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ABSTRACT

Bagging (bootstrap aggregating) is a smoothing method to improve predictive ability
under the presence of parameter estimation uncertainty and model uncertainty. In Lee and
Yang (2006), we examined how (equal-weighted and BMA-weighted) bagging works for one-
step ahead binary prediction with an asymmetric cost function for time series, where we
considered simple cases with particular choices of a linlin tick loss function and an algorithm
to estimate a linear quantile regression model. In the present paper, we examine how bag-
ging predictors work with different aggregating (averaging) schemes, for multi-step forecast
horizons, with a general class of tick loss functions, with different estimation algorithms,
for nonlinear quantile regression models, and in different data frequencies. Bagging quantile
predictors are constructed via (weighted) averaging over predictors trained on bootstrapped
training samples, and bagging binary predictors are conducted via (majority) voting on pre-
dictors trained on the bootstrapped training samples. We find that median bagging and
trimmed-mean bagging can alleviate the problem of extreme predictors from bootstrap sam-
ples and have better performance than equally-weighted bagging predictors; that bagging
works more with longer forecast horizons; that bagging works well with highly nonlinear
quantile regression models (e.g., artificial neural network), and with general tick loss func-
tions. We also find that the performance of bagging may be affected by using different
quantile estimation algorithms (in small sample, even if the estimation is consistent) and by
using the different frequency of the time series data.

Keywords : Algorithm, Bagging, Median bagging, Binary prediction, Frequency, Majority
voting, Multi-step prediction, Neural network, Quantile prediction, Time series.

JEL Classification : C3, C5, G0.



1 Introduction

To improve on unstable forecast, bootstrap aggregating or bagging is introduced by Breiman

(1996). In Lee and Yang (2006), we show how bagging, with equal-weight averaging and

weighted averaging using Bayesian model averaging (BMA) method, works for one-step ahead

binary prediction under an asymmetric cost function for time series. In that paper, we

considered simple cases with particular choices of a loss function (linlin) and a regression

model (linear).

We now consider the following extensions: (a) aggregating the bootstrap forecasts by

other combination schemes as considered, e.g., by Stock and Watson (1999) and Timmer-

mann (2007), (b) multi-step forecasts, (c) nonlinear models such as the neural network

quantile model of White (1992), (d) different quantile estimation algorithms as discussed

by Komunjer (2005), (e) a general class of the tick loss functions of Komunjer (2005) and

Komunjer and Vuong (2005), and (f) using other macroeconomic and financial time series

in various frequencies.

According to our experience in Monte Carlo and empirical experiments, some bootstrap

predictors may generate extreme values that will seriously worsen the forecasts of equally

weighted bagging predictors. To alleviate this problem of extreme forecasts, we consider

alternative averaging schemes to generate bagging predictors (an idea borrowed from forecast

combination literature). The first is the BMA-weighted bagging as used in Lee and Yang

(2006). The second one is trimmed bagging, for which we remove extreme bootstrap forecasts

in forming a bagging predictor. However, it will be very hard to decide which bootstrap

predictors to keep and which to discard beforehand. In this paper, we simply trim a certain

number of the largest and the smallest bootstrap predictors. We also use the median of

the bootstrap predictors as our bagging predictor, which can be considered as an extreme

case of trimmed bagging predictors. Hence we have the equal-weighted bagging, BMA-

weighted bagging, trimmed-mean bagging, and median bagging. Our Monte Carlo and

empirical experiments show that: when sample size is small and/or the predictors lies on

the sparse parts of the density, median bagging and trimmed-mean bagging generally give

better bagging forecasts than the equal-weighted bagging predictor (which is better than

unbagged predictors); and when sample size is large and/or the predictor lies on the dense

part of the data density, median bagging and trimmed bagging have no obvious advantage
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over the equal-weighted bagging (whose advantage over unbagged predictors is also weak in

such a case).

We explore the performance of bagging predictors for multi-step forecast (for the con-

ditional quantile) in this paper. As discussed by Brown and Mariano (1989) and Lin and

Granger (1994), there are several ways to generate multi-step forecasts. These methods can

be put into two groups: iteration of one-step ahead forecasts and direct multi-step forecasts.

Among iterated multi-step forecasting methods, we can further classify them as the naive

method, the exact method, the Monte Carlo method, and the bootstrap method. If the

true forecast model is linear and known, all these methods should give same predictions.

However, if the true forecast model is non-linear or unknown, different multi-step forecast-

ing methods give quite different predictions. We use the direct multi-step forecast method

for the conditional quantile prediction in our Monte Carlo experiments. It is found that,

compared with unbagged predictors, the performance of a bagging predictor tends to get

better with longer forecast horizons.

Lee and Yang (2006) attributed a part of success of the bagging predictors to the small

sample estimation uncertainties. Therefore, a question that may arise is that whether the

good performance of bagging predictors critically depends on algorithms we employ in our

estimation. Lee and Yang (2006) used the interior point algorithm for quantile estimations

as suggested by Portnoy and Koenker (1997). To examine how other algorithms may work

for the bagging, we also use the minimax algorithm of Komunjer (2005) in this paper. The

interior point algorithm for quantile estimation can be used for a linear quantile regression

model under the standard linlin tick loss function while the minimax algorithm allows flexible

function forms for quantile regressions such as a neural network model.

We use the minimax algorithm to estimate linear and nonlinear quantile regression model

under a general class of tick functions, namely, the tick-exponential family defined by Ko-

munjer (2005). Our simulation results show that the bagging works (i.e., better than the

unbagged predictors) for quantiles almost equally well for the different tick functions in the

tick-exponential family in small samples. Komunjer (2005) shows that QMLE under the

tick-exponential family is consistent.

With the flexibility provided by the minimax algorithm, we check the performance of

bagging predictors on highly non-linear quantile regression models — artificial neural network
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models. When the sample size is limited, it is usually hard to choose the number of hidden

nodes and the number of inputs (lags), and to estimate the large number of parameters in

neural network model. Therefore, a neural network model generate poor predictions with a

small sample. In such cases, the bagging can do a wonderful job to improve the forecasting

performance as shown later in our empirical experiments.

We finally investigate whether the performance of bagging can be affected by the fre-

quency of the data.

The plan of this paper is as follows. Section 2 gives a brief introduction to bagging

predictors. Section 3 explains different ways to aggregating bootstrap predictors. In Section

4, we examine how bagging works for the multi-step predictions of the conditional quantiles.

In Section 5 we examine how the bagging works for quantile prediction under the different

tick loss functions of the tick-exponential family. In Section 6, we consider whether the

performance of bagging predictor will be affected by different estimation algorithms. In

Section 7 we examine the bagging predictors on the (nonlinear) neural network quantile

regression models. Section 8 examines the effect of the different data frequencies on the

bagging performance. In Section 9 we discuss a potential extension with pretesting for

bagging. Section 10 provides a brief field guide to bagging based on what we have learned

in this paper. Section 11 concludes.

2 What is Bagging?

Bagging predictor is a combined predictor formed over a set of training sets to smooth

out the “instability” caused by parameter estimation uncertainty and model uncertainty. A

predictor is said to be “unstable” if a small change in the training set will lead to a significant

change in the predictor (Breiman, 1996). In this section, we will show how bagging predictor

may improve the predicting performance of its underlying predictor. Let

Dt ≡ {(Ys,Xs−1)}ts=t−R+1 (t = R, . . . , T )

be a training set at time t and let ϕ(Xt,Dt) be a forecast of Yt+1 or of the binary variable

Gt+1 ≡ 1(Yt+1 ≥ 0) using this training set Dt and the explanatory variable vector Xt. The

optimal forecast ϕ(Xt,Dt) for Yt+1 will be the conditional mean of Yt+1 given Xt if we have

the squared error loss function, or the conditional quantile of Yt+1 on Xt if the loss is a tick
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function. Below we also consider the binary forecast for Gt+1 ≡ 1(Yt+1 ≥ 0).
Suppose each training set Dt consists of R observations generated from the underlying

probability distribution P. The forecast {ϕ(Xt,Dt)}Tt=R can be improved if more training
sets were able to be generated from P and the forecast can be formed from averaging the

multiple forecasts obtained from the multiple training sets. Ideally, if P were known and

multiple training sets D(j)t (j = 1, . . . , J) may be drawn from P, an ensemble aggregating

predictor ϕA(Xt) can be constructed by the weighted averaging of ϕ(Xt,D(j)t ) over j, i.e.,

ϕA(Xt) ≡ EDtϕ(Xt,Dt) ≡
JX

j=1

wj,tϕ(Xt,D(j)t ), (1)

where EDt (·) denotes the expectation over P, wj,t is the weight function with
PJ

j=1wj,t = 1,

and the subscript A in ϕA denotes “aggregation”.

Lee and Yang (2006, Propositions 1 and 4) show that the ensemble aggregating predictor

ϕA(Xt) has no larger expected loss than the original predictor ϕ(Xt,Dt). For any convex loss

function c(·) on the forecast error zt+1, we will have

EDt,Yt+1,Xtc(zt+1) ≥ EYt+1,Xtc(EDt(zt+1)),

where EDt(zt+1) is the aggregating forecast error, and EDt,Yt+1,Xt (·) ≡ EXt[EYt+1|Xt{EDt (·) |Xt}]
denotes the expectation EDt (·) taken over P (i.e., averaging over the multiple training sets
generated from P), then taking an expectation of Yt+1 conditioning on Xt, and then taking

an expectation of Xt. Similarly we define the notation EYt+1,Xt (·) ≡ EXt[EYt+1|Xt (·) |Xt].

Therefore, the aggregating predictor will always have no larger expected cost than the origi-

nal predictor for a convex loss function ϕ(Xt,Dt). The examples of the convex loss function

includes the squared error loss and a tick (or check) loss of Koenker and Basset (1978)

ρα(z) ≡ [α− 1(z < 0)]z. (2)

How much this aggregating predictor can improve depends on the distance between

EDt,Yt+1,Xtc(zt+1) and EYt+1,Xtc(EDt(zt+1)). We can define this distance by∆ ≡ EDt,Yt+1,Xtc(zt+1)−
EYt+1,Xtc(EDt(zt+1)). Therefore, the effectiveness of the aggregating predictor depends on the
convexity of cost function. The more convex is the cost function, the more effective this ag-

gregating predictor can be. We will see the effect of the convexity on the performance of

bagging later in this paper (Section 6). If the loss function is the squared error loss, then it
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can be shown that ∆ = VDt [ϕ(Xt,Dt)] is the variance of the predictor, which measures the

“instability” of the predictor. See Lee and Yang (2006, Proposition 1) and Breiman (1996).

If the loss is the tick function, the effectiveness of bagging is also different for different

quantile predictions: bagging works better for tail-quantile predictions than for mid-quantile

predictions.

In practice, however, P is not known. In that case we may estimate P by its empirical

distribution, P̂(Dt), for a given Dt. Then, from the empirical distribution P̂(Dt), multiple

training sets may be drawn by the bootstrap method. Bagging predictors, ϕB(Xt,D∗t ),
can then be computed by taking weighted average of the predictors trained over a set of

bootstrap training sets. More specifically, the bagging predictor ϕB(Xt,D∗t ) can be obtained
in the following steps:

1. Given a training set of data at time t, Dt ≡ {(Ys,Xs−1)}ts=t−R+1, construct the jth
bootstrap sample D∗(j)t ≡ {(Y ∗(j)s ,X

∗(j)
s−1)}ts=t−R+1, j = 1, . . . , J, according to the empir-

ical distribution of P̂(Dt) of Dt.

2. Train the model (estimate parameters) from the jth bootstrapped sample D∗(j)t .

3. Compute the bootstrap predictor ϕ∗(j)(Xt,D∗(j)t ) from the jth bootstrapped sample

D∗(j)t .

4. Finally, for mean and quantile forecast, the bagging predictor ϕB(Xt,D∗t ) can be con-
structed by averaging over J bootstrap predictors

ϕB(Xt,D∗t ) ≡
JX

j=1

ŵj,tϕ
∗(j)(Xt,D∗(j)t );

and for binary forecast, the bagging binary predictor ϕB(Xt,D∗t ) can be constructed
by majority voting over J bootstrap predictors:

ϕB(Xt,D∗t ) ≡ 1
Ã

JX
j=1

ŵj,tϕ
∗(j)(Xt,D∗(j)t ) > 1/2

!

with
PJ

j=1 ŵj,t = 1 in both cases.

One concern of applying bagging to time series is whether a bootstrap can provide a sound

simulation sample for dependent data, for which the bootstrap is required to be consistent. It
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has been shown that some bootstrap procedure (such as moving block bootstrap) can provide

consistent densities for moment estimators and quantile estimators. See, e.g., Fitzenberger

(1997).

3 Bagging with Different Averaging Schemes

There are several ways to generate the averaging weight ŵj,t for bagging predictors intro-

duced in the previous section. The most commonly used one is equal-weighting across all

bootstrap samples, that is, ŵj,t = 1/J, j = 1, . . . , J . However, one problem with equal

weighted bagging is that some bootstrap samples could (and do) make extreme forecasts.

Possible sources of these extreme forecasts include random procedures of generating boot-

strap samples (especially from small samples), difficulties arising from multiple local optima

for the nonlinear models, estimation difficulties for non-differentiable loss functions. In these

cases, we may get some erratic values for the predictive parameter β̂
∗(j)
t (D∗(j)t ), and hence

“crazy” bootstrap predictors ϕ∗(j)(Xt,D∗(j)t ). The extreme forecasts may happen more fre-

quently for the conditional quantile predictions than for the conditional mean predictions.

The effect may be large that such crazy bootstrap sample predictors may deteriorate per-

formance of bagging predictors. By finding a way to alleviate or eliminate the effect of such

crazy bootstrap predictors, we may improve the bagging predictors.

