is easy to see that the probability of jumping and duration must have an inverse relationship.

If the probability of jumping is high, the expected duration must be short, and vice versa. Let 	N(t)

be the expected duration. The expected duration until the next jump in the cross-sectional rank is
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given by 	N(t) =
P1
j=1 j(1� pt)j�1pt = p

�1
t :

4 Consequently, to model (3), it su¢ ces to model the

expected duration and compute its inverse. Following Hamilton and Jordà (2002), we specify an

autoregressive conditional hazard (ACH) model. The ACH model is a calendar-time version of the

autoregressive conditional duration (ACD) of Engle and Russell (1998). In both ACD and ACH

models, the expected duration is a linear function of lag durations. However as the ACD model

is set up in event time, there are some di¢ culties on how to introduce information that arrives

between events. This is not the case in the ACH model because the set-up is in calendar time. In

the ACD model, the forecasting object is the expected time between events; in the ACH model, the

objective is to forecast the probability that the event will happen tomorrow given the information

known up to today. A general ACH model is speci�ed as

	N(t) =
mX
j=1

�jDN(t)�j +
rX
j=1

�j	N(t)�j : (4)

Since pt is a probability, it must be bounded between zero and one. This implies that the conditional

duration must have a lower bound of one. Furthermore, as we mentioned above, working in calendar

time has the advantage that we can incorporate information that becomes available between jumps

and can a¤ect the probability of a jump in future periods. We specify the conditional hazard rate

as

pt = [	N(t�1) + �
0
Xt�1]

�1; (5)

where Xt�1 is a vector of relevant calendar time variables such as past VCRs and past returns.

Given a sample of observed jumps in VCR, the log-likelihood function for �1 = (�0; �0; �0)0 is

L1(�1) =
TX
t=1

ln f1(JtjFt�1; �1) =
TX
t=1

[Jt ln pt(�1) + (1� Jt) ln(1� pt(�1))] : (6)

2.2 Modelling the conditional return

On modelling f2(ytjJt;Ft�1; �2); we assume that the return to asset imay behave di¤erently depend-

ing upon the occurrence of a jump. We distinguish between active and passive stocks depending

on the reasons why the jump in the asset ranking has occurred. A sharp jump in the VCR may

happen because: (i) the asset has had an unusual return (an active movement in the asset rank-

ing), (ii) the overall market may have moved (up or down) in the opposite direction from the asset

return (a passive movement in the asset ranking), and (iii) a combination of active and passive

movements. If a jump has occurred, the return was pushed either towards the lower tail or upper
4Note that

P1
j=0(1�pt)

j = p�1t : Di¤erentiating with respect to pt yields
P1

j=0�j(1�pt)
j�1 = �p�2t : Multiplying

by �pt gives
P1

j=0 j(1� pt)
j�1pt = p

�1
t and thus

P1
j=1 j(1� pt)

j�1pt = p
�1
t
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tail of the cross-sectional distribution of returns, and in relation to the market, this asset becomes

either a loser or a winner. However, when Jt = 1; being a winner (loser) does not imply extraor-

dinary positive (negative) returns; in addition, an asset return can be at the top (bottom) of the

cross-sectional distribution of returns and be negative (positive). Likewise, an asset may not have

experienced any jump Jt = 0, and experience a large return, positive or negative. The modelling

of two potential di¤erent states (whether a jump has occurred or not) will permit to di¤erentiate

whether the conditional expected return is driven by active or/and passive movements in the asset

ranking in conjunction with its own return dynamics.

A priori, we hypothesize di¤erent dynamics in these two states. A general speci�cation is

f2(ytjJt;Ft�1; �2) =
�
N(�1;t; �

2
1;t) if Jt = 1;

N(�0;t; �
2
0;t) if Jt = 0;

(7)

where �j;t is the conditional mean and �
2
j;t the conditional variance in each state (j = 1; 0). Whether

these two states are present in the data is an empirical question and it will be answered through

statistical testing. The normal density in each state is an assumption which may be modi�ed de-

pending upon the performance of the model. For instance, a thick-tailed density or a skewed density

may be needed if there is remaining kurtosis or skewness left in the data. Standard diagnostic tests

will shed further light on the need to modify the chosen density.

The log-likelihood function L2(�2) =
PT
t=1 ln f2(ytjJt;Ft�1; �2) is

L2(�2) =
TX
t=1

ln

24 Jtq
2��21;t

exp

(
�1
2

�
yt � �1;t
�1;t

�2)
+

1� Jtq
2��20;t

exp

(
�1
2

�
yt � �0;t
�0;t

�2)35 ;
where �2 includes all parameters in the conditional means and conditional variances under both

regimes.

2.3 A mixture model for expected returns

If the two proposed states are granted in the data, the marginal density function of the asset return

must be a mixture of two normal density functions where the mixture weights are given by the

probability of jumping pt:

g(ytjFt�1; �) �
1X

Jt=0

f(yt; JtjFt�1; �)

=
1X

Jt=0

f1(JtjFt�1; �1)f2(ytjJt;Ft�1; �2)

= pt � f2(ytjJt = 1;Ft�1; �2) + (1� pt) � f2(ytjJt = 0;Ft�1; �2); (8)
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as f1(JtjFt�1; �1) = pJtt (1� pt)(1�Jt): Therefore, the one-step ahead forecast of the return is

E(yt+1jFt; �) =
Z
yt+1 � g(yt+1jFt; �)dyt+1 = pt+1(�1) � �1;t+1(�2) + (1� pt+1(�1)) � �0;t+1(�2): (9)

The expected return is a function of the probability of jumping pt, which is a nonlinear function

of the information set as shown in (5). Hence the expected returns are nonlinear functions of the

information set, even in a simple case where �1;t and �0;t are linear.

2.4 Estimation Results

We collect the weekly returns from January 1, 1990 to December 27, 2005 for all the constituents

of the SP500 index. The full sample is split into the estimation sample that runs for the �rst

eleven years, from January 1, 1990 to December 27, 2000 (with R = 573 weeks), and the prediction

sample from January 2, 2001 to December 27, 2005 (with P = 260 weeks). The set of �rms in the

SP500 index is not �xed; over time new �rms are coming into the index and some others drop out.

