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SUMMARY This paper shows that when series are fractionally integrated, but unit root
tests wrongly indicate that they are I(1), Johansen likelihood ratio (LR) tests tend to find too
much spurious cointegration, while Engle-Granger test presents a more robust performance.
This result holds asymptotically as well as in finite samples. The different performance of
these two methods is due to the fact that they are based on different principles. Johansen
procedure is based on maximizing correlations (canonical correlation) while Engle-Granger
minimizes variances (in the spirit of principal components).

1 Introduction

It is well established that many economic series contain dominant, smooth components,

even after removal of simple deterministic trends. A stochastic process with no deterministic

components is defined to be integrated of order d, denoted I(d), if it has a stationary and

invertible ARMA representation after applying the differencing operator (1 − B)d. The
components of the vector Xt are said to be cointegrated of order (d, b), if all of components

of Xt are I(d) and there exists a vector α (6= 0) such that α0Xt is I(d− b), b > 0. Usually the
case with d = b = 1 is considered (for more detail see Granger 1981 and Engle and Granger

1991).

When d is not an integer, the series are said to be fractionally integrated (Granger and
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Joyeux 1980 and Hosking 1981). There is considerable evidence that the long memory prop-

erties of macroeconomic and financial time series data such as GDP, interest rate spreads,

inflation rates, forward premiums, stock returns, exchange rates, and etc., can be well cap-

tured by fractional integrated processes. This paper is concerned with the robustness of

cointegration tests when series are fractionally integrated, but based on unit root tests we

wrongly consider them as I(1) series.

We investigate two methods to test for cointegration. One method is the one suggested

by Engle and Granger (1987, EG hereafter), which looks for a linear combination of level

series that minimizes the variance of the linear combination using OLS. Another method is

Johansen’s (1995) procedure, which maximizes the canonical correlation between the first

differenced series and the level series. From the point of view of multivariate analysis,

EG procedure is similar to principal components, while Johansen’s method is a canonical

correlations technique. The main assumption of both tests is that series are exactly I(1).

When series are I(d) with d 6= 1 but we wrongly consider them as I(1), this paper finds that
Johansen tests tend to find spurious cointegration more often than EG test does. This result

holds asymptotically as well as in finite samples.

Consider a (2 × 1) I(1) vector Xt = (yt xt)0. The variance of an I(1) series (given some
initial conditions) goes to infinity as t → ∞, while the variance of an I(0) series is finite.
Therefore if an I(1) vector Xt is cointegrated, there must exist a vector α (6= 0) such that the
variance of α0Xt is finite. Based on this, EG suggest to test for a unit root on the residuals

zt from the OLS cointegration regression yt = â0 + â1xt + zt. The EG test is based on the

augmented Dickey-Fuller (DF) statistic (see Dickey and Fuller, 1979) of order k, ADF(k),

that is the t-value for ρ̂ in the OLS regression

∆zt = ρzt−1 + ρ1∆zt−1 + · · ·+ ρk∆zt−k + error. (1)

Reduced rank regression methods, like the Johansen approach, exploit the fact that I(1)

and I(0) variables are asymptotically uncorrelated and look for a vector α that maximizes

the correlation between α0Xt and a linear combination of ∆Xt. If that correlation is not

zero, α0Xt is I(0) and Xt is cointegrated. According to Granger’s representation theorem

(Granger, 1983), a cointegrated system admits the following vector error correction model

(VECM) representation

∆Xt = ΠXt−1 + Γ1∆Xt−1 + · · ·+ Γk∆Xt−k + ²t, (2)
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where ²t = (e1t e2t)
0 is a vector white noise with finite variance. For simplicity we have

eliminated all the deterministic components and we only consider a finite k in model (2).

If Xt is cointegrated, it can be shown that the matrix Π can be decomposed into Π = γα0,

where α and γ are (2 × 1) matrices. Testing for cointegration is therefore equivalent to
testing the rank of Π (denoted as r) equals to one, and this is exactly what Johansen method

does. Formally the Johansen LR statistics for testing the null hypothesis of no cointegration

H0 : r = 0 are

Q1 = −T ln(1− λ̂1)(1− λ̂2) (3)

and

Q2 = −T ln(1− λ̂1), (4)

where (1 ≥ λ̂1 ≥ λ̂2 ≥ 0) are the eigenvalues of M̂ ≡ S−111 S10S−100 S01, and Sij = T−1
PT

t=1RitR
0
jt

(i, j = 0, 1) are the product moment matrices of the residuals R0t and R1t, from the regres-

sions of ∆Xt and Xt−1 on the lagged differences, respectively. Q1 tests the null hypothesis

against the alternative hypothesis H1 : r > 0, and Q2 tests H0 against H1 : r = 1.