We consider several ways to solve these extreme forecasts problems. One is to estimate

the combination weight based on in-sample performance of each predictor, for example, using

Bayesian model averaging (BMA) weighting. By setting

ŵj,t ≡ Pr
h
β̂α(D

∗(j)
t )|Dt

i
, j = 1, . . . , J,

a bootstrap predictor with better in-sample performance will be assigned a larger weight.

Extreme-valued predictors are generated when parameters in the forecasting model are

poorly estimated for bootstrap samples, in which case it is expected that the in-sample

performance of the bootstrap estimators will not be good either. Therefore, by assigning

the weights according to the in-sample performance, the BMA bagging predictors can alle-

viate the extreme-valued predictor problem to a certain extent. However, the BMA bagging

predictors still put some positive weight on the extreme value predictors and could not

completely eliminate the effect of these crazy forecasts.
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Another way to deal with these extreme value predictors is to sort all the bootstrap

predictors and trim a certain number of bootstrap predictors from both tails before the

averaging procedure. This procedure will be called the trimmed bagging. The user can decide

the number of bootstrap predictors to trim depending on the seriousness of the extreme value

predictors problem. However, it is hard to decide a priori, and thus in our Monte Carlo and

empirical analysis, we choose to trim a fixed number (e.g., 5 and 10) of bootstrap predictors

on each tail of the sorted bootstrap predictors without checking whether they are extreme

or not.

Alternatively, we can simply use the median of bootstrap predictors (instead of the mean

or trimmed mean of the bootstrap predictors), which is the extreme case of the trimmed

bagging by using only the middle one or two bootstrap predictors. In the median bagging,

we can avoid the arbitrary choice of how many bootstrap predictors are to be discarded in

the trimmed bagging predictor.

We use a set of Monte Carlo simulation to gain further insights on how these different

bootstrap aggregating weight schemes work. For quantile predictions, we obtain the out-of-

sample mean loss values for the unbagged predictors with J = 1 (S1) and for the bagging

predictors with J = 50 (Sa, a ≥ 2).We consider nine quantile levels with left tail probability
α = 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, and 0.99. It will be said that bagging “works” if

S1 > Sa. To rule out the chance of pure luck by a certain criterion, we compute the following

three summary performance statistics from 100 Monte Carlo replications (r = 1, . . . , 100):

T1,a ≡
1

100

100X
r=1

Sr
a,

T2,a ≡
Ã
1

100

100X
r=1

(Sr
a − T1,a)

2

!1/2
,

T3,a ≡
1

100

100X
r=1

1(Sr
1 > Sr

a),

where a = 1 for the non-bagged predictor (J = 1), and a ≥ 2 for various bagging predictors
with different weighting (equally-weighted mean bagging, BMA bagging, median bagging,

and trimmed-mean bagging). T1 measures the Monte Carlo mean of the out-of-sample mean

loss, T2 measures the Monte Carlo standard deviation of the out-of-sample mean loss, T3

measures the Monte Carlo frequency that bagging works. We present T1, T2 and T3 in Table
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1 (Panels A-F). To make the comparison of the bagging predictors and unbagged predictors

easier, we also report in figures (Figure 1, Panels A-F) to show two relative performance

statistics: T1,a/T1,1 and T2,a/T2,1. For both of them, a value smaller than 1 indicates bagging

predictors work better than the unbagged predictor.

We generate the data from

Yt = ρYt−1 + εt,

εt = zt
£
(1− θ) + θε2t−1

¤1/2
zt ∼ i.i.d. MWi (3)

where the i.i.d. innovation zt is generated from the first eight mixture normal distributions of

Marron and Wand (1992, p. 717), each of which will be denoted as MWi (i = 1, . . . , 8).
1 In

Table 1-Panel A and Figure 1-Panel A, we consider the data generating processes for ARCH-

MW1 with θ = 0.5 (and ρ = 0), while in Table 1-Panels B-F and Figure 1-Panels B-F, we

consider the data generating processes for AR-MWi (i = 1, . . . , 5) with ρ = 0.6 (and θ = 0).

Therefore, our data generating processes fall into two categories: the (mean-unpredictable)

martingale-difference ARCH(1) processes without AR structure and the mean-predictable

AR(1) processes without ARCH structure.

For each series, 100 extra series is generated and then discarded to alleviate the effect of

the starting values in random number generation. We consider one fixed out-of-sample size

P = 100 and a range of estimation sample sizes R = 200 and 500. Our bagging predictors

are generated by averaging over J = 50 bootstrap predictors.

We consider a group of simple univariate polynomial quantile regression function of Cher-

nozhukov and Umantsev (2001) as our predictive methods:

Qα(Yt+h|Xt) = X̃
0
tβα,h, (4)

with h representing the forecast horizons,Xt = (Yt . . . Yt+h−1), X̃t = (1 Yt Y
2
t . . . Yt−h+1 Y

2
t−h+1)

0,

and βα,h = [βα,h,0 βα,h,1 βα,h,2 . . . βα,h,2h−1 βα,h,2h]
0. For now we set h = 1 to generate one-

step ahead forecast, and we will talk about multi-step forecast later in this paper.

1MW1 is Gaussian, MW2 is Skewed unimodal, MW3 Strongly skewed, MW4 Kurtoic unimodal, MW5

Outlier, MW6 Bimodal, MW7 Separated bimodal, and MW8 is Skewed bimodal. See Marron and Wand
(1992, p. 717). To save space we report only for MWi (i = 1, . . . , 5) in each panel of Table 1 and Figure 1.
The other four results for i = 5, . . . , 8 are basically similar in the pattern how the bagging works, and are
available upon request.
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We estimate βα,h recursively using the “rolling” samples of size R − 2h + 1. Suppose
there are T (≡ R+P ) observations in total. We use the most recent R−2h+1 observations
available at time t, R ≤ t < T −h, as a training sample Dt ≡ {(Ys,Xs−h)}ts=t−R+2h.We then
generate P (= T − R) h-step-ahead forecasts for the remaining forecast validation sample.

For each time t in the P prediction periods, we use a rolling training sample Dt of size

R− 2h+ 1 to estimate model parameters:

β̂α,h(Dt) ≡ argmin
βα,h

tX
s=t−R+h+1

ρα(us), t = R, . . . , T, (5)

where us ≡ Ys−Qα(Ys|Xs−h) = Ys−X̃0
s−hβα,h. β̂α,h(Dt) is estimated using the interior-point

algorithm suggested by Portnoy and Koenker (1997).

To generate bootstrap samples, we use the block bootstrap for both Monte Carlo exper-

iments and empirical applications. We choose the block size that minimizes the in-sample

average cost recursively and therefore we use a different block size at each forecasting time

t and for each loss function with different α’s.

TABLE 1 ABOUT HERE

The Monte Carlo results are reported in Table 1-Panels A-F and Figure 1-Panels A-

F, where mean, BMAk, med, trimk denote the equal weighted bagging predictors, BMA-

weighted bagging predictors using k-most recent in-sample observations, median weighted

bagging predictors, and k-trimmed on each tail weighted bagging predictors.

According to our Monte Carlo results on quantile predictions shown in Table 1-Panel A-

F, we summarize our observations as follows. First, in most of cases, BMA weighted bagging

predictors, median bagging predictors and trimmed bagging predictors have better predicting

performance (smaller T1 and T2 and larger T3) compared to the mean bagging predictor even

when we have a relatively large sample size. Second, on average, the improvement brought

by the median bagging is larger than the trimmed bagging predictors and the BMA weighted

bagging predictors, so median bagging tends to give the smallest T1 and largest T3 among

all predictors. Third, the outstanding performance of the median bagging predictors is most

obvious when α values are close to 0 or 1, where the extreme value problem are most serious

because there are fewer observations on tails and the parameters regression estimators are

sensitive to the estimation sample. When sample size R is 200 and α values are close to 0 or
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1, the median bagging predictors can further reduce the average loss (T1) by about 1% on

average and increase the percentage of bagging works (T3) by about 4% average compared

with the mean bagging predictors. However, the advantage of median bagging predictors are

not so clear when α values are close to 0.5.

FIGURE 1 ABOUT HERE

From Figure 1-Panels A-E, we can see that different bagging predictors work in similar

trends. First, bagging predictors work better when the sample size is smaller, so the R = 200

lines lie below the R = 500 lines in the figures, and both R = 200 and R = 500 lie below

the unit line most of the time. Second, bagging predictors works better when α values

are close to 0 or 1, so the bagging lines look like the letter “n” especially when R = 200.

Third, bagging predictors work better when α-quantiles lie on the sparse part of the error

distribution. Our explanation is that for the sparse part of the error distribution, there

are fewer observations, therefore quantile predictions are sensitive to the estimation sample

and bagging predictors work better for unstable predictions. For example, when the error

term are left skewed as in Figure 1-Panel C, bagging predictors give larger loss reduction for

the prediction of small α-quantiles than for large α-quantiles; when the error term are right

skewed as in Figure 1-Panel D, bagging predictors give large loss reduction for the prediction

of larger α-quantiles but do not work for small α-quantiles; and among Figure 1-Panels A-F,

Panel F has the sparsest distribution on both tails among all DGPs and bagging predictors

give best performance (the smallest T1 and T2 and largest T3).

Our conclusions on the performance of BMA bagging predictors and median bagging

predictors are further testified by empirical experiments. We make pseudo true real time

forecast of the daily returns of six major U.S. stock indices and two major foreign exchange

rates. We split the series into two parts: one for in-sample estimation with the size R = 100

and 300, and another for out-of-sample forecast validation with sample size P = 250 (fixed

for both R’s). We choose the most recent P = 250 days in the sample as a out-of-sample

validation sample. We use a rolling-sample scheme, that is, the first forecast is based on

observations T − P − R + 1 through T − P , the second forecast is based on observations

T − P − R + 2 through T − P + 1, and so on. The eight series are Dow Jones Industrial

Averages (Dow Jones), New York Stock Exchange Composite (NYSE), Standard and Poor’s

500 (SP500), National Association of Securities Dealers Automated Quotations Composite
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(NASDAQ), Russell 2000 index (Rusell2000), Pacific Exchange Technology (PET), US dollar

per Euro (USD/EUR), and US dollar per Japanese Yen (USD/JPY). The total sample period

and the out-of-sample forecasting period are summarized as follows:

Total sample period Out-of-sample period (P = 250)
Dow Jones 10/27/1998 ∼ 12/31/2000 01/05/2000 ∼ 12/31/2000
NYSE 10/27/1998 ∼ 12/31/2000 01/05/2000 ∼ 12/31/2000
SP500 10/27/1998 ∼ 12/31/2000 01/05/2000 ∼ 12/31/2000
NASDAQ 10/27/1998 ∼ 12/31/2000 01/05/2000 ∼ 12/31/2000
Rusell2000 10/27/1998 ∼ 12/31/2000 01/05/2000 ∼ 12/31/2000
PET 10/27/1998 ∼ 12/31/2000 01/05/2000 ∼ 12/31/2000
USD/EUR 10/10/2003 ∼ 04/11/2005 08/05/2004 ∼ 04/11/2005
USD/YEN 10/10/2003 ∼ 04/11/2005 08/05/2004 ∼ 04/11/2005

TABLE 2 ABOUT HERE

FIGURE 2 ABOUT HERE

We consider nine quantile parameter α = 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and 0.99.

The empirical experiments are reported in Table 2-Panels A-H and Figure 2 Panels A-H.

Our findings are as follows. First, bagging predictors works better when the sample size is

smaller. Second, bagging predictors work better for α values close to 0 or 1 than for α values

close to 0.5. Third, for the six indices on stock returns, bagging predictors work better

for α values close to 0 than α values close to 1 because the distribution of stock returns

all have long left tails. However, for the two foreign exchange series, bagging works rather

symmetrically for α values close to 0 and 1 because they have symmetric distributions.

4 Bagging Multi-step Quantile Forecasts

We will show how bagging works for multi-step predictions in this section. It is important to

make multi-step forecasts in the real world. A group of users for time series predictions are

policy makers. Since it takes a long time for monetary policies and fiscal policies to generate

expected effect in economy, policy makers have to produce predictions more than one period

ahead.
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We check four multi-step horizons, h = 1, 2, 3, and 4. If we have a simple linear

model, then multi-step forecasts can be achieved by simple iteration of the one-step ahead

predictors. However, we may not apply this naive iteration method to generate multi-

step forecasts for non-linear models. We use polynomial quantile regression models to take

account of the non-linear structures in the data. As mentioned by Tsay (1993), Lin and

Tsay (1996) and Chevillon and Hendry (2004), “direct” multi-step method will suffer less

from the model misspecification than the “iterated” multi-step methods, therefore the direct

multi-step method is also called “adaptive estimation”, and should be able to generate

predictions much better or at lease as good as iterated methods in case of model uncertainty

or misspecification.

There are few literature discussing how to make multi-step conditional quantile forecasts.

We can either iterate one-step ahead forecast or model the relationship between Qα(Yt+h|Xt)

and Xt directly. To apply the iterated method for multi-step quantile, we need to set up a

quantile regression model based on the lags of quantile itself, for example, CaViaR model of

Engle and Manganelli (2004):

Qα(Yt+1|Xt) = b0 + b1Qα(Yt|Xt−1) + et+1. (6)

Even with CaViaR model, we can only use the “naive” iteration to get the multi-step quantile

forecast. The naive iterated multistep quantile forecasts may generate poor forecasts. To be

comparable with the results from other part of this paper, we model the relationship between

Qα(Yt+h|Xt) and Xt directly using the polynomial quantile regression model as discussed in

equation (4) in Section 2. We use the same DGP as discuss in equation (3) for our Monte

Carlo experiments. We will only make “direct” multi-step quantile forecast.

TABLE 3 ABOUT HERE

FIGURE 3 ABOUT HERE

According to our Monte Carlo results for quantile forecast reported in Table 3 and Figure

3, we find: loss level (T1) for both unbagged predictors and bagging predictors increases

as forecast horizon increase; the frequencies that bagging predictors out-perform unbagged

predictors (T3) also increase with the forecast horizons;. the relative average loss of bagging
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predictors compared to unbagged predictors (T1,a/T1,1) and the relative standard error of

loss for the bagging predictors compared to unbagged predictors (T2,a/T2,1) decreases with

the forecast horizon increases.