Consequently, the sample size for each individual �rm may di¤er depending on the date in which

it became a member of the SP500. For instance, Microsoft is a constituent of the SP500 for all our

sample period but Yahoo, which was created years after 1990, enters in the SP500 in April 1996.

The sample size for the in-sample estimation analysis varies across �rms with a maximum in-sample

size of 573 weekly returns. The only restriction that we impose in the estimation sample arises from

the need of having a minimum of observations to carry out the model estimation. We require at least

four years of data (208 weekly returns) prior to December 27, 2000. This requirement constrains

the in-sample analysis to 466 companies. However, new �rms will show up during the prediction

sample and some other will drop out. We also account for these changes in the constituents of the

SP500 in the out-of-sample forecasting.

In the supplementary appendix (Table S.1), we summarize the unconditional moments (mean,

standard deviation, skewness, and kurtosis) of all 500 �rms in the estimation sample. The frequency

distribution of the unconditional mean is unimodal with a weekly mean return of 0:029%. For

the unconditional standard deviation, the median value is 5:25%. The coe¢ cient of skewness

is predominantly negative with a median value of �0:12. All the �rms have a large coe¢ cient of

kurtosis with a median value of 10:34. We calculate the Box-Pierce-Ljung statistics up to the fourth

order to test for autocorrelation in returns and we �nd mild autocorrelation for about one-third of

the �rms. However, the Box-Pierce-Ljung test up to the fourth order to test for autocorrelation

in squared returns indicates strong dependence in second moments for all the �rms in the SP500

index.
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2.4.1 Estimation results for the duration model

For 466 �rms, we �t a conditional duration model as in (4) and (5). The information set consists

of past durations, past returns and past VCRs : fDN(t)�j ; yt�j ; zt�j ; j = 1; 2; : : :g: The duration

time series for every �rm is characterized by clustering � long (short) durations are followed by

long (short) durations, and consequently the speci�cation of an ACH model may be warranted.

We maximize the log-likelihood function (6) with respect to the parameter vector �1 � (�0; �0; �0)0.

Based on standard model selection criteria (t-statistics and log-likelihood ratio tests), we select the

following �nal speci�cation

pt = [	N(t�1) + �
0
Xt�1]

�1 (10)

	N(t) = �DN(t)�1 + �	N(t)�1

�
0
Xt�1 = �1 + �2yt�11(zt�1 � 0:5) + �3yt�11(zt�1 > 0:5)

The conditional duration model is an ACH(1,1). There is a nonlinear e¤ect of the predetermined

variables on duration. The e¤ect of past returns on duration depends on whether the VCR of the

asset is above or below the median.

In the supplementary appendix (Table S.2), we report the cross-sectional frequency distributions

of the estimates �̂1 � (�̂; �̂; �̂1; �̂2; �̂3)
0 for all the 466 �rms in the estimation sample. All the

parameters are statistically signi�cant at the customary 5% level. For �̂; the median is 0:34 with

90% of the �rms having an �̂ below 0:47. For �̂; its frequency distribution is highly skewed to the

right with a median of 0:07 and with 90% of the �rms having a �̂ below 0:30. The median �̂ + �̂

is 0:42 and for 90% of the �rms, the �̂ + �̂ is below 0:67. The estimates �̂2 and �̂3 have mostly

opposite signs, the former is predominantly positive and the latter is predominantly negative. The

e¤ect of �̂2 and �̂3 in expected duration depends on the interaction between the VCR and the sign

of the return. There are four possible scenarios. For instance, for most of the cases when �̂2 is

positive and �̂3 is negative, if the past asset return is positive and below (above) the median market

return, its expected duration is longer (shorter) and the probability of a jump is smaller (larger),

other things equal. On the contrary, when the past asset return is negative and below (above) the

median market return, its expected duration is shorter (longer) and the probability of a jump is

larger (smaller), other things equal. Both �̂2 and �̂3 have a very skewed cross-sectional frequency

distributions. For �̂2; the median value is 0:57 with 90% of the �rms having a �̂2 below 1:67. For

�̂3; the median value is �0:64 with 90% of the �rms having a �̂3 above �1:83. Roughly speaking,

for a representative �rm with median parameter estimates, the expected duration is approximately
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between 3 and 4 weeks, and since E(pt) � [E(	N(t�1)+ �
0
Xt�1)]�1; a lower bound for the expected

probability of a jump is between 25 and 33%:

In Table 1A we report the median estimates of the parameters of the duration model for the

industrial sectors that are represented in the SP500 index. There are ten sectors in the index,

which have been reduced to eight.5 The largest share corresponds to the Consumer Goods sector

with 25:2% of the SP500 companies, and the Information Technology sector with 17:7% of the

�rms. The smallest share corresponds to the Energy sector with 5:5% of the �rms. Ceteris paribus,

the larger �̂ + �̂; the longer the expected duration and the lower the probability of a jump. The

Information Technology sector has the smallest �̂ + �̂ = 0:33 while the Utilities sector has the

largest �̂ + �̂ = 0:50, indicating that the former has a higher tendency to move from the lower

cross-sectional ranks to the upper and vice versa. On the contrary, the Utilities sector is relatively

more stable. In the columns labeled �̂2 and �̂3, we report the median impact of the calendar

variables on the probability of a jump. As we mention above, the median �̂2 is strictly positive, and

the median �̂3 is strictly negative and larger in magnitude than �̂2 for all sectors but one (Finance).

Most importantly, it is the joint e¤ect of (�̂; �̂; �̂2,�̂3); which is summarized in the column labeled

p̂ the median (calculated over �rms and over time) probability of a jump in each sector. Not

surprisingly, the Information Technology sector has the largest median probability with p̂ = 0:45,

which means that about every 2:5 weeks these stocks jump from the top (bottom) to the bottom

(top) of the cross-sectional distribution of the market. On the other side of the spectrum, we

have the Utilities sector with the smallest median probability p̂ = 0:13, which implies jumps every

7:5 weeks approximately. In the last column, we report the values by sector of the unconditional

median probability of a jump �p, which as expected follows very closely the median probability p̂:

2.4.2 Estimation results for the expected returns model

We proceed to estimate (7). Since this model is already nonlinear, we restrict the speci�cation

of the conditional mean and conditional variance in each state (Jt = 1 or Jt = 0) to parsimonious

linear functions of the information set. The selected speci�cation of (7) is

f2(ytjJt;Ft�1; �2) =
�
N(�1t; �

2
1t) if Jt = 1

N(�0t; �
2
0t) if Jt = 0

; (11)