2 Fractionally Integrated Processes

Suppose Xt = (yt xt)
0 are generated from

(1−B)dyt = e1t, (5)

(1−B)dxt = e2t. (6)

The fractional difference operator (1−B)d defined by its Maclaurin series is

(1−B)d =
∞X
j=0

Γ(−d+ j)
Γ(−d)Γ(j + 1)B

j =
∞X
j=0

djB
j, dj =

j − 1− d
j

dj−1, d0 = 1, (7)

where Γ(·) is the gamma function. An I(d) process yt generated from (5) has the following

properties: (a) yt is covariance stationary if d < 0.5. (b) yt has an invertible moving average

representation if d > −0.5. (c) yt is mean-reverting when d < 1. (d) If d > 0, yt has long
memory, the autocovariances of yt are not absolutely summable, and the power spectrum of

yt is unbounded for frequencies approaching zero. (e) yt has an infinite variance if d > 0.5. (f)

The DF-t statistic diverges to −∞ if d < 1, and diverges to +∞ if d > 1 as T →∞ (Sowell,

1990, Theorem 4). Thus if d > 1, the standard DF tests have no power asymptotically.
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For simplicity, in the following proposition, we consider only the case with k = 0 in the

VECM to compute the LR statistics. Any finite k that is not sufficiently large enough to

make the error ²t a vector white noise will lead to the same results.

Proposition: Suppose (yt xt)
0 are I(d) processes generated from (5)− (6), and we estimate

a VECM with k = 0.

a. If d ≥ 1.5, then λ̂1 does not converge to zero in probability as T →∞.
b. If 1 < d < 1.5, then T (3−2d)λ̂1 = Op(1).

c. If d = 1, then T λ̂1 = Op(1).

d. If 0.5 < d < 1, then T (2d−1)λ̂1 = Op(1). 2

Proof: a. Following Gourieroux et al (1989), for d ≥ 1.5, S11 = Op(T
2d−1), S00 =

Op(T
2d−3), and S10 = Op(T

2d−2). Therefore M̂ = Op(1) and the result follows. b. For

1 < d < 1.5, S11 = Op(T
2d−1), S00 = Op(1), and S10 = Op(T 2d−2). Therefore M̂ = Op(T

2d−3).

c. For d = 1, S11 = Op(T ), S00 = Op(1), and S10 = Op(1). Therefore M̂ = Op(T
−1). d. For

0.5 < d < 1, S11 = Op(T
2d−1), S00 = Op(1), and S10 = Op(1). Therefore M̂ = Op(T

1−2d) and

the result follows. 2

If d = 1, T λ̂1 = Op(1). If d 6= 1, T λ̂1
p→ ∞ as T → ∞, and the size of the LR tests

increases to one as T →∞ because Q2 ≥ T λ̂1 and Q1 ≥ T (λ̂1+ λ̂2). Note that if 1 < d < 1.5

then 0 < 3−2d < 1, and if 0.5 < d < 1 then 0 < 2d−1 < 1. Thus in these two cases, λ̂1 p→ 0

but at a slower rate than T so that T λ̂1 diverges, and therefore the size of the LR tests goes

to one asymptotically.

A sufficiently large k such that the residuals are white noise may solve the problem. But

there are many situations in macroeconomics where it is not possible in practice to try a

large k. As previously mentioned, our Proposition will hold not only for k = 0 but also for

any k > 0 not sufficiently large to make the error a vector white noise.

3 Monte Carlo Results

We generate Xt = (yt xt)
0 from (5)-(6) where e1t and e2t are i.i.d. N(0, 1), and E(²1i²2j) = 0

for every i and j. In order to avoid the initial conditions (x0 = 0, y0 = 0) effect, we

generate samples of sizes t = 1, . . . , T + q and discard the first q = 2000 observations. We
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approximated (1−B)d =P∞
j=0 djB

j by assuming dj = 0 for j > 1000. It is clear that both

variables are not cointegrated in any sense. In Tables 1 and 2, we report the size of the

cointegration tests for various values of d.

Table 1 about here

Table 2 about here

When d < 1, the size is large for both EG and Johansen tests. These finite sample results

match the asymptotic results. For EG test the asymptotic behavior is derived from Sowell

(1990), where it is shown that the DF t statistic diverges to −∞ if d < 1 as T → ∞. For
Johansen tests the theoretical result is in our Proposition.

When d > 1, Johansen LR tests tend to find too much spurious cointegration while the

EG test does not. Again these finite sample results coincide with the asymptotic results.