5 Bagging Quantile Forecasts with Different Tick Losses

Komunjer (2005) introduced a tick-exponential family defined by:

ϕα
t+h(Yt+h, Qα(Yt+h|Xt))

= exp(− (1− α) [at (Qα(Yt+h|Xt))− bt (Yt+h)]1 {Yt+h ≤ Qα(Yt+h|Xt)}

+α [at (Qα(Yt+h|Xt))− ct (Yt+h)]1 {Yt+h > Qα(Yt+h|Xt)}), (7)

where (i) at is continuously differentiable function, bt and ct are Ft-measurable functions;

(ii) ϕα
t+h is a probability density; (iii) Qα(Yt+h|Xt) is the α-quantile of Yt+h|Xt.

A class of quasi-maximum likelihood estimators (QMLEs), β̂α,h(Dt), can be obtained by

solving

βα,h(Dt) = argmax
βα,h

R−1
tX

s=t−R+h+1
lnϕα

s (Ys, Qα(Ys|Xs−h)). (8)

If at (Qα(Yt+h|Xt)) = Qα(Yt+h|Xt), and bt (Yt+h) = ct (Yt+h) = Yt+h, the maximizing

problem in equation (8) is equivalent to the minimization problem of Koenker and Bassett

(1978) as shown in equation (2). We also try another group of exponential tick family loss

functions introduced by Komunjer (2005) by setting

at (η) = bt (η) = ct (η) =
1

α (1− α)
sgn (η) ln (1 + |η|p) , (9)

where sgn(η) ≡ 1 {η ≥ 0}− 1 {η < 0}.

TABLE 4 ABOUT HERE

Our empirical results of quantile prediction for S&P500 daily return during 01/13/2004

∼ 01/07/2005 (P = 250) using the rolling estimation samples with R = 100 and 300

(10/31/2002 ∼ 01/07/2005) is shown in Table 4, where tick denotes βα,h(Dt) is estimated

using equation (2), p = 1, 2, and 3 denote βα,h(Dt) is estimated using equation (9). We can

see from the table that no matter which tick losses we use, bagging predictors have lower

quantile cost when α is small, and have no obvious advantage over the unbagged predictors

when α is large.
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6 Bagging Quantile Forecasts with Different Estima-

tion Algorithms

If we want to forecast the conditional mean, usually it is not a big problem to estimate

the parameters for linear models and most of non-linear models. However, for quantile

forecast, since the quantile loss function is not differentiable, it is very hard to estimate model

parameters, especially when we use non-linear quantile regression models. The algorithms

that can be used for the quantile estimation has been reviewed by Buchinsky (1998), Koenker

and Park (1996), Frenk et al. (1994), Chernozhukov and Hong (2003), and Komunjer (2005)

for both linear quantile models and nonlinear quantile models. We compare two different

algorithms for quantile estimation in this paper in terms of the bagging. The two algorithms

are the interior point algorithm introduced by Portnoy and Koenker (1997) and the minimax

algorithm introduced by Komunjer (2005).

Portnoy and Koenker (1997) propose a statistical preprocessing for general quantile re-

gression problems and combine it with “interior point” methods for solving linear programs.

The following is a brief explanation on how to apply the interior algorithm for quantile esti-

mation. If we put all the error term us for s = t−R+h+1, t−R+h+2, . . . , t in equation

(5) into positive numbers, the quantile estimation problem can be rewritten as

β̂α,h(Dt) = argmin
βα,h

(αu+ + (1− α)u−|Ys = X̃0
s−hβα,h + us), (10)

where u+ a R − h-vector of positive errors or zeros, u− a R − h-vector of absolute value of

negative errors or zeros. Portnoy and Koenker (1997) show that the optimization program

(10) can be rewritten into the following dual formulations

ω = argmax
ω

³Xt

s=t−R+h+1
Ysωs|

Xt

s=t−R+h+1
X̃s−hωs = 0, ωs ∈ [−1, 1]

´
, (11)

where ωs = 1 if us > 0, ωs = −1 if us < 0, −1 < ωs < 1 if us = 0; and ωs is like Lagrange

multipliers on the constraints, or marginal costs of relaxing the constraints. The optimization

problem in (11) is the standard formulations of interior point methods for linear programs

with bounded variables.

The interior point algorithm is easy to apply, runs fast and is embodied in most popular

computer software, for example, GAUSS and MATLAB. However, the interior point algo-

rithm can only be used for linear quantile models with the tick loss function. If we have
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non-linear quantile regression models or use the tick-exponential family introduced by Ko-

munjer (2005) for the quantile estimation, we have to choose another algorithm for parameter

estimation.

Komunjer (2005) introduces a new quantile regression algorithm — minimax algorithm,

which is a more flexible method than the interior point algorithm and can be used for non-

linear quantile regression models and for more general quantile loss functions. The idea

is that: the function ϕα
t+h(Yt+h, Qα(Yt+h|Xt)) in (7) is twice continuously differentiable by

parts and the optimization problem in (8) can be represented as a maximum of two separated

branches which are both convex and twice continuously differentiable. Define

ψα
s (Ys, Qα(Ys|Xs−h)) ≡ exp {α [as (Qα(Ys|Xs−h))− ct (Ys)]}

and

φαs (Ys, Qα(Ys|Xs−h)) ≡ exp {−(1− α) [as (Qα(Ys|Xs−h))− bt (Ys)]} ,

the optimization problem in (8) becomes max lnψα
1 (Y1, Qα(Y1|X0)) in case of t = 1 and

h = 1, i.e.

maxmin{lnψα
1 (Y1, Qα(Y1|X0)) , lnφ

α
1 (Y1, Qα(Y1|X0))},

or equivalently

−min[max{− lnψα
1 (Y1, Qα(Y1|X0)) ,− lnφα1 (Y1, Qα(Y1|X0))}].

Therefore, the maximization problem in (8) is transformed into a minimax problem.

Using the idea, Komunjer (2005, Theorem 6) shows that the QMLE estimator β̂α,h(Dt)

from equation (8) can be written as a solution to a minimax problem

min
βα,h(Dt)

∙
max

t−R+h≤k≤t
{−Pk (Y,Qα(Y |X))}

¸
,

where

Pk (Y,Qα(Y |X))

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R− h)−1
tP

s=t−R+h+1
lnψα

s (Ys, Qα(Ys|Xs−h)) , if k = t−R+ h,

(R− h)−1
∙

kP
s=t−R+h+1

lnφαs (Ys, Qα(Ys|Xs−h)) +
tP

s=k+1

lnψα
s (Ys, Qα(Ys|Xs−h))

¸
,

if t−R+ h < k < t,

(R− h)−1
tP

s=t−R+h+1
lnφαs (Ys, Qα(Ys|Xs−h)) , if k = t.
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Intuitively, Komunjer’s minimax algorithm can be decomposed into two step. First, for

a given set of parameters, we assign all the forecast errors proper costs to make sure all

the forecast errors get positive punishment, i.e., maximize the punishment for a given set

of parameters. The second step is to find out the set of parameters that can minimize the

forecast cost.

However, the minimax algorithm runs slower than the interior point algorithm.

TABLE 5 ABOUT HERE

To compare the two algorithms, we can check tick losses of quantile prediction of S&P500

daily returns reported in Table 4 (minimax algorithm) and Table 5 (interior point algorithm).

The interior point algorithm and minimax algorithm give somewhat different results. There-

fore, in small samples, bagging may work differently depending on the estimation algorithms.

7 Bagging Quantile Forecasts with Different Quantile

Regression Models

With the flexibility provided by the minimax algorithm, we check the performance of bagging

predictors on high non-linear quantile regression models — artificial neural network models.

Given model uncertainty, when the sample size is limited, it is usually hard to choose the

number of hidden nodes and the number of inputs (lags), and to estimate the large number

of parameters in a neural network model. Therefore, a neural network model generate poor

predictions with a small sample. In such cases, the bagging can do a wonderful job to improve

the forecasting performance.

A non-linear quantile regression function we use in this section is the univariate single-

layer feed-forward artificial neural network function of White (1992). Follow the definition

in equation (2), the neural network models are set with Xt = (1 Yt Yt−1 · · · Yt−l+1)0, X̃t,j =

[1 + exp(−X0
tγj)]

−1 (j = 2, . . . , k), X̃t = (X0
t X̃t,2 · · · X̃t,k)

0, βα,h = [β01 β2 · · · βk]
0 is a

(l + k) vector, β1 is a (l + 1) vector, and Qα(Yt+h|Xt) = X̃
0
tβα,h. We consider the number

of nodes k − 1 from 0 to 5 and the number of lags l from 1 to 3. Both l and k are selected

for each estimation process using the SIC. We choose one combination of p and l from 18

candidates for each prediction. When k = 1, we have a linear regression model; and when

k ≥ 2, we have a non-linear regression model.
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The neural network model has been widely used in modeling unknown nonlinearities in

econometrics and finance. However, with the choice of explanatory variables, and number of

nodes, the model uncertainty problem and parameter estimation problem can be very serious.

Lee (2000) introduces a method called Bayesian Random Searching (BARS) to choose the

optimal number of hidden nodes as well as the best subset of explanatory variables. Instead of

choosing only one, he selects several best performed models and takes an average over them.

He also provides the asymptotic consistency proof of the posterior neural network regression

based on the i.i.d. normal error term assumption. The BARS method is built upon the

model space searching work by Raftery, Madigan and Hoeting (1997) and is similar to the

approach of Chipman, George, and McCulloch (1998) in their implementation of Bayesian

classification and regression tree (CART). We find that the BARS method is simply the

BMA weighted bagging when our basic model is the artificial neural network.

Because of the large number of parameters to be estimated and the highly non-linear

structure, we can expect that the neural network model will generate poor predictions if we

have a small sample size and we can expect that bagging process can play a crucial rule to

save the neural network models. The only problem with bagging neural network models is

that we need to choose the number of lags, number of nodes and estimate all the parameters

for each combination of the lags and nodes, so it takes long computer time to generate

predictions. Therefore, we only conduct one empirical experiment to give a rough idea on

how bagging predictors work for neural network models..We make quantile predictions with

α = 0.1, 0.3, 0.5, 0.7, and 0.9 using SP500 monthly data which is summarized as follows:

In-sample period Out-of-sample period T + 1 P
S&P 500 October 1982 ∼ October 1995 November 1995 ∼ February 2004 257 100

TABLE 6 ABOUT HERE

FIGURE 4 ABOUT HERE

From Table 6 and Figure 4, we can see that even when in-sample size R is small, unbagged

neural network predictors already show some advantage over the simple polynomial (PN)

predictors because of flexibility of neural network (NN) models to capture non-linearities in

the data. Bagging works well for both PN and NN models, and the improvement by bagging
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is quite substantial when R is small. When the sample size R is large, the neural network

model show much clearer advantage over polynomial predictors by always generating better

predictions, and yet bagging neural network predictors still make further improvement over

unbagged neural network predictors. Therefore, using bagging predictors, we can save a

more complicated prediction model which is more flexible to capture nonlinear structure but

harder to estimate.

8 Bagging Binary and Quantile Forecasts in Different

Frequencies

We concern about prediction in different frequencies because the predictability of time series

may be different in different frequencies. As discussed by, e.g., Christofferson and Diebold

(2006), the sign predictability of stock returns may depend on the frequency. The optimal bi-

nary prediction Gt,1(Xt) that minimizes EYt+1(ρα(Gt+1−Gt,1(Xt))|Xt) will be the α-quantile

of Gt+1 conditioning on Xt, which can be achieved by an indicator function of the α-quantile

of Yt+1 conditioning on Xt (Lee and Yang, 2006), i.e.,

Gt,1(Xt) = Qα(Gt+1|Xt) = 1(Qα(Yt+1|Xt) > 0),

where the second equation holds because the indicator function 1(·) is monotonic (Powell,
1986).

TABLE 7 ABOUT HERE

FIGURE 5 ABOUT HERE

We conduct bagging predictions for S&P500 binary and quantile prediction in both daily

frequency (Table 2-Panel E, Figure 2-Panel E, Table 5, and Table 7) and monthly frequency

(Table 6, Figure 5). We find that the bagging quantile prediction works in a similar pattern

for both daily (Table 5) and monthly frequencies (Table 6). However, for binary predictions,

bagging works much less with high frequency (daily) series, perhaps because daily signs may

be too noisy and difficult to forecast anyway. See Figure 5 for bagging binary prediction on

the monthly returns and Table 7 on the daily returns. The result is therefore consistent with

Christofferson and Diebold (2006).
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9 Pretesting and Bagging

In this section we discuss a potential extension of this paper, with pretesting as considered in

Bühlmann and Yu (2002), Inoue and Kilian (2006), and Stock andWatson (2006). Bühlmann

and Yu (2002) show that bagging works by smoothing the hard threshold function (e.g. an

indicator function). To see this, suppose bootstrap works for Ȳn =
1
n

Pn
i=1 Yi, and Zn ≡

n1/2(Ȳn − μ)/σ →d N(0, 1) as n→∞. Let y ≡ μ+ cσn−1/2. Consider a binary model

θ̂n(y) = 1(Ȳn > y)

= 1(Ȳn > μ+ cσn−1/2)

= 1(n1/2(Ȳn − μ)/σ > c)

= 1(Zn > c),

whose bagging predictor is

θ̂n,B(y) = E∗θ̂∗n(y)

= E∗1(Ȳ ∗n > y)

= E∗1
¡
n1/2(Ȳ ∗n − Ȳn)/σ > n1/2(y − Ȳn)/σ

¢
≈ 1− Φ(n1/2(y − Ȳn)/σ)

= 1− Φ(n1/2(μ+ cσn−1/2 − Ȳn)/σ)

= 1− Φ(c− Zn),

where ≈ denotes the asymptotic equivalence when n → ∞. When y = μ, θ̂n(y) is most

unstable. Let us compare the predictors at this value y = μ (or c = 0),. When y = μ

(c = 0), θ̂n(μ) has mean 1/2 and variance (1/2)(1− 1/2) = 1/4. In comparison, when y = μ

(c = 0), the bagging predictor θ̂n,B(μ) ≈ 1 − Φ(−Zn) = Φ(Zn) = U has mean 1/2 and

variance 1/12. Hence, bagging reduces the variance of the predictor from 1/4 to 1/12.