5Consumer Discretionary Product and Consumer Staple Product are combined to form one category, namely
Consumer Goods. Information Technology and Telecommunication Services are merged into one group, namely
Information Technology.
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�1t � E(ytjFt�1; Jt = 1) = �1 + 1yt�1 + �1zt�1;

�0t � E(ytjFt�1; Jt = 0) = �0 + 0yt�1 + �0zt�1;

�21t = �20t = �
2
t = E(�

2
t jFt�1; Jt) = ! + ��2t�1 + ��2t�1;

where �t�1 = (yt�1 � �1;t�1)Jt�1 + (yt�1 � �0;t�1)(1� Jt�1) and �2 = (�1; 1; �1; �0; 0; �0; !; �; �)0:

We arrive to this speci�cation by sequentially implementing a battery of likelihood ratio tests. We

aim to gather statistical evidence for or against the mixture of normals that we propose in (7). The

�rst null hypothesis of interest states the same dynamics in the conditional mean for both states, i.e.

H1
0 : �1 = �0; 1 = 0; �1 = �0; where in both the restricted and the unrestricted models we assume

a constant conditional variance, �21t = �
2
0t = �

2: This null is rejected very strongly for all the �rms

in the SP500 index.6 Next, we relax the assumption of constant variance across states and write

a second null hypothesis as H2
0 : �1 = �0; 1 = 0; �1 = �0; where, in both the restricted and the

unrestricted models, we assume �21t = �
2
0t = �

2
t with �

2
t speci�ed as in (11): For all �rms, we reject

again very strongly this null hypothesis and hence, we conclude that there is statistical evidence

in favor of di¤erent dynamics in the conditional mean across states jointly with a time-varying

conditional variance. Following the rejection of H1
0 and H

2
0 , we test for equal conditional variances

maintaining the nonlinearity in the conditional mean, i.e. �1t 6= �0t as in (11), H3
0 : �

2
1t = �

2
0t: In

the unrestricted model, the conditional mean is speci�ed as in (11) and the conditional variances

follow a GARCH(1,1) process with di¤erent parameters depending on Jt = 1 or Jt = 0: We fail

to reject the third hypothesis to �nally entertain a model as in (11). Within this model, the well

known unconditional leptokurtosis of asset returns is explained by a location-mixture of normals

with time-varying conditional variances.

The estimation results for the 466 �rms are summarized in the supplementary appendix (Table

S.3), where we report the cross-sectional frequency distributions of the parameters estimates in the

conditional mean and conditional variance. All parameters are statistically signi�cant at the 5%

level. When we consider asset returns for which a jump has taken place, the marginal impact of

past returns, ̂1; is predominantly negative, with a median value of �0:44, though there is wide

range of values (�1:64; 0:52). The negative sign is expected for �active�stocks in which the jump

in ranking is mainly associated with a reversal in its past returns, as opposed to �passive�stocks in

which the jump is mainly associated with movements in other asset returns. The marginal e¤ect of

past VCRs, �̂1, is also predominantly negative, with a median value of �0:38 and a wide range of

(�2:15; 1:54). For a given asset, and keeping everything else equal, a negative (positive) sign seems
6We do not report all the testing results for the 466 �rms but they are available upon request.
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to indicate that the jump in VCR is on average associated with a decrease (increase) in expected

returns. Eventually the combination of both e¤ects will determine the expected return. We can say

that on average an asset for which ̂1 and �̂1 are set to the median values, ĵ1j = 0:44 > j�̂1j = 0:38;

should be considered an �active�stock. When there is no jump, the marginal e¤ect of past returns,

̂0; is predominantly positive with a median value of 0:36 such that positive (negative) returns are

followed by positive (negative) returns. As for the marginal e¤ect of past VCRs, �̂0, it seems to be

small with a median value of 0.03 and of either sign.

In Table 1B, we report the median values of the parameter estimates for every industrial sector

represented in the SP500 index. We observe that ̂1 and �̂1 are both negative and, for most sectors,

ĵ1j > j�̂1j : In the no-jump state, ̂0 and �̂0 are both mostly positive with ̂0 signi�cantly larger

than �̂0: The model for the conditional variance is a standard GARCH(1,1). The persistence is

measured by �̂+ �̂ : The median persistence is 0:93, with a median value for �̂ of 0:04 and a median

value for �̂ of 0:89. A leverage e¤ect in the conditional variance does not seem to be warranted as

the di¤erent speci�cations of the conditional mean across states take care of potential asymmetries

in returns.

We run standard diagnostic checks in the standardized residuals corresponding to model (11).

We report a summary of these tests over the 466 �rms in Table 1C. The speci�cation (11) passes

standard diagnostic checks for model adequacy, which provide strong support for the mixture of

normals. The model performs extremely well on modelling the reported skewness and kurtosis of

the unconditional distribution (Table S.1), delivering standardized residuals that are symmetric and

have a kurtosis of 3. The p-values of the Box-Pierce-Ljung Q(4) and McLeod-Li Q2(4) statistics

of order four for the standardized residuals and squared standardized residuals are above the 5%

signi�cance level for all the �rms but one, concluding that there is not signi�cant linear dependence

left in the data.7 However, given the nonlinearity of the model, a more thorough check on the

adequacy of the model is to assess its out-of-sample forecasting performance, which we analyze in

the following section.

3 Out-of-sample evaluation of the VCR model

In this section we assess the performance of the proposed VCR model within the context of invest-

ment decision making. We consider two major scenarios. First, we deal with an investor whose

7As pointed out by Hong and Lee (2003) and Chen (2007), the asymptotic null distributions of the Box-Pierce-
Ljung and McLeod-Li statistics will be a¤ected by the estimation of the standardized residuals. Therefore the p-values
reported here should be interpreted with caution and taken just as a rough guide for diagnostic checking.
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interest is to maximize pro�ts from trading stocks. We assume that her trading strategy �what to

buy, what to sell �depends on the forecast of the returns based on the VCR model in Equations

(10) and (11). This trading strategy will be called VCR-Mixture Trading Rule and it is based on

the one-step ahead forecast of individual asset returns based on the VCR model. The superiority

of the proposed speci�cation depends on its potential ability to generate larger pro�ts than those

obtained with more standard models. However, given that large pro�ts can be generated at the

expense of engaging in high risk strategies, we account for this possibility by assessing excess asset

returns per unit of risk. To this end, we consider two objective functions, one based on the tra-

ditional Sharpe ratio (SR) and the other based on a modi�ed Sharpe ratio (MSR). In the second

scenario, we consider a situation where the investor wishes to assess potential large losses by adding

a Value-at-Risk (VaR) evaluation of her trading strategy.