The performance of EG test is derived from Sowell (1990), where it is shown that if d > 1,

the DF test has zero power asymptotically. The asymptotic performance of Johansen tests

is derived in our Proposition.

Table 3 about here

Table 3 shows how difficult is to distinguish in finite samples an I(d, d > .5) variable

from an I(1) using the augmented DF (ADF) test. Thus if the variables are fractionally

integrated, it is likely that we proceed assuming the series are I(1), and therefore get the

incorrect conclusion that the variables are related in the long-run (i.e., cointegrated).

In order to avoid the spurious cointegration, one could think that a possible solution is

to increase k with T , in a similar way Berk (1974) does for stationary and ergodic processes.

We are not aware of any result in the literature on how to do this for nonstationary and

non-ergodic processes. We suspect the problem must be complicated because the sum of

absolute correlations for a fractional integrated process is not bounded, therefore any finite k

will produce inconsistent estimates. Moreover a fractionally integrated process with d ≥ .5 is
not ergodic. We report the results computed with k = 3 and 9, but the problem remains even

in the latter case. Based on our Monte Carlo experiment we have to agree with Brockwell

and Davis (1991, p. 520) when they say “While a long memory process can always be

approximated by an ARMA(p, q) the orders p and q required to achieve a reasonably good

approximation may be so large as to make parameter estimation extremely difficult.”
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How often do we have d > 1 in practice? Examples of values of estimates of d reported

in the literature are: d = 1.17 for annual disposable income (Diebold and Rudebusch 1991),

d = 1.29 for quarterly real GNP (Sowell 1992a), and d is ranged from 1.04 to 1.36 for various

nominal spot exchange rates (Cheung 1993). Also d is estimated about 0.6 for money growth

rates (Tieslau 1991) and is ranged from 0.40 to 0.57 for inflation rates in several developed

countries (Hassler and Wolters 1995), indicating money stock and price series may have d

greater than one.

Another important and related question would be to see how precisely one could estimate

d with the sample sizes used in applied studies. Several different approaches have been

suggested for estimating d: Geweke and Porter-Hudak (1983) suggest a two step estimator

from a regression of ordinates of the periodogram on a trigonometric function; Fox and

Taqqu (1986) suggest an approximate ML procedure; Sowell (1992b) derives the full ML

estimator, and Chung and Baillie (1993) consider the minimum conditional sum of squares

estimator. Some simulation evidence on the finite sample performance of these methods has

been provided by Agiakoglou, Newbold and Wohar (1992), Cheung and Diebold (1994), and

Chung and Baillie (1993). They show severe biases of these estimators. In our opinion this

difficulty on estimating d gives even more relevance to the results obtained in this paper.

4 Conclusions

In applied research once a pair of variables are considered to be I(1), the next step is to

investigate if there exists a long-run equilibrium relationship between them. Because it is

very difficult to distinguish an I(d, d > .5) from an I(1), this paper shows that asymptotically

as well as in finite samples, Johansen LR tests tend to find spurious cointegration more often

than EG does. Therefore a recommendation in order to detect this problem is to run both

tests. If they produce different cointegration results, then proceed with a more exhaustive

univariate analysis than a simple unit root test.
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Table 1. Size of cointegration tests (T = 100)

k = 0 k = 3 k = 9
EG Q1 Q2 EG Q1 Q1 EG Q1 Q2

d = 0.5 .986 1.000 .997 .361 .651 .432 .083 .233 .171
d = 0.6 .900 .991 .947 .223 .406 .262 .060 .180 .141
d = 0.7 .636 .832 .652 .146 .224 .167 .043 .152 .132
d = 0.8 .341 .447 .340 .094 .142 .105 .042 .129 .129
d = 0.9 .143 .147 .132 .065 .087 .076 .038 .132 .122
d = 1.0 .047 .048 .052 .048 .068 .072 .032 .133 .130
d = 1.1 .016 .058 .069 .037 .077 .078 .034 .153 .149
d = 1.2 .010 .152 .166 .028 .090 .085 .036 .163 .165
d = 1.3 .031 .337 .351 .021 .105 .113 .030 .171 .171
d = 1.4 .053 .563 .592 .024 .110 .128 .027 .188 .184
d = 1.5 .076 .753 .774 .019 .135 .144 .032 .221 .206
d = 1.6 .100 .860 .873 .016 .165 .185 .037 .236 .230
d = 1.7 .111 .921 .931 .012 .185 .196 .048 .274 .267
d = 1.8 .135 .952 .957 .016 .191 .213 .045 .312 .294
d = 1.9 .150 .969 .973 .029 .231 .243 .053 .357 .336
d = 2.0 .176 .982 .981 .039 .271 .254 .054 .400 .385

Notes: The frequency of rejecting the null hypothesis in 1000 replications is
reported at the 5% level. The critical values for T = 100 are simulated from
90000 replications using the DGP with d = 1.