Bühlmann and Yu (2002) use the above idea that bagging works via smoothing the

hard-thresholding into soft-thresholding for the location model and regression model as well.

Consider a location model with pretesting (PT)

PT = θ̂n(y) = β̂0,n1(β̂0,n > y) = β̂0,n1(Zn > c),

and its bagging predictor (BA)

BA = θ̂n,B(y) = E∗θ̂∗n(y) = E∗β̂∗0,n1(β̂∗0,n > y) = E∗β̂∗0,n1(Z∗n > c).
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Here the location parameter is β0 if Zn > c, and zero otherwise. The PT model has hard

thresholding around Zn = c, while BA has a smooth soft-thresholing.

Bühlmann and Yu (2002) also consider the variable-selection in a regression model by

pretesting

PT = θ̂n(y) =
MX
j=0

β̂j,n1(β̂j,n > y)x(j)n =
MX
j=0

β̂j,n1(Zn,j > c)x(j)n ,

where the jth variable x
(j)
n is included if its coefficient is bigger than a given threshold c. The

variable-selection conducted via pretesting introduces a hard-thresholding. The bagging can

smooth the hard-thresholding in this case as follows

BA = θ̂n,B(y) = E∗θ̂∗n(y) = E∗
MX
j=0

β̂∗j,n1(Z
∗
j > c)x(j)n .

Inoue and Kilian (2006) exploit this idea that bagging can reduce the variance of the predictor

from a regression model when the predictors/regressors are selected by pretesting, to show

how bagging works for forecasting inflation.

Breiman (1996) and Lee and Yang (2006) consider the case when c = 0. In other words,

they did not consider pretesting, and bagging is applied to unrestricted regression (UR) with

all the M predictors/regressors included (without selecting a subset of them by pretesting).

In this case, bagging would still work especially when UR is bad (particularly in small

sample). Certainly c = 0 is not optimal as bagging would work better with some larger

values of c. If c = 0, bagging is not asymptotically admissible (Stock and Watson 2006). An

example is shown in Lee and Yang (2006) for bagging binary prediction with majority-voting

where bagging works well in small samples but does not work asymptotically with c = 0.

The choice of c is like the choice of the shrinkage parameter as shown in Stock and Watson

(2006) and also noted in Inoue and Kilian (2006). Stock and Watson show that c = 1.96 is

too small for bagging to be comparable to the factor methods. As Stock and Watson note,

c = 2.58 makes bagging work better. In this paper, we consider only c = 0 (no pretesting)

for both binary and quantile prediction as in Lee and Yang (2006). With pretesting (c > 0)

we expect that bagging would work more/better, based on the results of Bühlmann and Yu

(2002), Inoue and Kilian (2006), and Stock and Watson (2006). Investigation of bagging

with pretesting for the binary and quantile prediction is left for future work. I can be easily

conjectured that pretesting would be more beneficial in improving bagging, particularly for
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longer multi-step forecasting.

10 Summary and Field Guide

This section is to provide a brief field guide to bagging based on what we have learned in this

paper. Bagging is a smoothing method to improve predictive ability under the presence of

parameter estimation uncertainty and model uncertainty. There are two ways of aggregating

— Averaging or Voting. Bagging quantile predictors are constructed via weighted averaging

over predictors trained on bootstrapped training samples. Bagging binary predictors are

conducted via (majority) voting on predictors trained on the bootstrapped training samples.

To understand how bagging works various explanations have been made. It may be hard

to understand the meaning of multiple training set D(j)t in the time series circumstances

since time is not repeatable. However, considering an example of the estimation and forecast

procedure with panel data may be helpful. Suppose we want to forecast consumption of a

household in next period. When the historical observations of the interested household is

very limited, our parameters estimated and the predictors will have rather large variances,

especially for non-linear regression models. If we can find some other households that have

similar consumption patterns (similar underlying probability distribution P), it would be

better to use historical observations from all similar households than just from this interested

household in the estimation process, though we only use data of this interested household

to do forecast. Therefore, the ensemble aggregating predictor is just like to find similar

households, and the bootstrap aggregating predictor is just like to find similar bootstrapped

(artificial) households.

What was done in Lee and Yang (2006) is to examine how bagging works (i) with equal-

weighted and BMA-weighted averaging, (ii) for one-step ahead binary prediction (with vot-

ing) and for one-step ahead quantile prediction (with averaging), (iii) with particular choice

of a loss function (linlin, check) and (iv) with particular choice of a regression model (linear,

polynomial).

What we do in this paper (“Further Issues”) is to consider (i) different aggregating

schemes (trimmed mean bagging, median bagging), (ii) multi-step forecast horizons (to see

how bagging performs with greater uncertainty), (iii) a more general class of loss functions,

i.e., so called the tick-exponential family to examine the effect of the convexity of the loss (in
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addition to the check loss (lin-lin) for quantile estimation), (iv) different algorithms (the min-

imax algorithm vs the interior point algorithm for the estimation of the quantile model), (v)

different regression models (polynomial quantile model and neural network quantile model),

and (vi) different data frequencies (monthly and daily S&P500 returns).

What we find now is as follows. (i) Median bagging and trimmed-mean bagging can be

more robust to extreme predictors from bootstrap samples and have better performance than

equally weighted bagging predictors. (ii) Bagging works more with longer forecast horizons.

(iii) Bagging works well under more general tick loss functions. (iv) Bagging may work

differently with different quantile estimation algorithms. (v) Bagging works well with highly

nonlinear quantile regression models (e.g., artificial neural network). (vi) Bagging quantile

predictor is not affected by the frequency of the data, while bagging binary predictor is much

affected when daily returns are considered instead of month returns.

From comparing different averaging schemes, we find that (i) the BMA-, median-, and

trimmed-bagging predictors have better predicting performance than equal-weighted bagging

predictors even when we have a relatively large sample size. (ii) The median bagging is

generally the best. (iii) The outstanding performance of median bagging predictors is most

obvious when α values are close to 0 or 1, where the extreme value problem are most serious

because there are fewer observations on tails and the parameters regression estimators are

sensitive to the estimation sample. However, the advantage of median bagging predictors

are not so clear when α values are close to 0.5. (iv) Bagging works more when the sample

size is smaller. (v) Bagging works more when α-quantiles lie on the sparse part of the error

distribution. Our explanation is that for the sparse part of the error distribution, there are

fewer observations, therefore quantile predictions are sensitive to the estimation sample and

bagging predictors work better for unstable predictions.

From bagging multi-step quantile forecasts, we find that the performance of bagging

relative to unbagged predictor gets better as the forecast horizon increases. From examining

how other algorithms may work for the bagging, we find that the interior point algorithm and

minimax algorithm give somewhat different results. Therefore in small samples, bagging may

work differently depending on the estimation algorithms. From checking the performance of

bagging predictors on high non-linear quantile regression models — artificial neural network

models, we find that, given model uncertainty when the sample size is limited, it is usually
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hard to choose the number of hidden nodes and the number of inputs (lags), and to estimate

the large number of parameters in a neural network model, in which cases, using bagging

predictors, we can save the complicated model (more flexible to capture nonlinear structure

but harder to estimate) for out-of-sample forecasting.

11 Conclusions

We have examined how bagging work for the binary prediction and the quantile prediction

with different bagging weighting schemes, different forecast horizons, different loss functions,

different estimation algorithms, different regression models — linear and nonlinear (polyno-

mial, neural network), and different data frequencies for time series.

Bagging the conditional quantile predictors are constructed via weighted averaging over

predictors trained on bootstrapped training samples, and bagging binary predictors are con-

ducted via majority voting on predictors trained on the bootstrapped training samples.

We show that the median bagging, the trimmed bagging and the BMA bagging can

alleviate the problem of extreme predictors from bootstrap sampling errors and further

improve the performance of simple averaging bagging predictors. Interestingly, it is found

that the performance of bagging predictors gets better with the increase the forecast horizons.

This means that there is more room (due to more uncertainty) for bagging to operate for

longer forecast horizon h.

Finally, as this paper contributes to a volume, Forecasting in Presence of Structural

Breaks and Model Uncertainty, we conclude with some comments on how/why bagging may

be useful in the presence of structural breaks and model uncertainty.

In the presence of structural breaks: In this paper we find that bagging may work more

when the size of the training sample is small and the predictor is unstable. Bagging seems

to smooth out the parameter estimation uncertainty due to a small sample to improve the

forecasting performance. The potential advantage of bagging lies in areas where small sample

is common. Bagging may be useful when structural breaks are frequent so that simply using

as many observations as possible is not a wise choice for out-of-sample prediction. The

forecast can fail under the presence of breaks. It is not clear whether using the samples after

the breaks is optimal or not, as pointed in a recent paper by Pesaran and Timmermann

(2007). When we are to use only the post-break samples, bagging can be of help. It is not
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clear whether using the samples after the breaks is optimal or not and whether/how bagging

can be of help. It is very likely that the forecast will be affected by the breaks. While it can

be easily done in a simple simulation exercise to illustrate how bagging works under breaks,

it could be done much more carefully given the new results of Pesaran and Timmermann,

and therefore we leave this for other work.

In the presence of model uncertainty: Bagging is a smoothing method to improve predic-

tive ability under the presence of parameter estimation uncertainty and model uncertainty.

For example, as we find in Section 4, bagging performs more for multi-step prediction with

larger h, as there is more uncertainty for longer forecast horizon and more smoothing can

operate. As a referee points out, bagging may improve forecasting when there is uncertainty

concerning measurement of a variable, functional form and the exact proxy to use. We leave

the investigation of these for a future study as the current results in the paper do not directly

address the issues of measurement and proxy variables. For functional form, it is a form of

model uncertainty and so bagging may smooth it out. However, this is also an issue that

is not directly addresses in the current results of the paper. Many issues are still left for

further work even after the “Further Issues” considered in the present paper.
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Figure 1. Bagging Quantile Prediction for AR-ARCH Models 
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Note: The ARCH(1) parameter in Equation (1) is 5.0=θ .  The two figures report the tick loss 
ratio and standard error ratio of bagging predictors over unbagged predictors for 100 Monte 
Carlo replications.  
 

Panel B. AR(1)-ARCH(0)-Gaussian 
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Note: The AR(1) parameter in Equation (1) is 6.0=ρ .   

 
Panel C. AR(1)-ARCH(0)-Skewed unimodal 
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Panel D. AR(1)-ARCH(0)-Strongly skewed 
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Panel E. AR(1)-ARCH(0)-Kurtotic unimodal 
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Panel F. AR(1)-ARCH(0)-Outlier 
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Figure 2. Empirical Applications of Bagging Quantile Prediction 
 

Panel A. USD/EUR Daily Returns                   Panel B. USD/JPY Daily Returns
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Note: Panels A and B report the tick loss ratio of bagging predictors over unbagged 
predictors during 08/05/04 ~ 04/11/05.  
 

 
Panel C. Dow Jones Industrial 

Averages Daily Returns  
Panel D. New York Stock Exchange Composite 
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Note: Panels C and D report the tick loss ratio of bagging predictors over unbagged 

predictors over 01/05/00~12/31/00.  
 
 
 
 
 
 
 
 
 
 
 



 
Panel E. Standard and Poor's 500 

Daily Returns 
Panel F. NASDAQ Daily Returns
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Note: Panels E and F report the tick loss ratio of bagging predictors over unbagged 
predictors over 01/05/00~12/31/00.  

 
 

Panel G. Russell 2000 Daily Returns  Panel H. Pacific Exchange Technology 
Daily Returns  
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Note: Panels G and H report the tick loss ratio of bagging predictors over unbagged 

predictors over 01/05/00~12/31/00.  
 
 

 
 



Figure 3. Bagging Multi-step Quantile Forecast for  
AR(0)-ARCH(1)-Gaussian Model 
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Note: The two figures in each row report the tick loss ratio and standard error ratio of 
bagging predictors over unbagged predictors over 100 Monte Carlo replications (see 
detail explanations in the main text).  



Figure 3 (Continued). Bagging Multi-step Quantile Forecast for  
AR(0)-ARCH(1)-Gaussian Model 
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Figure 3 (Continued). Bagging Multi-step Quantile Forecast for  
AR(0)-ARCH(1)-Gaussian Model 
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Figure 4. Bagging Quantile Predictions with Different Regression Models 
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Note: The five figures report the tick losses of quantile predictors of SP500 monthly 
returns over the period November 1995 ~ February 2004 using polynomial and neural 
network quantile regression models. PN represents the forecast loss from polynomial 
model and NN represents the forecast loss from neural network model. 
 



Figure 5: Bagging Binary Prediction for SP 500 Monthly Return 
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Note: The nine graphs above report the asymmetric losses of binary predictors of SP500 monthly returns over the period 
November 1995 ~ February 2004.  