3.1 VCR-Mixture Trading Rule

We proceed as follows. For each �rm i in the market (466 �rms), we compute the one-step ahead

forecast of the return as in (9)

ŷi;t+1(�̂t) = pt+1(�̂1;t) � �̂1;t+1(�̂2;t) + (1� pt+1(�̂1;t)) � �̂0;t+1(�̂2;t); t = R; : : : ; T � 1; (12)

where �̂ = (�̂
0
1; �̂

0
2)
0; �̂1 = (�̂; �̂; �̂1; �̂2,�̂3)0, and �̂2 = (�̂1; ̂1; �̂1; �̂0; ̂0; �̂0; !̂; �̂; �̂)

0:8 Based on the

forecasted returns fŷi;t+1(�̂t)gT�1t=R , the investor predicts the VCR of all assets in relation to the

overall market, that is,

ẑi;t+1 =M
�1

MX
j=1

1(ŷj;t+1 � ŷi;t+1); t = R; : : : ; T � 1; (13)

and buys the top K performing assets if their forecasted return is above the risk-free rate. In every

subsequent out-of-sample period (t = R; : : : ; T � 1), the investor revises her portfolio, selling the

assets that fall out of the top performers and buying the ones that rise to the top, and she computes

the one-period portfolio return

�t+1 = K
�1

MX
j=1

yj;t+1 � 1(ẑj;t+1 � zKt+1); t = R; : : : ; T � 1; (14)

8The sequence of one-step ahead forecasts is obtained with a �rolling� sample of size R. For a sample size of
T and with the �rst R observations, we estimate the parameters of the model �̂R and compute the one-step ahead
forecast ŷi;R+1(�̂R): Next, using observations 2 to R + 1; we estimate the model again to obtain �̂R+1 and calculate
the one-step ahead forecast ŷi;R+2(�̂R+1): We keep rolling the sample one observation at a time until we reach T � 1,
to obtain �̂T�1 and the last one-step forecast ŷi;T (�̂T�1):
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where zKt+1 is the cuto¤ cross-sectional rank to select the K best performing stocks such thatPM
j=1 1(ẑj;t+1 � zKt+1) = K. We form a portfolio with the top 1% (K = 5 stocks) performers in the

SP500 index. Every asset in the portfolio is weighted equally.9

The out-of-sample forecast runs from January 2, 2001 through December 27, 2005. By the very

nature of the SP500 index, over time some �rms are added and some dropped, consequently the

index needs to be updated periodically. During the forecasting period, there were 105 companies

that were added to the index replacing the same number of companies in the process. To avoid any

survivorship bias, at every point in time in the out-of-sample analysis we deal with 500 companies.

We consider the dates in which the companies are added and deleted from the SP500 index. If

a company is deleted on a given week, it will no longer be included in the out-of-sample forecast

evaluation from that week onwards. Similarly, if a new company is added on a given week, we

estimate the duration and expected returns models for this company and we will include it in

the forecast evaluation from that week onwards. At any point in time, we face the possibility of

choosing, by the prediction of the VCR-Mixture Trading Rule, a stock for the optimal portfolio

that may drop from the SP500 index in the next period. However, in our analysis, we have not

encountered such a possibility and the one-period-ahead predicted optimal portfolio always contains

companies that are constituents of the SP500 index in the following period.

3.2 Competing trading rules

To evaluate the out-of-sample performance of the VCR model, we compare it with that of various

competing models. The second trading rule is a simple alternative to the VCR-Mixture rule which

is constructed by imposing H10 : �1;t = �0;t = �t in (11). This trading rule has no mixture and thus

will be helpful to assess the importance of the nonlinearity in the VCR-Mixture Trading Rule. It

will be called VCR Trading Rule because �t depends on the lagged VCR zt�1 of an asset while

it ignores the mixture of two normal densities. The one-step ahead forecast for every asset in the

market is obtained from a linear speci�cation of the conditional mean where the regressors are past

returns and past VCRs. As in the previous rule, the rolling sample scheme is used to obtain the

sequence of one-step ahead forecasts ŷi;t+1. The ordinal rank is predicted by (13) and the investor

follows the same strategy of (14) as before by buying the top �ve performing assets and revising

her portfolio in every period.

The third trading rule is a buy-and-hold strategy of the market portfolio. At the beginning of

9We also carried out the analysis for the top 2% (10 stocks) performers. As expected, the realized pro�t was
smaller but the risk-weighted pro�t (captured by the Sharpe ratio) did not change signi�cantly. Thus, the qualitative
nature of our conclusions remains the same.
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the forecasting interval, the investor buys the SP500 index and holds it until the end of the interval.

At any given t, the one-period portfolio return is �t = ym;t where ym;t is the return to the SP500

index. This strategy will be called Buy-and-Hold-the-Market Trading Rule.

In summary, these three trading rules aim to assess the predictability of stock returns: the VCR-

Mixture Trading Rule claims that stock returns are non-linearly predictable, the VCR Trading Rule

claims that stock returns are linearly predictable, and the Buy-and-Hold-the-Market Trading Rule

claims that actively managed portfolios have no advantage over passively index investing.

In addition to the above three models, we also consider the four generic price-based technical

trading rules considered by Sullivan, Timmermann and White (1999): Filter-Rule, Moving-Average-

Rule, Channel-Break-Out-Rule, and Support-and-Resistance-Rule. All of these four trading rules

are based on the SP500 index and they can be considered rules that exploit the momentum in

returns. For each of the four technical trading rules, we consider four random parameterizations.

See the supplementary appendix for further explanation.