Table 2. Size of cointegration tests (T = 1000)

k = 0 k = 3 k = 9
EG Q1 Q2 EG Q1 Q1 EG Q1 Q2

d = 0.5 1.000 1.000 1.000 1.000 1.000 1.000 .984 1.000 1.000
d = 0.6 1.000 1.000 1.000 .994 1.000 1.000 .851 .992 .936
d = 0.7 .998 1.000 1.000 .879 .984 .941 .572 .815 .648
d = 0.8 .872 .978 .946 .535 .708 .565 .269 .370 .284
d = 0.9 .384 .455 .376 .193 .213 .186 .134 .140 .116
d = 1.0 .063 .056 .056 .059 .055 .055 .059 .053 .062
d = 1.1 .020 .118 .124 .026 .057 .066 .037 .051 .058
d = 1.2 .047 .439 .464 .026 .160 .175 .023 .078 .104
d = 1.3 .102 .768 .805 .029 .304 .332 .023 .141 .154
d = 1.4 .166 .925 .925 .040 .441 .483 .021 .210 .248
d = 1.5 .211 .974 .977 .030 .522 .546 .018 .248 .283
d = 1.6 .253 .991 .990 .017 .543 .573 .014 .257 .281
d = 1.7 .302 .994 .995 .010 .483 .517 .008 .245 .258
d = 1.8 .331 .999 1.000 .004 .380 .390 .009 .216 .215
d = 1.9 .345 .999 .999 .007 .245 .256 .015 .196 .199
d = 2.0 .349 .999 .999 .029 .204 .192 .034 .208 .196

Notes: The frequency of rejecting the null hypothesis in 1000 replications is
reported at the 5% level. The critical values for T = 1000 are simulated from
90000 replications using the DGP with d = 1.



Table 3. Power of ADF tests for a unit root

T = 100
ADF(0) ADF(3) ADF(paic) mean(paic) sd(paic)

d = 0.5 .999 .553 .696 1.875 2.805
d = 0.6 .941 .355 .556 1.926 2.874
d = 0.7 .691 .223 .399 1.811 2.925
d = 0.8 .354 .129 .258 1.500 2.807
d = 0.9 .141 .080 .117 1.258 2.805
d = 1.0 .047 .055 .069 1.229 2.842
d = 1.1 .032 .049 .058 1.513 2.846
d = 1.2 .047 .038 .047 2.150 3.013
d = 1.3 .087 .041 .056 2.605 2.983
d = 1.4 .148 .047 .067 2.832 2.916
d = 1.5 .214 .053 .067 2.842 2.884
d = 1.6 .257 .056 .080 2.706 2.759
d = 1.7 .317 .052 .079 2.563 2.674
d = 1.8 .342 .049 .077 2.339 2.646
d = 1.9 .366 .052 .062 2.207 2.706
d = 2.0 .387 .050 .061 2.301 2.817

T = 1000
ADF(0) ADF(3) ADF(paic) mean(paic) sd(paic)

d = 0.5 1.000 1.000 .963 7.937 3.997
d = 0.6 1.000 .998 .867 7.647 3.860
d = 0.7 .999 .887 .674 6.602 3.606
d = 0.8 .825 .521 .412 4.981 3.148
d = 0.9 .331 .177 .187 2.959 2.705
d = 1.0 .055 .055 .050 1.021 2.400
d = 1.1 .032 .026 .030 3.368 2.993
d = 1.2 .104 .036 .042 5.701 3.394
d = 1.3 .205 .071 .050 7.322 3.598
d = 1.4 .285 .112 .064 8.124 3.651
d = 1.5 .330 .133 .068 8.452 3.688
d = 1.6 .368 .138 .066 8.045 3.624
d = 1.7 .383 .126 .069 7.081 3.372
d = 1.8 .388 .095 .062 5.698 3.068
d = 1.9 .405 .065 .052 3.813 2.688
d = 2.0 .398 .055 .061 2.017 2.359

Notes: 5% level. 1000 replications. ADF(p) denotes the DF tests augmented with
p lagged first differences. p = 0, 3, or paic. paic is chosen using the AIC among
p = 0, 1, . . . , 19. When p = paic is used, the mean and the standard deviation of
paic in 1000 replications are reported.