Table 1. Bagging Quantile Prediction for AR-ARCH Models 
 

Panel A. AR(0)-ARCH(1)-Gaussian  
     R   = 200       R  = 500    
  J=1    J=50    J=1    J=50    
   mean BMA1 BMA5 BMAR med trim5 trim10  mean BMA1 BMA5 BMAR med trim5 trim10 
α=.01 T1 2.92 2.62 2.61 2.61 2.62 2.55 2.60 2.57 2.64 2.57 2.57 2.57 2.57 2.57 2.57 2.57 
 T2 1.04 0.72 0.70 0.70 0.72 0.85 0.72 0.71 0.57 0.46 0.47 0.47 0.46 0.50 0.47 0.48 
 T3  0.77 0.78 0.78 0.78 0.85 0.78 0.81   0.58 0.58 0.58 0.58 0.61 0.61 0.63 
α=.05 T1 9.97 9.60 9.60 9.60 9.60 9.57 9.58 9.57 9.97 9.84 9.83 9.84 9.84 9.83 9.84 9.84 
 T2 1.83 1.61 1.62 1.61 1.61 1.70 1.62 1.64 1.53 1.43 1.42 1.43 1.43 1.43 1.43 1.43 
 T3  0.83 0.82 0.83 0.83 0.92 0.85 0.87   0.68 0.71 0.69 0.68 0.76 0.72 0.73 
α=.10 T1 16.73 16.30 16.30 16.30 16.30 16.23 16.28 16.26 16.74 16.69 16.68 16.69 16.69 16.68 16.69 16.69 
 T2 2.73 2.50 2.51 2.50 2.50 2.50 2.50 2.49 2.28 2.32 2.30 2.31 2.32 2.32 2.32 2.32 
 T3  0.81 0.82 0.83 0.81 0.86 0.83 0.85   0.71 0.74 0.74 0.71 0.75 0.72 0.73 
α=.30 T1 32.86 32.27 32.31 32.27 32.27 32.25 32.27 32.27 32.52 32.30 32.29 32.30 32.30 32.30 32.30 32.30 
 T2 4.51 4.27 4.31 4.28 4.27 4.26 4.27 4.27 3.86 3.88 3.88 3.88 3.88 3.89 3.89 3.89 
 T3  0.88 0.89 0.88 0.88 0.89 0.90 0.91   0.70 0.70 0.70 0.70 0.70 0.69 0.69 
α=.50 T1 37.53 36.76 36.77 36.76 36.76 36.76 36.76 36.76 37.12 36.70 36.69 36.70 36.70 36.70 36.69 36.69 
 T2 4.90 4.74 4.75 4.75 4.74 4.72 4.73 4.72 4.49 4.41 4.40 4.40 4.41 4.40 4.40 4.40 
 T3  0.90 0.92 0.91 0.90 0.91 0.91 0.90   0.86 0.86 0.86 0.86 0.88 0.86 0.87 
α=.70 T1 32.70 32.01 32.05 32.02 32.01 32.02 32.02 32.02 32.48 32.30 32.28 32.30 32.30 32.31 32.30 32.30 
 T2 4.42 4.20 4.24 4.21 4.20 4.19 4.20 4.20 4.07 4.22 4.17 4.21 4.22 4.24 4.23 4.23 
 T3  0.92 0.93 0.92 0.92 0.94 0.91 0.93   0.77 0.76 0.77 0.77 0.75 0.75 0.75 
α=.90 T1 16.86 16.36 16.36 16.36 16.36 16.35 16.35 16.35 16.62 16.51 16.52 16.51 16.51 16.52 16.52 16.52 
 T2 2.58 2.36 2.37 2.36 2.36 2.37 2.36 2.36 2.36 2.38 2.37 2.38 2.38 2.40 2.39 2.39 
 T3   0.88 0.89 0.89 0.88 0.90 0.92 0.93   0.74 0.71 0.74 0.74 0.79 0.73 0.72 
α=.95 T1 10.12 9.72 9.72 9.72 9.72 9.66 9.70 9.68 9.84 9.71 9.72 9.71 9.71 9.70 9.70 9.70 
 T2 1.74 1.53 1.53 1.53 1.53 1.51 1.52 1.51 1.67 1.58 1.59 1.58 1.58 1.59 1.58 1.59 
 T3   0.87 0.85 0.87 0.86 0.90 0.88 0.88   0.71 0.73 0.72 0.71 0.76 0.75 0.79 
α=.99 T1 2.96 2.63 2.62 2.63 2.63 2.61 2.64 2.63 2.65 2.59 2.59 2.59 2.59 2.57 2.58 2.58 
 T2 1.05 0.69 0.68 0.69 0.69 0.78 0.72 0.73 0.76 0.64 0.65 0.64 0.64 0.68 0.65 0.66 
 T3   0.74 0.77 0.75 0.74 0.83 0.81 0.80   0.58 0.58 0.58 0.58 0.66 0.60 0.63 
Note:  The ARCH(1) parameter is 5.0=θ  in Equation (1). See the definition of T1, T2, and T3 in the text, which are computed 
from 100 Monte Carlo replications.  



Panel B. AR(1)-ARCH(0)-Gaussian 
     R   = 200       R  = 500    
  J=1    J=50    J=1    J=50    
   mean BMA1 BMA5 BMAR med trim5 trim10  mean BMA1 BMA5 BMAR med trim5 trim10 
α=.01 T1 3.07 2.81 2.79 2.80 2.80 2.77 2.79 2.78 2.78 2.78 2.79 2.79 2.78 2.78 2.78 2.78 
 T2 0.85 0.51 0.43 0.48 0.51 0.53 0.51 0.50 0.53 0.37 0.37 0.37 0.37 0.40 0.38 0.39 
 T3  0.64 0.67 0.66 0.64 0.64 0.64 0.65  0.37 0.37 0.37 0.37 0.37 0.39 0.37 
α=.05 T1 10.64 10.55 10.54 10.55 10.55 10.51 10.53 10.52 10.59 10.67 10.66 10.67 10.67 10.66 10.67 10.66 
 T2 1.23 1.03 1.02 1.03 1.03 1.05 1.03 1.04 1.33 1.27 1.24 1.26 1.27 1.26 1.27 1.27 
 T3  0.55 0.54 0.55 0.55 0.60 0.59 0.58  0.43 0.44 0.43 0.43 0.39 0.4 0.38 
α=.10 T1 17.90 17.85 17.83 17.84 17.85 17.83 17.83 17.83 17.86 18.05 18.04 18.05 18.05 18.04 18.05 18.05 
 T2 1.76 1.73 1.71 1.73 1.73 1.74 1.72 1.72 1.80 1.85 1.84 1.84 1.85 1.84 1.85 1.85 
 T3  0.58 0.58 0.58 0.58 0.55 0.58 0.59  0.32 0.32 0.32 0.32 0.32 0.32 0.32 
α=.30 T1 35.29 35.27 35.22 35.25 35.26 35.25 35.25 35.25 34.83 35.07 35.05 35.06 35.07 35.04 35.06 35.05 
 T2 2.92 2.98 2.96 2.97 2.98 2.99 2.98 2.98 2.55 2.56 2.56 2.56 2.56 2.54 2.55 2.54 
 T3  0.58 0.58 0.58 0.58 0.55 0.59 0.57  0.33 0.32 0.33 0.33 0.34 0.32 0.33 
α=.50 T1 40.23 40.16 40.12 40.14 40.16 40.12 40.15 40.14 39.81 40.01 39.99 40.01 40.01 40.01 40.00 40.00 
 T2 3.11 3.17 3.15 3.16 3.17 3.17 3.16 3.16 2.79 2.84 2.83 2.84 2.84 2.84 2.83 2.83 
 T3  0.58 0.61 0.60 0.59 0.61 0.59 0.59  0.43 0.43 0.43 0.43 0.44 0.44 0.43 
α=.70 T1 34.93 34.89 34.85 34.87 34.89 34.86 34.87 34.86 34.69 34.86 34.84 34.85 34.85 34.83 34.84 34.84 
 T2 2.65 2.68 2.66 2.67 2.68 2.66 2.67 2.66 2.53 2.55 2.55 2.55 2.55 2.53 2.55 2.54 
 T3  0.58 0.62 0.58 0.58 0.61 0.61 0.61  0.45 0.44 0.45 0.45 0.44 0.45 0.46 
α=.90 T1 17.80 17.69 17.67 17.68 17.69 17.66 17.68 17.67 17.61 17.67 17.67 17.67 17.67 17.66 17.67 17.67 
 T2 1.60 1.43 1.42 1.43 1.43 1.45 1.43 1.43 1.66 1.62 1.62 1.62 1.62 1.62 1.62 1.62 
 T3  0.54 0.54 0.54 0.54 0.57 0.57 0.57  0.51 0.5 0.5 0.51 0.5 0.49 0.49 
α=.95 T1 10.55 10.46 10.45 10.45 10.46 10.39 10.44 10.42 10.33 10.42 10.42 10.42 10.42 10.41 10.42 10.42 
 T2 1.13 0.94 0.93 0.94 0.94 0.93 0.93 0.93 1.22 1.13 1.13 1.13 1.13 1.13 1.13 1.12 
 T3  0.53 0.53 0.53 0.53 0.61 0.55 0.57  0.4 0.4 0.4 0.4 0.4 0.41 0.42 
α=.99 T1 3.01 2.76 2.75 2.75 2.76 2.73 2.74 2.74 2.81 2.76 2.76 2.76 2.76 2.77 2.77 2.76 
 T2 0.67 0.39 0.39 0.39 0.39 0.44 0.39 0.40 0.57 0.48 0.48 0.47 0.48 0.51 0.49 0.49 
 T3  0.65 0.66 0.65 0.65 0.67 0.66 0.66  0.48 0.48 0.48 0.48 0.48 0.48 0.48 
Note:  The AR(1) parameter is 6.0=ρ  in Equation (1). See the definition of T1, T2, and T3 in the text, which are computed from 
100 Monte Carlo replications.  
 
 



Panel C. AR(1)-ARCH(0)-Skewed unimodal 
     R   = 200       R  = 500    
  J=1    J=50    J=1    J=50    
   mean BMA1 BMA5 BMAR med trim5 trim10  mean BMA1 BMA5 BMAR med trim5 trim10 
α=.01 T1 4.15 3.55 3.53 3.55 3.55 3.56 3.57 3.57 3.50 3.40 3.40 3.40 3.40 3.41 3.40 3.40 
 T2 1.36 0.75 0.73 0.75 0.75 0.92 0.80 0.82 0.80 0.60 0.59 0.60 0.60 0.66 0.62 0.64 
 T3   0.79 0.81 0.79 0.79 0.80 0.76 0.81   0.53 0.54 0.53 0.53 0.52 0.54 0.53 
α=.05 T1 13.13 12.73 12.71 12.72 12.73 12.67 12.71 12.70 12.67 12.61 12.58 12.60 12.61 12.59 12.61 12.60 
 T2 2.00 1.67 1.65 1.66 1.67 1.70 1.67 1.68 1.80 1.71 1.67 1.70 1.71 1.69 1.72 1.71 
 T3   0.74 0.77 0.74 0.74 0.78 0.76 0.77   0.57 0.59 0.58 0.57 0.53 0.58 0.58 
α=.10 T1 21.03 20.71 20.67 20.70 20.71 20.67 20.69 20.67 20.61 20.50 20.49 20.50 20.50 20.48 20.50 20.50 
 T2 2.89 2.54 2.53 2.53 2.54 2.58 2.54 2.55 2.58 2.36 2.37 2.36 2.36 2.40 2.37 2.39 
 T3   0.65 0.67 0.65 0.65 0.72 0.69 0.70   0.57 0.56 0.57 0.57 0.61 0.59 0.60 
α=.30 T1 36.34 36.37 36.32 36.35 36.37 36.35 36.36 36.36 36.10 36.17 36.16 36.16 36.17 36.16 36.16 36.15 
 T2 3.80 3.81 3.78 3.80 3.81 3.83 3.81 3.81 3.57 3.48 3.47 3.47 3.48 3.47 3.48 3.48 
 T3   0.51 0.55 0.53 0.51 0.53 0.53 0.53   0.47 0.48 0.48 0.47 0.48 0.49 0.48 
α=.50 T1 38.53 38.57 38.52 38.55 38.57 38.50 38.54 38.53 38.36 38.40 38.40 38.40 38.40 38.38 38.40 38.39 
 T2 3.52 3.56 3.54 3.55 3.56 3.54 3.55 3.55 3.12 3.11 3.11 3.11 3.11 3.12 3.11 3.12 
 T3   0.49 0.51 0.50 0.49 0.58 0.50 0.51   0.49 0.50 0.50 0.49 0.52 0.49 0.50 
α=.70 T1 31.59 31.63 31.58 31.61 31.63 31.60 31.61 31.60 31.66 31.72 31.72 31.72 31.72 31.70 31.71 31.71 
 T2 2.78 2.83 2.81 2.82 2.83 2.83 2.82 2.82 2.40 2.44 2.44 2.44 2.44 2.43 2.44 2.44 
 T3   0.50 0.55 0.50 0.50 0.50 0.50 0.49   0.46 0.46 0.46 0.46 0.49 0.46 0.46 
α=.90 T1 15.32 15.39 15.38 15.38 15.39 15.35 15.37 15.36 15.11 15.33 15.33 15.33 15.33 15.30 15.32 15.31 
 T2 1.64 1.43 1.44 1.43 1.43 1.44 1.44 1.44 1.29 1.28 1.28 1.28 1.28 1.27 1.28 1.28 
 T3   0.47 0.47 0.47 0.47 0.46 0.47 0.48   0.30 0.30 0.30 0.30 0.31 0.30 0.31 
α=.95 T1 9.01 9.02 9.02 9.02 9.02 8.98 9.01 9.00 8.78 9.03 9.03 9.03 9.03 9.02 9.03 9.02 
 T2 1.09 0.94 0.95 0.94 0.94 0.96 0.95 0.95 0.87 0.89 0.89 0.89 0.89 0.90 0.89 0.90 
 T3   0.50 0.51 0.51 0.51 0.51 0.51 0.50   0.22 0.22 0.22 0.22 0.22 0.20 0.21 
α=.99 T1 2.60 2.35 2.35 2.35 2.35 2.32 2.34 2.33 2.34 2.37 2.37 2.37 2.37 2.36 2.37 2.37 
 T2 0.73 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.58 0.32 0.32 0.32 0.32 0.33 0.32 0.33 
 T3   0.58 0.58 0.58 0.58 0.64 0.60 0.63   0.36 0.36 0.36 0.36 0.36 0.34 0.36 
Note:  The AR(1) parameter is 6.0=ρ  in Equation (1). See the definition of T1, T2, and T3 in the text, which are computed from 
100 Monte Carlo replications.  
 