3.3 Forecast evaluation criteria

The �rst type of evaluation criterion is to compute the return of each trading strategy over the

forecasting sample (R+1; T ). There are P � T �R periods in this interval. For every trading rule

we compute the �mean trading return�

MTR = P�1
T�1X
t=R

�t+1:

The rule that provides the largest MTR would be a preferred trading strategy. We also correct

MTR according to the level of risk of the chosen portfolio. We consider two broad types of risk-

corrected criteria: one is based on the Sharpe ratio, and the other based on VaR calculations to

manage catastrophic losses. The criterion based on the traditional Sharpe ratio is given by the

excess return per unit of risk measured by the standard deviation of the selected portfolio

SR = P�1
T�1X
t=R

(�t+1 � rf;t+1)
��t+1(�̂t)

;

where rf;t+1 is the risk free rate. A modi�ed Sharpe ratio (MSR) can also be implemented when

the excess return is measured per unit of VaR. It is de�ned as

MSR = P�1
T�1X
t=R

(�t+1 � rf;t+1)
V aR�t+1(�̂t)

;

where V aR�t+1(�̂t) is the one-step ahead VaR forecast of �t+1 at a given nominal tail coverage

probability �: The above three evaluation criteria, MTR;SR;MSR; are to be maximized.
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The second type of evaluation criteria will be useful to an investor who wishes to control for

catastrophic events by maintaining a minimum amount of capital to cushion against excessive

losses. We would like to evaluate each trading rule according to their ability to allocate the optimal

amount of capital for unlikely events. For this purpose a Value-at-Risk evaluation criterion is useful.

Consider a portfolio of assets whose realized return is given by �t+1:We are interested in V aR�t+1(�),

the one-step ahead Value-at-Risk forecast of �t+1 at a given nominal tail coverage probability �:

This is de�ned as the conditional quantile such that Pr[�t+1 � V aR�t+1(�)jFt] = �: For the VCR

Trading Rule and the Buy-and-Hold-the-Market Trading Rule, where we assume a location-scale

distribution of �t+1, the forecast of the portfolio VaR can be estimated as V aR�t+1(�̂t) = �
�
t+1(�̂t)+

��1t+1(�)�
�
t+1(�̂t); where �

�
t+1(�̂t); �

�
t+1(�̂t) are the forecasts of the portfolio return and conditional

standard deviation respectively, �t+1(�) is the conditional cumulative distribution function of the

standardized portfolio return, and �̂t is the parameter vector estimated with information up to time

t: For the VCR-Mixture Trading Rule, where we are interested in the VaR of a portfolio of K asset,

each one following a mixture of conditional normal distributions, the computation of the VaR is

not straightforward because a mixture of normals does not belong to the location-scale family. We

implement the analytical Monte Carlo method of Wang (2001), which is described in some detail

in the supplementary appendix.

We evaluate the trading rules according to three VaR-based loss functions. The �rst loss function

aims to minimize the amount of capital to put aside (that is required to protect the investor against

a large negative return), the second loss function assesses which trading rule provides the correct

predicted tail coverage probability, and the third loss function is the tick function which evaluates

which trading rule provides the best quantile forecast.

The �rst VaR-based loss function V1 sets the mean predicted �minimum required capital�,

MRC�t+1(�̂t);

V1 � P�1
T�1X
t=R

MRC�t+1(�̂t) ' P�1
T�1X
t=R

V aR�t+1(�̂t):

A formula for MRC� as a function of V aR� with � = 0:01 is set by the Bassel Accord. See Jorion

(2000, p. 65). We approximate the formula by setting MRC� ' V aR�: Over the forecast period,

the trading rule that provides the lowest amount of capital to put aside will be preferred.

The second VaR-based loss function V2 aims to choose the trading rule that minimizes the

di¤erence between the nominal and the empirical lower tail probability. It is an out-of-sample eval-

uation criterion based on the likelihood ratio statistic of the binary variable 1(�t+1 < V aR�t+1(�̂t)):

Over the forecasting period, consider the following counts n1 =
PT�1
t=R 1(�t+1 < V aR

�
t+1(�̂t)) and
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n0 =
PT�1
t=R 1(�t+1 � V aR�t+1(�̂t)): Note that P = T � R = n0 + n1. If the V aR� has been cor-

rectly forecasted, it must be that n1 = P � � and n0 = P � (1� �): The predictive log-likelihood

function of � given a sample
n
1(�t+1 < V aR

�
t+1(�̂t))

oT�1
t=R

is L(�) = ln (�n1(1� �)n0) and the

maximum likelihood estimator of � is �̂ = n1=P: If we were to test for the null hypothesis that

E[1(�t+1 � V aR�t+1(�̂t))] = �, the likelihood ratio test �2(L (�)� L(�̂)) would be a suitable sta-

tistic. The loss function V2 is based on this statistic, as it is a distance measure between � and �̂:

A trading rule that minimizes V2 will be preferred.

V2 � P�1 [�2(L (�)� L(�̂))]

= P�1
T�1X
t=R

2

�
1(�t+1 < V aR

�
t+1(�̂t)) ln

�̂

�
+ 1(�t+1 > V aR

�
t+1(�̂t)) ln

1� �̂
1� �

�
:

The third VaR-based loss function V3 is the tick function used in quantile estimation (Koenker

and Bassett, 1978)

V3 � P�1
T�1X
t=R

(�t+1 � V aR�t+1(�̂t))
h
�� 1(�t+1 < V aR�t+1(�̂t))

i
:

The trading rule that provides the smallest V3 is preferred.

The question of interest is, among a set of trading rules, which one is the best? Each rule

produces di¤erent forecasts that are evaluated according to the six objective functions introduced

above. The best trading rule is the one that provides the maximum of MTR;SR;MSR and the

minimum of V1; V2; and V3. To compare the trading rules in terms of the six criteria we use the

�reality check� proposed by White (2000) and modi�ed by Hansen (2005). Given a benchmark

trading rule, we aim to compare the values of the evaluation function produced by the other

trading rules to that of the benchmark. We formulate a null hypothesis that says that the best of

the competing trading rules is no better than the benchmark rule. If we reject the null hypothesis,

there is at least one competing trading rule that produces a better value than the benchmark. A

brief sketch of the formal testing procedure is provided in the supplementary appendix.

3.4 Evaluation of trading rules

The out-of-sample performance of the aforementioned trading rules is provided in Table 2. In Panel

A, the trading rules are evaluated according to the MTR function; in Panel B, according to SR

and MSR; and in Panel C, according to the three VaR-based loss functions. In all cases, the

maximum in-sample size for the rolling estimation is R = 573; and the out-of-sample forecasting

period has P = 260 weeks. The stationary bootstrap of Politis and Romano (1994) with the
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bootstrap smoothing parameter 0:25 (corresponding to the mean block length of 4) is implemented

with 1000 bootstrap resamples. In the �rst column of each table, we report the benchmark trading

rule to which the remaining rules will be compared.

In Panel A, we report the value of MTR for each trading strategy. The VCR-Mixture Trading

Rule produces a weekly mean trading return of 0:243% (63:295% cumulative return over 260 weeks),

equivalent to a yearly compounded return of 13:45%; 10 that is signi�cantly more than the next most

favorable rule, which is the Buy-and-Hold-the-Market Trading Rule with a weekly mean return of

�0:019%, equivalent to a yearly return of �1:00%. We also �nd that all the technical trading rules

are clearly dominated by the VCR-Mixture rule. In each row, a benchmark rule is compared with

all the remaining 18 rules. When the VCR-Mixture Rule is the benchmark, the White�s reality

check p-value is 1:000 and Hansen�s p-value is 0:908, indicating that it is not dominated by any

of the other 18 trading rules. When any other rule is taken as a benchmark, these reality check

p-values are less than 1%, indicating that they are easily dominated.

Following upon some of the criticisms of the pro�tability of momentum strategies, the superior

MTR of the VCR-Mixture Trading Rule may be the result of forming portfolios that are very

risky and consequently, the pro�ts we observe are just due to a compensation for risk. To assess

the return-risk trade o¤, we implement the Sharpe ratio and a modi�ed version of it. In Panel B,

the largest SR (mean return per unit of standard deviation) is provided by the VCR-Mixture rule

with a weekly return of 0:151% (8:11% yearly compounded return per unit of standard deviation),

which is lower than the mean return provided by the same rule under the MTR criterion, but

still a dominant return when compared to the mean returns provided by the VCR Trading Rule

and Buy-and-Hold-the-Market Trading Rule. The White p-value is 1:000 and Hansen�s p-value

is 0:954 indicating the superiority of the VCR-Mixture rule. The results for the Modi�ed Sharpe

ratio (MSR, mean return per unit of VaR) are qualitatively identical. MSR is the largest for the

VCR-Mixture rule with a weekly return of 0:552% (for the 1% VaR) and 0:651% (for the 5% VaR).

In both cases the White�s p-values are 1:000 and Hansen�s p-values are above 0:90.

In Panel C, we report the out-of-sample performance of the three trading rules evaluated accord-

ing to the VaR-based loss functions V1; V2; and V3; for � = 0:01; 0:05: The results for � = 0:01; 0:05

are virtually identical for all the three loss functions. With respect to V1, the VCR-Mixture Trad-

ing Rule dominates the other two rules as it provides the least amount of required capital. When

we consider V2; the same results hold. The VCR-Mixture rule delivers the best tail coverage by

estimating a tail coverage probability of �̂ = 0:013 at a nominal rate � = 0:01, and �̂ = 0:05 at a

101.0024352 = 1:1345
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nominal rate of � = 0:05. Finally, with respect to the tick function V3; the reality check p-values

indicate that neither the Buy-and-Hold-the-Market strategy nor the VCR-Mixture strategy are

dominated.

In addition to the six forecast criteria reported in Table 2, we have also computed the mean

squared forecast errors (MSFE) of the returns, P�1
PT�1
t=R M

�1PM
i=1(ŷi;t+1�yi;t+1)2; and the MSFE

of the VCRs, P�1
PT�1
t=R M

�1PM
i=1(ẑi;t+1 � zi;t+1)2: Based on these MSFE losses, we compare

the VCR-Mixture Trading Rule and the VCR Trading Rule. With the VCR Trading Rule as

the benchmark, the reality check p-values for both of the MSFE loss functions are 0:000, clearly

indicating that the VCR-Mixture Trading Rule is better than the VCR Trading Rule and thus

the importance of nonlinearity in the conditional mean of the return process due to the weighted

mixture of normal densities. We have also linearly regressed the forecasted return on the actual

return of the portfolio chosen by the VCR-Mixture Trading Rule and the R-squared of the regression

is 0:22 (which implies a correlation coe¢ cient of 0.47) in contrast with an R-squared of 0:001 for a

similar regression corresponding to the portfolio chosen by the VCR Trading Rule.

3.5 Betas, cumulative pro�ts, and transaction costs

We have calculated the beta of the selected portfolios, through a CAPM-type time series regression,

over each period of the forecasting interval (P = 260 weeks). Over the forecasting period, the

average and the median beta of the winner portfolio chosen by the VCR-Mixture Trading Rule is

1.16. In 70% of the forecasting periods the average beta is greater than 1, and in 14% of the periods

is greater than 1.5. In Figure 2, we plot the evolution of the portfolio beta over the forecasting

period for the VCR-Mixture Trading Rule and the VCR Trading Rule. Though there is a tendency

to choose portfolios with a beta slightly larger than one, the VCR-Mixture Trading Rule tends to

pick up stocks over the full spectrum of risk with portfolio betas as low as 0.18 and as high as 1.79.

On the other hand, the VCR Trading Rule chooses portfolios that are riskier with a beta as low as

0.43 and as high as 1.97.

In Table 3 we report the cumulative returns of the three aforementioned trading rules and

their equivalent annual compounded returns over the full forecasting period (2001-2005) and over

the bear market (2001-2002) and bull market (2003-2005). In Figure 3, we plot these cumulative

returns. The message is the same. One dollar invested at the beginning of the forecasting period

would have become $1.63 if the VCR-Mixture Trading rule had been implemented. In contrast,

following the VCR Trading Rule, we would have obtained $0.64 and following the Buy-and-Hold

Rule $0.95. In Figure 3, we observe that with the exception of a few periods at the beginning of
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the forecasting sample, the cumulative return provided by the VCR-Mixture Trading Rule clearly

dominates the other two rules. When the forecasting sample is divided between a bear market and

a bull market, the VCR-Mixture is clearly dominant in a bear market. In a bull market the VCR-

Mixture returns are still the largest with a 15% annual return, closely followed by the VCR returns

with a 12.7% annual return, and �nally the Buy-and-Hold returns with a 9.7% annual return.