 



Panel D. AR(1)-ARCH(0)-Strongly skewed 
     R   = 200       R  = 500    
  J=1    J=50    J=1    J=50    
   mean BMA1 BMA5 BMAR med trim5 trim10  mean BMA1 BMA5 BMAR med trim5 trim10 
α=.01 T1 1.08 1.53 1.53 1.53 1.53 1.54 1.54 1.54 1.04 1.58 1.58 1.58 1.58 1.59 1.59 1.59 
 T2 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.15 0.22 0.22 0.22 0.22 0.23 0.23 0.23 
 T3   0.02 0.02 0.02 0.02 0.02 0.02 0.02   0.02 0.02 0.02 0.02 0.01 0.02 0.01 
α=.05 T1 4.79 5.64 5.63 5.63 5.64 5.61 5.60 5.60 4.76 5.66 5.65 5.65 5.66 5.69 5.66 5.68 
 T2 0.45 0.68 0.68 0.68 0.68 0.69 0.68 0.68 0.51 0.79 0.79 0.79 0.79 0.81 0.80 0.81 
 T3   0.00 0.00 0.00 0.00 0.00 0.00 0.00   0.00 0.00 0.00 0.00 0.00 0.00 0.00 
α=.10 T1 9.25 9.87 9.85 9.85 9.86 9.61 9.77 9.70 9.18 9.63 9.62 9.63 9.63 9.46 9.56 9.52 
 T2 0.92 1.12 1.11 1.12 1.12 1.10 1.11 1.10 0.98 1.15 1.15 1.15 1.15 1.11 1.13 1.12 
 T3   0.01 0.01 0.01 0.01 0.07 0.01 0.03   0.00 0.00 0.00 0.00 0.05 0.01 0.02 
α=.30 T1 25.27 25.31 25.29 25.30 25.31 25.24 25.27 25.26 24.97 25.01 25.01 25.01 25.01 25.01 25.01 25.01 
 T2 2.68 2.68 2.68 2.68 2.68 2.67 2.67 2.67 2.74 2.75 2.75 2.75 2.75 2.75 2.75 2.75 
 T3   0.50 0.50 0.51 0.50 0.56 0.52 0.52   0.46 0.46 0.46 0.46 0.46 0.45 0.45 
α=.50 T1 36.90 36.96 36.94 36.95 36.96 36.90 36.94 36.93 36.33 36.39 36.38 36.39 36.39 36.38 36.38 36.38 
 T2 3.97 3.93 3.92 3.93 3.93 3.94 3.94 3.94 3.93 3.91 3.91 3.91 3.91 3.93 3.92 3.93 
 T3   0.47 0.51 0.49 0.47 0.55 0.51 0.52   0.45 0.43 0.45 0.45 0.46 0.46 0.46 
α=.70 T1 39.40 39.36 39.31 39.33 39.35 39.29 39.33 39.32 38.80 38.88 38.87 38.88 38.88 38.87 38.87 38.87 
 T2 4.40 4.21 4.18 4.20 4.21 4.23 4.22 4.22 4.22 4.13 4.12 4.13 4.13 4.15 4.14 4.14 
 T3   0.56 0.54 0.55 0.56 0.58 0.55 0.56   0.53 0.53 0.53 0.53 0.51 0.51 0.51 
α=.90 T1 24.17 23.68 23.66 23.66 23.68 23.55 23.65 23.62 23.23 23.18 23.16 23.17 23.18 23.12 23.17 23.15 
 T2 2.70 2.58 2.57 2.57 2.58 2.63 2.58 2.59 2.56 2.40 2.37 2.39 2.40 2.39 2.40 2.40 
 T3   0.72 0.73 0.74 0.72 0.81 0.75 0.78   0.59 0.57 0.58 0.59 0.58 0.58 0.59 
α=.95 T1 14.94 14.42 14.39 14.39 14.42 14.37 14.40 14.39 14.14 14.03 14.02 14.03 14.03 14.00 14.02 14.02 
 T2 1.91 1.67 1.63 1.64 1.66 1.68 1.68 1.68 1.72 1.54 1.55 1.54 1.54 1.61 1.56 1.57 
 T3   0.76 0.79 0.78 0.76 0.83 0.79 0.82   0.60 0.62 0.61 0.60 0.59 0.61 0.59 
α=.99 T1 4.35 3.85 3.83 3.84 3.85 3.77 3.84 3.81 3.75 3.66 3.67 3.66 3.66 3.63 3.66 3.65 
 T2 1.23 0.76 0.68 0.72 0.76 0.92 0.83 0.84 0.82 0.56 0.58 0.57 0.56 0.53 0.58 0.58 
 T3   0.76 0.76 0.76 0.76 0.82 0.77 0.83   0.52 0.52 0.52 0.52 0.60 0.59 0.63 
Note:  The AR(1) parameter is 6.0=ρ  in Equation (1). See the definition of T1, T2, and T3 in the text, which are computed from 
100 Monte Carlo replications.  
 
 



Panel E. AR(1)-ARCH(0)-Kurtotic unimodal 
     R   = 200       R  = 500    
  J=1    J=50    J=1    J=50    
   mean BMA1 BMA5 BMAR med trim5 trim10  mean BMA1 BMA5 BMAR med trim5 trim10 
α=.01 T1 3.59 3.16 3.13 3.15 3.16 3.16 3.16 3.15 3.20 3.12 3.12 3.12 3.12 3.10 3.11 3.10 
 T2 1.02 0.73 0.67 0.72 0.73 0.83 0.75 0.77 0.56 0.42 0.42 0.42 0.42 0.42 0.41 0.41 
 T3   0.71 0.73 0.73 0.72 0.71 0.74 0.73   0.57 0.57 0.57 0.57 0.57 0.57 0.57 
α=.05 T1 11.82 11.61 11.57 11.59 11.61 11.55 11.58 11.56 11.61 11.66 11.65 11.65 11.66 11.66 11.66 11.66 
 T2 1.68 1.63 1.57 1.60 1.63 1.59 1.61 1.60 1.44 1.31 1.30 1.30 1.31 1.33 1.32 1.32 
 T3   0.63 0.63 0.64 0.63 0.64 0.63 0.62   0.48 0.48 0.48 0.48 0.45 0.47 0.47 
α=.10 T1 19.33 19.10 19.06 19.08 19.10 19.05 19.08 19.07 18.93 19.08 19.07 19.08 19.08 19.07 19.08 19.07 
 T2 2.44 2.34 2.31 2.32 2.34 2.37 2.34 2.35 2.00 1.95 1.95 1.95 1.95 1.96 1.96 1.96 
 T3   0.58 0.59 0.58 0.58 0.60 0.58 0.60   0.37 0.38 0.38 0.37 0.37 0.38 0.38 
α=.30 T1 32.65 32.88 32.83 32.86 32.87 32.78 32.83 32.81 32.47 32.71 32.70 32.70 32.71 32.69 32.69 32.69 
 T2 3.85 3.79 3.78 3.78 3.79 3.81 3.79 3.80 3.55 3.49 3.48 3.48 3.49 3.51 3.49 3.50 
 T3   0.42 0.44 0.42 0.42 0.45 0.43 0.43   0.35 0.35 0.35 0.35 0.35 0.35 0.34 
α=.50 T1 34.17 34.43 34.40 34.41 34.43 34.28 34.35 34.32 34.31 34.40 34.40 34.40 34.40 34.38 34.39 34.38 
 T2 3.74 3.74 3.74 3.74 3.74 3.71 3.73 3.73 3.79 3.78 3.78 3.78 3.78 3.78 3.78 3.78 
 T3   0.29 0.29 0.29 0.29 0.37 0.32 0.35   0.41 0.40 0.41 0.41 0.44 0.43 0.43 
α=.70 T1 32.75 33.01 32.96 32.99 33.01 32.96 32.98 32.96 32.71 32.93 32.92 32.92 32.93 32.91 32.92 32.92 
 T2 3.67 3.53 3.53 3.53 3.54 3.59 3.55 3.56 4.29 4.02 4.02 4.02 4.02 4.06 4.04 4.05 
 T3   0.38 0.40 0.38 0.38 0.37 0.38 0.39   0.37 0.38 0.37 0.37 0.37 0.38 0.38 
α=.90 T1 19.51 19.37 19.35 19.35 19.37 19.36 19.36 19.36 19.38 19.34 19.33 19.34 19.34 19.33 19.34 19.34 
 T2 2.30 2.18 2.19 2.18 2.18 2.18 2.18 2.17 2.54 2.36 2.35 2.36 2.36 2.37 2.37 2.37 
 T3   0.60 0.63 0.63 0.60 0.60 0.60 0.60   0.55 0.52 0.54 0.55 0.52 0.50 0.50 
α=.95 T1 12.11 11.86 11.85 11.85 11.86 11.81 11.84 11.83 11.84 11.72 11.71 11.71 11.72 11.70 11.71 11.71 
 T2 1.80 1.53 1.53 1.53 1.53 1.56 1.53 1.54 1.83 1.58 1.58 1.58 1.58 1.59 1.59 1.59 
 T3   0.62 0.60 0.62 0.62 0.65 0.63 0.64   0.58 0.58 0.58 0.58 0.57 0.57 0.58 
α=.99 T1 3.76 3.27 3.28 3.27 3.27 3.26 3.27 3.26 3.27 3.14 3.14 3.14 3.14 3.13 3.14 3.13 
 T2 1.12 0.66 0.67 0.66 0.66 0.76 0.67 0.68 0.81 0.57 0.57 0.57 0.57 0.58 0.57 0.57 
 T3   0.73 0.74 0.73 0.73 0.73 0.73 0.74   0.49 0.49 0.49 0.49 0.54 0.51 0.52 
Note:  The AR(1) parameter is 6.0=ρ  in Equation (1). See the definition of T1, T2, and T3 in the text, which are computed from 
100 Monte Carlo replications.  
 
 



Panel F. AR(1)-ARCH(0)-Outlier 
     R   = 200       R  = 500    
  J=1    J=50    J=1    J=50    
   mean BMA1 BMA5 BMAR med trim5 trim10  mean BMA1 BMA5 BMAR med trim5 trim10 
α=.01 T1 7.93 5.73 5.72 5.71 5.73 5.79 5.78 5.77 5.91 5.39 5.40 5.39 5.39 5.38 5.38 5.39 
 T2 4.73 2.21 2.08 2.12 2.21 2.43 2.36 2.35 2.67 1.98 2.01 1.99 1.98 2.10 2.00 2.05 
 T3   0.84 0.84 0.86 0.84 0.88 0.86 0.85   0.69 0.69 0.69 0.69 0.74 0.71 0.73 
α=.05 T1 13.41 13.43 13.42 13.42 13.42 13.22 13.36 13.32 12.86 13.13 13.15 13.12 13.13 13.07 13.09 13.08 
 T2 5.34 4.74 4.79 4.75 4.74 4.78 4.79 4.81 5.42 4.81 4.87 4.80 4.82 4.90 4.85 4.87 
 T3   0.49 0.48 0.49 0.49 0.49 0.49 0.49   0.36 0.36 0.36 0.37 0.37 0.36 0.38 
α=.10 T1 15.83 16.18 16.18 16.18 16.17 16.12 16.12 16.11 15.49 16.00 16.00 16.00 16.00 16.00 16.00 16.00 
 T2 5.45 5.30 5.31 5.30 5.30 5.33 5.31 5.32 5.32 5.21 5.23 5.22 5.21 5.21 5.22 5.21 
 T3   0.27 0.26 0.27 0.27 0.29 0.29 0.31   0.17 0.18 0.16 0.17 0.17 0.16 0.15 
α=.30 T1 21.62 21.88 21.85 21.86 21.88 21.69 21.81 21.76 21.34 21.53 21.52 21.52 21.53 21.46 21.49 21.47 
 T2 4.78 4.75 4.74 4.75 4.75 4.70 4.74 4.72 4.66 4.66 4.66 4.66 4.66 4.65 4.65 4.65 
 T3   0.28 0.31 0.31 0.31 0.43 0.31 0.40   0.29 0.29 0.29 0.29 0.33 0.29 0.32 
α=.50 T1 23.19 23.44 23.39 23.42 23.43 23.25 23.35 23.31 23.15 23.22 23.21 23.21 23.22 23.17 23.19 23.19 
 T2 4.48 4.49 4.47 4.48 4.49 4.40 4.45 4.43 4.45 4.50 4.50 4.50 4.50 4.46 4.48 4.48 
 T3   0.27 0.28 0.28 0.27 0.45 0.36 0.39   0.40 0.40 0.40 0.40 0.44 0.41 0.40 
α=.70 T1 21.38 21.66 21.61 21.64 21.65 21.48 21.57 21.53 21.48 21.58 21.57 21.58 21.58 21.53 21.55 21.54 
 T2 4.85 4.80 4.80 4.80 4.80 4.79 4.79 4.78 4.80 4.78 4.78 4.78 4.78 4.77 4.77 4.77 
 T3   0.24 0.25 0.25 0.24 0.39 0.30 0.36   0.31 0.33 0.32 0.32 0.44 0.35 0.38 
α=.90 T1 15.54 15.85 15.83 15.83 15.85 15.76 15.79 15.77 15.54 15.98 15.98 15.98 15.98 15.99 15.98 15.98 
 T2 5.47 5.25 5.25 5.24 5.25 5.33 5.26 5.28 5.34 5.13 5.14 5.13 5.13 5.14 5.14 5.14 
 T3   0.31 0.33 0.31 0.32 0.37 0.35 0.35   0.19 0.21 0.21 0.19 0.21 0.23 0.21 
α=.95 T1 13.01 13.02 12.99 13.00 13.02 12.79 12.92 12.87 13.02 13.22 13.22 13.21 13.21 13.16 13.18 13.17 
 T2 5.12 4.45 4.45 4.46 4.46 4.54 4.50 4.51 5.21 4.65 4.67 4.66 4.66 4.72 4.68 4.70 
 T3   0.47 0.48 0.47 0.49 0.54 0.49 0.51   0.38 0.39 0.38 0.38 0.41 0.40 0.42 
α=.99 T1 7.84 5.36 5.36 5.36 5.36 5.42 5.40 5.45 6.24 5.61 5.64 5.62 5.62 5.65 5.63 5.65 
 T2 4.82 1.87 1.83 1.88 1.87 2.18 1.98 2.14 2.71 2.01 2.05 2.01 2.01 2.12 2.06 2.09 
 T3   0.89 0.89 0.89 0.89 0.94 0.90 0.93   0.71 0.71 0.71 0.71 0.69 0.70 0.73 
Note:  The AR(1) parameter is 6.0=ρ  in Equation (1). See the definition of T1, T2, and T3 in the text, which are computed from 
100 Monte Carlo replications. 