Since the VCR-Mixture Trading Rule and the VCR Trading Rule involve dynamic adjustments

of the portfolio in every week of the forecasting sample, it is natural to ask whether the transaction

costs involved will render these strategies unpro�table. The turnover rate of the winner portfolio

chosen by the VCR-Mixture Trading Rule is extremely high, thus in order to calculate the return

net of transaction cost we assume the worst case scenario, which is a 100% turnover rate. Let c

be the transaction cost de�ned as a certain percentage of the price to buy or sell each stock in the

portfolio. For each stock i, the net return rneti is calculated as rnetit = logPit(1�c)�logPit�1(1+c) =

rit + log
1�c
1+c ' rit � 2c: Thus, the portfolio return will be calculated as the average over the net

returns for di¤erent values of c: In Figure 4, we plot the cumulative net returns of the VCR-Mixture

Trading Rule with weekly transaction costs of c = 0:1% and 0:2% and we compare them to the Buy-

and-Hold cumulative returns, which do not incur in transaction costs. It is only when c = 0:2% and

over the bull market period that the Buy-and-Hold Trading Rule becomes more pro�table. However

c = 0:2% is equivalent to 10:95% yearly compounded return, which is an exorbitant transaction

cost by any industry standard. Thus, in the worst scenario of a 100% portfolio turnover rate, the

transaction costs are not a deterrent to the implementation of the VCR-Mixture Trading Rule.

4 Conclusion

We have proposed a trading rule that is based on a non-linear time series model for expected returns.

The novelty of the proposed modeling lies on the investigation of the dynamics of the cross-sectional

rank of asset returns, which is conducted within the context of a duration model. For the weekly

returns of the constituents of the SP500 index, we have modelled the joint dynamics of the cross-

sectional rank and the asset return by analyzing (1) the marginal probability distribution of a jump

in the cross-sectional rank, and (2) the probability distribution of the asset return conditional on a

jump. As a result, we claim that the expected return is generated by a mixture of normal densities

weighted by the probability of jumping. Though the proposed model passes a battery of standard

diagnostics, given the non-linear nature of the model, we judge the adequacy of our speci�cation

within a forecasting exercise. Based on the one-step ahead forecast of the mixture model, we have
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designed a trading rule that is evaluated, over the forecasting sample, within the context of several

evaluation functions: trading return, risk-adjusted trading return (Sharpe ratios), and VaR-based

loss functions. When we compare our trading rule based on the proposed VCR-mixture model,

against eighteen other di¤erent trading rules (some model-based and some technical), we �nd that

in all cases considered it is the dominant rule.
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TABLE 1.  In-Sample Estimation 
 

Panel A  
Median Values of the Parameter Estimates of 1θ   

 in the ACH Model for );|( 111 θ−ℑttJf  in Equation (10)  

( )5.01 1 ≥−= −ttt zzJ  
 

Industry Sectors 
in the SP500 Index 

% of firms βα ˆˆ +  2δ̂  3δ̂  p̂  Unconditional 
p  

Consumer Goods 25.2 0.456 0.542 -0.573 0.257 0.246 
Energy   5.5 0.359 0.769 -0.840 0.347 0.297 
Finance 16.5 0.444 0.959 -0.488 0.257 0.239 
Health Care   11.2 0.387 0.501 -0.672 0.326 0.295 
Industrials 11.2 0.451 0.586 -0.946 0.238 0.215 
Information Technology 17.7 0.334 0.318 -0.413 0.447 0.380 
Material   6.4 0.437 0.587 -0.690 0.290 0.248 
Utilities   6.4 0.497 0.851 -1.101 0.132 0.137 
All sectors    100.0 0.422 0.571 -0.641 0.267 0.253 
Note:  tp̂  is the conditional probability of jumping obtained from equation (10) for every firm 

in the sample; p̂ is the median value of tp̂  calculated over firms and over time; and 
R

J
p

R

t
t∑

=≡ 1  is 

the unconditional probability of jumping for which we report the median values calculated over 
the cross-section of firms. 
 
 

Panel B   
Median Values of the Parameter Estimates of 2θ  

 in the Model for );,|( 212 θ−ℑttt Jyf  in Equation (11)  

( )5.01 1 ≥−= −ttt zzJ  
 

Industry Sectors 
in the SP500 Index 

% of firms 
1γ̂  0γ̂  1η̂  0η̂  τρ ˆˆ +  

Consumer Goods 25.2 -0.445 0.345 -0.375 -0.010 0.909 
Energy 5.5 -0.591 0.384 -0.252 0.022 0.940 
Finance 16.5 -0.422 0.347 -0.369 0.058 0.972 
Health Care 11.2 -0.319 0.365 -0.658 0.031 0.899 
Industrials 11.2 -0.415 0.338 -0.358 0.056 0.885 
Information Technology 17.7 -0.419 0.480 -0.422 0.015 0.920 
Material 6.4 -0.444 0.353 -0.473 -0.036 0.965 
Utilities 6.4 -0.575 0.136 -0.069 0.208 0.909 
All sectors 100.0 -0.440 0.358 -0.378 0.029 0.925 

 
Note: The full details of the cross-sectional frequency distributions of the parameter estimates 
are available in the supplementary appendix (Table S.2). 
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Panel C   

Diagnostic Checks on the Standardized Residuals from Equation (11) 
Cross-Sectional Summary Statistics of Residual Moments 

 
Cross-sectional 

moments  
(over 466 firms) 

Residual 
Mean 

Residual 
Std. Dev. 

Residual 
Skewness 

Residual 
Kurtosis 

p-value of 
Q(4) 

p-value of 
Q2 (4) 

Mean 0.00 1.00 0.01 3.02 0.61 0.89 
Median 0.00 0.99 0.01 3.01 0.67 0.99 
Max. 0.00 1.19 0.36 4.57 0.99 1.00 
Min. 0.00 0.82 0.00 2.66 0.00 0.12 

Note: Q(4) is the Box-Pierce-Ljung statistic of order four for the standardized residuals and  
Q2 (4) is the McLeod-Li statistic of order four for the squared standardized residuals.  
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TABLE 2. Out-of-Sample Evaluation of Trading Rules 
 

Panel A 
 Mean Trading Return (MTR) 

 MTR White 
p-value 

Hansen 
p-value  

VCR-Mixture Rule  0.243 1.000 0.908 
VCR Rule -0.137 0.001 0.000 
Buy-and-Hold-the-Market Rule -0.019 0.001 0.000 
Filter-Rule (0.05) -0.052 0.001 0.000 
Filter-Rule (0.10) -0.032 0.001 0.000 
Filter-Rule (0.20) -0.023 0.009 0.004 
Filter-Rule (0.50) -0.081 0.002 0.001 
Moving-Average Rule (10, 2) -0.034 0.003 0.000 
Moving-Average Rule (20, 2) -0.076 0.001 0.000 
Moving-Average Rule (10, 4) -0.049 0.001 0.000 
Moving-Average Rule (20, 4) -0.047 0.001 0.000 
Channel-Break-Out Rule (4, 0.05) -0.055 0.001 0.000 
Channel-Break-Out Rule (10, 0.05) -0.076 0.000 0.000 
Channel-Break-Out Rule (4, 0.10) -0.089 0.000 0.000 
Channel-Break-Out Rule (10, 0.10) -0.060 0.001 0.000 
Support-and-Resistance Rule (2) -0.124 0.002 0.000 
Support-and-Resistance Rule (4) -0.054 0.001 0.000 
Support-and-Resistance Rule (8) -0.080 0.004 0.001 
Support-and-Resistance Rule (16) -0.082 0.001 0.000 

 
 

Panel B 
Sharpe Ratio (SR) and Modified Sharpe Ratio (MSR) 

  White 
p-value  

Hansen 
p-value 

Sharpe Ratio SR   
VCR-Mixture Rule 0.151 1.000 0.954 
VCR Rule -0.136 0.009 0.009 
Buy-and-Hold-the-Market Rule -0.019 0.019 0.137 
    
Modified Sharpe Ratio with 01.0=α  MSR   
VCR-Mixture Rule 0.552 1.000 0.915 
VCR Rule -0.023 0.000 0.000 
Buy-and-Hold-the-Market Rule 0.008 0.000 0.000 
    
Modified Sharpe Ratio with 05.0=α  MSR   
VCR-Mixture Rule 0.651 1.000 0.907 
VCR Rule -0.011 0.000 0.000 
Buy-and-Hold-the-Market Rule 0.010 0.000 0.000 
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Panel C 
Three VaR Based-Loss Functions 

 V1 White 
p-value 

Hansen 
p-value 

V2 α̂  White 
p-value   

Hansen 
p-value 

V3 White  
p-value 

Hansen 
p-value 

VaR with 01.0=α            
VCR-Mixture Rule 2.748 1.000 0.879 0.002 0.013 1.000 0.999 0.070 0.832 0.712 
VCR Rule 9.172 0.000 0.000 0.089 0.085 0.000 0.000 0.478 0.000 0.000 
Buy-and-Hold-the-
Market 

5.467 0.000 0.000 0.005 0.023 0.000 0.000 0.090 0.618 0.418 

           
VaR with 05.0=α            
VCR-Mixture Rule 1.724 1.000 0.945 0.000 0.050 1.000 0.929 0.255 0.259 0.145 
VCR Rule 6.973 0.000 0.000 0.049 0.138 0.002 0.001 0.604 0.000 0.000 
Buy-and-Hold-the-
Market 

4.103 0.000 0.000 0.000 0.050 1.000 0.929 0.121 0.973 0.861 

Notes: The out-of-sample period is P=260 and the in-sample period is R=573. In each row of 
the panels, we report the values of the forecast evaluation functions together with the reality-
check p-values of White (2000) and Hansen (2005). The null hypothesis is that no other trading 
rules are better than the selected benchmark. A large reality-check p-value indicates that the 
null hypothesis cannot be rejected. In Panel A, MTR represents the profit accrued from the 
respective trading rules. When the VCR-Mixture Rule is the benchmark, the reality check p-
value 1.000 means that this benchmark rule is not dominated by any of the other 18 trading 
rules. In Panel B, SR represents the average profit per unit of standard deviation accrued from 
the respective trading rules. MSR represents the average profit scaled by VaR with different 
tail probabilities (0.01 or 0.05). When the VCR-Mixture Rule is the benchmark, the reality 
check p-value is again 1.000 which means this benchmark rule is not dominated by any of the 
other two trading rules. In Panel C, V1 , V2 , and V3 represent the three VaR-based loss 
functions (MRC, coverage failure rate, and the tick loss). α̂  denotes the empirical failure rate 
at the nominal rate α . When the VCR-Mixture Rule is the benchmark, the p-values are very 
large for all V1 , V2  and V3 , implying that this benchmark trading rule is not dominated by the 
other two trading rules.  
 

TABLE 3. Cumulative Returns 
Value of $1 at the end of each forecasting period 

(Equivalent annual compounded return) 
 VCR-Mixture VCR Buy-and-Hold 

Full period 
1/2/2001-12/27/2005 

$1.63 
(10.3%) 

$0.64 
(-8.5%) 

$0.95 
(-1.0%) 

Bear market 
1/2/2001-12/30/2002 

$1.11 
(5.4%) 

$0.21 
(-54.2%) 

$0.62 
(-21.3%) 

Bull market 
1/6/2003-12/27/2005 

$1.52 
(15%) 

$1.43 
(12.7%) 

$1.32 
(9.7%) 

Note: The equivalent annual compound return has been calculated over the corresponding 
number of years in each period; for instance in the full period for the VCR-Mixture trading rule 
we have 5)1(63.1 r+=  or in the bull market 3)1(52.1 r+=  where r  is the annual compounded 
return. 
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FIGURE 1 

Stylized Description of the Modeling Problem 
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FIGURE 2 
Beta of the Winner Portfolio 

Forecasting sample: January 2, 2001 to December 27, 2005 
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FIGURE 3 
Cumulative Returns in percentage 

Forecasting sample: January 2, 2001 to December 27, 2005 
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FIGURE 4 
Cumulative Returns (%) accounting for Transaction Costs 

VCR-Mixture Trading Rule versus Buy-and-Hold Trading Rule 
Forecasting sample: January 2, 2001 to December 27, 2005 
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