 



Table 2. Empirical Applications of Bagging Quantile Prediction 
 

Panel A. USD/EUR Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5  BMAR Med  mean BMA1 BMA5  BMAR  Med 
α=.01 5.59 3.51 3.51 3.51 3.51 3.39 4.07 3.94 3.94 3.94 3.94 4.01 
α=.05 14.62 12.21 12.23 12.21 12.21 12.01 14.18 13.95 13.94 13.93 13.95 13.77 
α=.10 23.35 22.01 22.03 22.01 22.02 21.98 22.95 22.70 22.68 22.69 22.70 22.74 
α=.30 37.76 36.58 36.55 36.57 36.58 36.50 36.80 36.10 36.09 36.10 36.10 36.04 
α=.50 40.90 40.22 40.20 40.21 40.22 40.06 40.38 39.74 39.73 39.74 39.74 39.70 
α=.70 38.43 36.92 36.90 36.93 36.93 36.80 38.29 37.59 37.58 37.59 37.59 37.50 
α=.90 23.80 22.53 22.53 22.54 22.53 22.67 23.24 22.86 22.86 22.87 22.86 22.74 
α=.95 15.15 13.96 13.99 13.97 13.96 14.09 14.37 14.35 14.35 14.35 14.35 14.32 
α=.99 7.18 3.71 3.71 3.71 3.71 3.43 4.32 4.18 4.18 4.18 4.18 4.14 
Note: Each cell gives the tick loss of quantile prediction over the period 08/05/04~ 04/11/05. 
 
 

Panel B. USD/JPY Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5  BMAR Med  mean BMA1 BMA5  BMAR  Med 
α=.01 7.20 3.81 3.81 3.81 3.82 3.21 4.36 3.98 3.98 3.98 3.98 4.09 
α=.05 15.74 13.68 13.67 13.67 13.68 13.64 15.23 14.41 14.4 14.4 14.41 14.47 
α=.10 23.63 22.91 22.89 22.91 22.91 23.17 22.59 22.3 22.3 22.3 22.3 22.17 
α=.30 39.43 38.58 38.58 38.58 38.58 38.54 38.12 37.49 37.49 37.49 37.49 37.53 
α=.50 40.60 39.86 39.86 39.86 39.86 39.65 40.79 40.83 40.84 40.83 40.83 40.82 
α=.70 37.17 36.66 36.65 36.66 36.66 36.23 37.35 38.08 38.08 38.08 38.08 38.16 
α=.90 24.66 22.09 22.05 22.09 22.09 21.96 23.06 22.01 22 22.01 22.01 22.07 
α=.95 16.10 14.47 14.40 14.46 14.47 14.41 13.91 13.88 13.87 13.88 13.88 13.8 
α=.99 6.88 4.18 4.17 4.18 4.18 4.87 3.75 3.64 3.64 3.64 3.64 3.62 
Note: Each cell gives the tick loss of quantile prediction over the period 08/05/04~ 04/11/05. 
 
 

Panel C. Dow Jones Industrial Averages Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5  BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 14.17 10.43 10.53 10.47 10.43 9.15 11.30 10.17 10.22 10.18 10.17 10.12 
α=.05 38.67 33.43 33.98 33.51 33.46 32.07 39.10 37.60 37.89 37.65 37.60 37.76 
α=.10 65.82 58.75 59.25 58.78 58.78 57.27 62.58 59.27 59.34 59.28 59.28 59.41 
α=.30 114.68 110.87 111.26 110.84 110.88 110.72 110.42 109.17 109.18 109.18 109.17 109.14 
α=.50 129.14 124.29 124.52 124.24 124.33 124.17 125.10 123.48 123.54 123.49 123.48 123.49 
α=.70 109.85 108.48 108.59 108.39 108.47 107.43 106.85 106.09 106.25 106.14 106.09 106.36 
α=.90 61.60 57.59 58.56 57.82 57.59 56.72 57.81 54.69 55.12 54.83 54.69 54.26 
α=.95 37.73 34.09 34.07 34.19 34.11 33.03 32.44 31.45 31.67 31.52 31.45 31.90 
α=.99 13.34 14.45 14.18 14.42 14.40 14.11 9.30 8.66 8.40 8.61 8.66 8.31 

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/00~12/31/00. 



Panel D. New York Stock Exchange Composite Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5 BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 11.39 8.43 8.50 8.45 8.43 7.73 9.31 7.85 7.93 7.87 7.85 8.05 
α=.05 36.33 28.23 28.56 28.32 28.24 26.65 32.25 29.88 30.08 29.93 29.88 29.20 
α=.10 55.37 47.77 48.21 47.86 47.78 46.96 49.57 47.83 47.95 47.86 47.84 47.27 
α=.30 94.59 90.80 91.00 90.81 90.82 90.72 91.18 89.62 89.63 89.62 89.63 89.69 
α=.50 105.49 102.21 102.37 102.27 102.23 101.42 103.02 102.45 102.56 102.49 102.46 102.67 
α=.70 94.18 92.39 92.34 92.37 92.39 91.97 92.73 90.92 91.03 90.96 90.92 91.12 
α=.90 56.58 49.43 49.77 49.61 49.46 49.03 52.01 49.05 49.43 49.12 49.05 48.77 
α=.95 34.57 30.16 30.54 30.31 30.18 31.27 31.68 29.49 29.71 29.57 29.49 29.73 
α=.99 15.57 10.01 10.11 9.86 9.99 9.34 9.34 8.29 8.34 8.31 8.29 8.72 
Note: Each cell gives the tick loss of quantile prediction over the period 01/05/00~12/31/00. 

 
 

Panel E. Standard and Poor's 500 Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5 BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 16.54 10.13 10.21 10.16 10.13 7.99 13.18 9.82 9.94 9.86 9.82 9.49 
α=.05 43.20 37.60 38.29 37.67 37.62 35.67 36.58 35.53 35.56 35.53 35.53 35.69 
α=.10 67.41 62.86 63.10 62.83 62.87 62.66 62.62 58.85 58.84 58.82 58.85 58.58 
α=.30 113.91 113.15 113.16 113.09 113.15 112.82 112.75 111.89 111.89 111.88 111.89 112.04 
α=.50 135.85 129.14 129.27 129.16 129.17 128.88 131.30 130.63 130.63 130.62 130.63 130.40 
α=.70 120.03 117.25 117.23 117.16 117.26 117.11 118.37 116.01 116.04 116.05 116.01 116.35 
α=.90 71.74 66.46 66.82 66.39 66.48 67.83 67.71 65.53 65.30 65.49 65.53 65.82 
α=.95 46.60 39.49 39.59 39.51 39.50 40.25 39.98 39.30 39.58 39.38 39.31 38.67 
α=.99 18.44 13.18 13.49 13.19 13.14 15.19 13.66 11.40 11.45 11.45 11.40 11.92 
Note: Each cell gives the tick loss of quantile prediction over the period 01/05/00~12/31/00. 
 
 

Panel F. NASDAQ Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5 BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 40.75 28.79 28.33 28.07 28.75 27.01 30.00 24.83 25.30 24.49 24.84 25.20 
α=.05 100.35 88.50 88.61 87.38 88.51 89.28 90.40 83.17 83.21 82.92 83.18 82.97 
α=.10 144.47 132.42 132.46 131.75 132.54 129.04 143.22 138.43 138.91 138.48 138.44 136.49 
α=.30 274.40 254.31 253.92 255.04 254.56 252.35 277.28 269.61 269.51 269.44 269.64 270.23 
α=.50 310.14 294.82 295.50 295.34 295.09 295.45 309.47 303.89 304.19 304.16 303.91 304.09 
α=.70 270.05 261.54 261.76 262.32 261.62 261.50 267.21 262.99 262.75 263.18 263.00 263.09 
α=.90 153.03 142.64 140.41 142.08 142.73 142.44 143.95 134.93 135.16 135.11 134.96 133.81 
α=.95 96.11 83.19 81.37 81.95 83.22 80.51 96.98 84.92 84.67 84.67 84.95 84.00 
α=.99 40.68 31.65 30.55 29.94 31.44 34.98 33.91 29.85 28.49 28.56 29.84 28.95 
Note: Each cell gives the tick loss of quantile prediction over the period 01/05/00~12/31/00. 
 
 



Panel G. Russell 2000 Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5 BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 39.12 16.12 16.18 16.05 16.14 1605 22.33 16.17 16.28 16.19 16.18 15.84 
α=.05 55.79 50.81 50.92 50.51 50.82 48.96 54.96 53.36 53.59 53.24 53.36 52.77 
α=.10 94.53 85.34 85.74 85.01 85.37 85.57 92.39 86.78 87.12 86.80 86.79 87.01 
α=.30 170.80 161.92 161.54 161.87 162.03 162.53 165.96 165.76 165.72 165.75 165.76 165.63 
α=.50 192.64 184.05 184.83 184.58 184.11 182.66 187.40 183.92 184.03 184.00 183.92 183.65 
α=.70 165.53 163.11 163.30 163.36 163.11 162.96 164.40 161.70 161.79 161.76 161.70 161.37 
α=.90 101.89 86.55 86.96 86.67 86.61 85.78 97.04 91.45 91.44 91.43 91.46 91.76 
α=.95 65.35 51.60 51.47 51.50 51.63 50.06 60.60 56.25 56.46 56.30 56.25 55.55 
α=.99 29.24 22.36 21.93 21.82 22.31 24.83 21.75 14.49 14.86 14.56 14.51 15.26 
Note: Each cell gives the tick loss of quantile prediction over the period 01/05/00~12/31/00. 
 
 

Panel H. Pacific Exchange Technology Daily Returns 
   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5 BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 30.17 21.15 20.12 20.08 21.13 21.27 26.16 19.83 19.99 19.81 19.83 20.49 
α=.05 83.32 70.34 70.04 69.47 70.35 66.23 74.15 71.39 71.67 71.14 71.40 71.44 
α=.10 130.88 114.82 115.41 114.58 114.91 115.68 126.60 121.82 122.29 121.77 121.82 120.31 
α=.30 257.32 249.79 247.66 249.31 249.99 249.57 256.27 253.02 252.03 252.96 253.04 253.02 
α=.50 289.98 283.59 282.72 283.59 283.66 283.96 288.93 282.36 281.78 282.61 282.38 282.32 
α=.70 245.96 239.35 238.88 239.53 239.40 239.37 249.67 245.34 245.17 245.49 245.35 245.76 
α=.90 145.41 134.41 132.97 134.11 134.39 132.29 134.88 126.13 126.57 126.45 126.17 124.15 
α=.95 83.24 79.86 79.50 80.31 79.83 78.72 87.76 79.15 79.28 79.30 79.17 78.42 
α=.99 29.51 23.79 23.37 23.35 23.75 25.42 25.86 22.16 22.04 21.97 22.17 23.42 
Note: Each cell gives the tick loss of quantile prediction over the period 01/05/00~12/31/00. 

 
 
 
 



 Table 3. Bagging Multi-step Quantile Forecast for AR(0)-ARCH(1)-Gaussian Model 
R=20,  P=100   h=1   h=2 h=3   h=4
   J=1 J= 50 J=1 J= 50 J=1 J= 50 J=1 J= 50 
     Mean Med Mean Med Mean Med   Mean Med
α=.01 T1 14.73 9.54 8.72 21.38 12.29 11.49 30.90 14.56 13.37 42.75 15.26 13.81
  T2 6.90 2.89 2.84 13.25 4.15 3.61 23.99 6.42 5.00 53.20 6.12 4.37
  T3   0.93 0.96   0.92 0.96   0.97 0.96   0.99 1.00
α=.05 T1 19.97 14.14 13.39 26.44 17.10 16.32 35.68 18.74 17.82 46.80 19.62 18.47
  T2 7.11 3.36 3.17 13.16 4.87 3.90 23.54 6.46 4.97 51.51 6.06 4.85
  T3   0.97 0.98   0.98 0.97   0.98 0.98   0.99 0.99
α=.10 T1 25.46 19.52 18.66 30.83 22.52 22.05 37.88 23.89 23.06 50.88 25.05 24.05
  T2 6.75 3.39 3.32 11.72 5.20 4.24 17.48 5.94 4.92 48.86 6.55 5.19
  T3   0.98 1.00   0.99 1.00   0.99 0.99   1.00 1.00
α=.30 T1 40.75 34.52 33.55 43.05 36.70 36.36 45.89 37.50 37.00 51.27 38.32 37.78
  T2 7.03 4.72 4.72 7.90 5.44 5.24 11.32 5.81 5.48 14.26 6.22 5.76
  T3   1.00 1.00   0.99 0.99   0.98 1.00   1.00 1.00
α=.50 T1 45.31 38.88 38.08 47.61 40.81 40.67 49.12 41.54 41.11 53.58 42.16 41.70
  T2 7.12 5.25 5.22 8.27 5.91 5.86 9.02 5.80 5.67 13.66 6.43 6.07
  T3   1.00 1.00   1.00 1.00   0.99 1.00   1.00 1.00
α=.70 T1 40.10 34.36 33.38 42.91 36.14 35.89 44.81 37.24 36.83 49.11 37.74 37.21
  T2 6.32 5.11 4.83 8.27 5.54 5.31 9.67 5.72 5.24 13.28 6.05 5.61
  T3   0.99 1.00   0.99 0.99   0.99 0.99   0.98 0.99
α=.90 T1 24.64 19.55 18.70 30.02 21.46 21.12 34.45 23.22 22.45 43.77 23.87 23.00
  T2 5.18 3.79 3.37 10.98 4.80 4.59 17.75 5.67 4.91 24.49 5.53 5.01
  T3   0.97 0.99   1.00 0.99   0.99 0.98   1.00 1.00
α=.95 T1 19.04 14.07 13.17 26.34 16.44 15.54 31.06 18.29 17.27 39.54 18.62 17.72
  T2 5.48 3.97 3.14 13.45 5.46 4.06 21.97 5.74 4.71 25.76 5.54 4.79
  T3   0.96 0.97   0.96 0.98   0.95 0.95   1.00 0.98
α=.99 T1 14.00 9.51 8.49 21.31 11.40 10.63 26.30 13.49 12.35 35.31 14.48 13.07
  T2 5.42 3.24 2.73 13.56 3.97 3.53 22.49 5.23 4.32 26.23 5.63 4.36
  T3   0.93 0.94   0.98 0.98   0.92 0.94   0.98 0.99
R=50,  P=100   h=1   h=2 h=3   h=4
α=.01 T1 5.74 4.30 4.41 8.16 5.34 5.59 12.22 5.50 5.77 12.16 6.15 6.48
  T2 2.45 1.39 1.49 6.66 2.32 2.38 41.34 2.53 2.72 17.53 3.10 3.51
  T3   0.83 0.91   0.89 0.86   0.93 0.87   0.87 0.84
α=.05 T1 12.31 10.89 10.89 13.98 12.15 12.36 14.68 12.37 12.67 16.44 12.91 13.12
  T2 2.38 1.81 1.82 3.97 2.86 2.80 4.57 3.13 3.38 8.73 3.68 3.74
  T3   0.92 0.94   0.89 0.83   0.94 0.89   0.90 0.88
α=.10 T1 19.27 17.73 17.65 20.51 18.85 18.92 21.00 19.28 19.36 22.20 19.65 19.66
  T2 3.02 2.57 2.61 4.52 3.25 3.27 5.14 3.81 3.86 6.97 4.29 3.91
  T3   0.94 0.98   0.89 0.90   0.87 0.85   0.92 0.91
α=.30 T1 35.74 33.59 33.56 36.02 34.13 34.29 36.10 34.42 34.54 36.36 34.57 34.58
  T2 4.83 4.26 4.32 5.42 4.41 4.56 5.59 4.68 4.69 5.47 4.82 4.66
  T3   0.98 0.99   0.94 0.94   0.91 0.88   0.94 0.94
α=.50 T1 40.62 37.98 37.88 40.25 38.29 38.38 40.27 38.52 38.53 40.03 38.45 38.54
  T2 5.43 4.42 4.45 6.03 4.56 4.64 5.44 4.72 4.70 5.31 4.67 4.70
  T3   0.99 1.00   0.90 0.93   0.95 0.96   0.91 0.91
α=.70 T1 35.56 33.14 33.12 35.75 33.71 33.77 35.59 33.89 33.84 35.61 33.98 34.00
  T2 5.12 3.91 4.01 6.13 4.28 4.32 5.22 4.23 4.17 4.86 4.44 4.35
  T3   0.98 0.99   0.94 0.92   0.92 0.93   0.90 0.90
α=.90 T1 19.19 17.37 17.29 20.87 18.51 18.58 20.91 18.76 18.84 21.39 19.10 19.17
  T2 3.96 2.63 2.52 6.46 3.50 3.54 5.32 3.29 3.39 7.79 4.56 4.24
  T3   0.95 0.96   0.95 0.90   0.90 0.89   0.91 0.92
α=.95 T1 12.15 10.62 10.61 14.29 11.89 12.10 14.89 12.21 12.53 15.27 12.50 12.67
  T2 3.57 1.92 2.03 6.16 2.88 3.05 5.69 2.96 3.07 5.63 3.69 3.67
  T3   0.88 0.91   0.90 0.89   0.89 0.85   0.94 0.91
α=.99 T1 5.49 4.05 4.10 7.66 5.00 5.17 9.32 5.34 5.58 9.19 5.72 6.04
  T2 3.96 1.49 1.56 5.98 2.16 2.34 9.26 2.50 2.54 6.27 3.14 2.99
  T3   0.85 0.88   0.89 0.84   0.87 0.87   0.87 0.83
Note: The ARCH parameter is 5.0=θ  as defined in equation (1).  The three rows of each multi-step forecast 
method report the average, the standard error and the frequency of better performance of bagging predictors in 
terms of tick loss computed from 100 Monte Carlo replications. See the definition of T1, T2, and T3 in the text.  
 



Table 3 (Continued).  
R=100,  P=100    h=1   h=2 h=3   h=4 
  J=1 J= 50 J=1 J= 50 J=1 J= 50 J=1 J= 50 
     Mean Med Mean Med Mean Med   Mean Med
α=.01 T1 3.69 3.19 3.22 5.32 3.87 4.20 5.41 3.92 4.23 6.01 4.12 4.40
  T2 1.58 1.11 1.21 5.43 1.70 2.20 3.37 1.79 2.20 4.68 2.17 2.40
  T3   0.78 0.83   0.83 0.75   0.82 0.78   0.89 0.86
α=.05 T1 10.97 10.27 10.31 12.23 11.51 11.65 12.60 11.59 11.75 12.84 11.68 11.79
  T2 2.23 1.89 1.99 3.22 2.84 2.97 3.63 2.99 3.10 4.33 3.25 3.27
  T3   0.83 0.91   0.89 0.83   0.90 0.85   0.92 0.88
α=.10 T1 17.83 17.10 17.12 18.98 18.26 18.32 19.09 18.30 18.38 19.44 18.36 18.40
  T2 3.27 2.72 2.79 4.15 3.52 3.58 3.88 3.52 3.60 4.69 3.76 3.81
  T3   0.85 0.87   0.87 0.85   0.89 0.86   0.92 0.92
α=.30 T1 34.28 33.18 33.17 34.29 33.62 33.65 34.29 33.60 33.61 34.43 33.64 33.63
  T2 5.12 4.73 4.70 5.41 4.90 4.90 5.26 4.92 4.88 5.47 5.03 5.03
  T3   0.95 0.95   0.84 0.86   0.84 0.86   0.84 0.86
α=.50 T1 38.87 37.58 37.59 38.59 37.84 37.86 38.58 37.91 37.94 38.57 37.90 37.93
  T2 6.13 5.22 5.26 5.68 5.35 5.35 5.63 5.37 5.37 5.60 5.38 5.39
  T3   0.98 0.99   0.87 0.89   0.91 0.90   0.85 0.83
α=.70 T1 33.86 32.78 32.77 34.04 33.32 33.33 33.97 33.30 33.32 33.94 33.37 33.40
  T2 5.53 4.82 4.86 5.30 4.96 4.93 5.48 5.04 5.00 5.20 4.99 5.03
  T3   0.90 0.94   0.80 0.85   0.88 0.84   0.84 0.84
α=.90 T1 17.58 16.86 16.83 18.66 17.92 18.00 18.86 18.04 18.07 18.89 18.18 18.22
  T2 3.13 2.73 2.79 4.10 3.47 3.66 4.41 3.67 3.78 4.31 3.85 3.93
  T3   0.87 0.89   0.85 0.85   0.84 0.86   0.86 0.87
α=.95 T1 10.79 10.14 10.16 12.13 11.32 11.42 12.30 11.39 11.52 12.55 11.58 11.71
  T2 2.43 1.91 2.01 3.58 2.81 2.88 3.56 2.75 2.99 3.90 3.21 3.41
  T3   0.82 0.90   0.79 0.79   0.88 0.82   0.86 0.87
α=.99 T1 4.07 3.21 3.28 5.20 3.87 4.13 5.20 3.92 4.21 6.34 4.09 4.43
  T2 2.75 1.20 1.41 3.42 1.76 2.04 3.02 1.71 2.04 6.29 2.07 2.65
  T3   0.85 0.89   0.80 0.78   0.84 0.77   0.91 0.90
R=200 ,  P=100   h=1   h=2 h=3   h=4 
α=.01 T1 2.92 2.72 2.73 3.44 3.24 3.30 3.85 3.37 3.41 3.97 3.41 3.48
  T2 1.04 0.89 1.03 1.51 1.37 1.44 1.95 1.53 1.58 2.48 1.82 1.81
  T3   0.72 0.73   0.67 0.66   0.82 0.83   0.78 0.78
α=.05 T1 9.97 9.68 9.72 10.78 10.56 10.60 11.05 10.67 10.68 11.19 10.70 10.75
  T2 1.83 1.63 1.69 2.31 2.19 2.28 2.76 2.40 2.41 3.07 2.42 2.47
  T3   0.80 0.83   0.76 0.73   0.75 0.74   0.82 0.80
α=.10 T1 16.73 16.38 16.35 17.66 17.31 17.33 17.67 17.34 17.39 17.74 17.36 17.39
  T2 2.73 2.50 2.51 3.21 3.02 3.08 3.38 3.08 3.11 3.60 3.13 3.14
  T3   0.75 0.82   0.75 0.69   0.67 0.68   0.73 0.77
α=.30 T1 32.86 32.37 32.37 33.02 32.72 32.73 33.09 32.73 32.74 32.98 32.75 32.77
  T2 4.51 4.30 4.29 4.63 4.46 4.46 4.70 4.50 4.49 4.73 4.54 4.55
  T3   0.80 0.83   0.66 0.67   0.74 0.75   0.68 0.65
α=.50 T1 37.53 37.02 37.04 37.44 37.16 37.18 37.53 37.21 37.24 37.50 37.22 37.24
  T2 4.90 4.75 4.74 5.08 4.95 4.95 5.16 5.02 5.03 5.03 4.96 4.97
  T3   0.86 0.88   0.66 0.67   0.81 0.83   0.74 0.79
α=.70 T1 32.70 32.23 32.23 32.96 32.71 32.73 32.95 32.70 32.72 32.93 32.69 32.73
  T2 4.42 4.24 4.26 4.69 4.58 4.57 4.73 4.60 4.63 4.68 4.58 4.58
  T3   0.83 0.87   0.80 0.75   0.74 0.76   0.74 0.71
α=.90 T1 16.86 16.48 16.53 17.77 17.49 17.48 17.75 17.50 17.51 17.95 17.60 17.61
  T2 2.58 2.42 2.49 3.31 3.23 3.23 3.51 3.31 3.35 3.50 3.33 3.35
  T3   0.76 0.80   0.76 0.78   0.74 0.79   0.79 0.82
α=.95 T1 10.12 9.87 9.88 11.15 10.96 11.02 11.30 10.99 11.03 11.39 11.07 11.06
  T2 1.74 1.62 1.61 2.56 2.44 2.54 2.97 2.53 2.59 3.05 2.65 2.67
  T3   0.78 0.80   0.70 0.66   0.72 0.74   0.71 0.75
α=.99 T1 2.96 2.75 2.77 3.73 3.39 3.48 4.13 3.48 3.61 3.97 3.43 3.54
  T2 1.05 0.77 0.80 1.54 1.34 1.34 2.53 1.45 1.50 2.00 1.43 1.52
  T3   0.70 0.73   0.71 0.65   0.82 0.77   0.87 0.85

 



Table 4. Bagging Quantile Prediction for SP 500 Daily Return Using Tick-exponential Losses 
   R   = 100   R   = 200   R  = 300 

J=1   J=50   J=1   J=50   J=1   J=50   
 mean BMA1 BMA 5 BMA R med  mean BMA1 BMA 5 BMA R med  mean BMA1 BMA 5 BMA R med 

α=.01 tick 5.59 5.45 5.45 5.45 5.45 5.81 4.66 4.74 4.74 4.74 4.74 4.72 4.78 4.77 4.77 4.77 4.77 4.77 
p=1 5.95 5.30 5.30 5.30 5.30 5.21 4.84 4.81 4.81 4.81 4.81 4.74 4.73 4.84 4.84 4.84 4.84 4.73 
p=2 4.90 4.22 4.22 4.22 4.22 4.22 4.28 4.54 4.43 4.42 4.43 4.22 5.06 5.06 5.01 5.02 5.02 4.84 
p=3 4.51 4.26 4.26 4.26 4.26 4.29 4.95 4.64 4.64 4.64 4.64 4.31 5.44 5.71 5.71 5.71 5.71 4.92 

α=.05 tick 20.49 19.46 19.46 19.46 19.46 19.75 19.33 18.76 18.76 18.76 18.76 19.09 18.51 18.40 18.40 18.40 18.40 18.45 
p=1 20.61 19.66 19.66 19.66 19.66 19.52 19.36 18.81 18.81 18.81 18.81 19.01 18.48 18.27 18.27 18.27 18.27 18.20 
p=2 19.40 19.16 19.16 19.16 19.16 19.22 18.71 18.63 18.63 18.63 18.63 18.55 19.41 18.26 18.26 18.26 18.26 18.29 
p=3 19.17 19.20 19.20 19.20 19.20 19.19 18.51 18.41 18.41 18.41 18.41 18.53 18.39 18.28 18.28 18.28 18.28 18.23 

α=.10 tick 33.95 33.08 33.08 33.08 33.08 33.25 33.68 33.03 33.03 33.03 33.03 33.05 32.62 31.95 31.95 31.95 31.95 31.85 
p=1 33.98 33.19 33.19 33.19 33.19 33.26 33.55 32.99 32.99 32.99 32.99 32.98 32.47 31.97 31.97 31.97 31.97 31.86 
p=2 33.60 33.12 33.11 33.12 33.12 33.03 33.13 32.56 32.56 32.56 32.56 32.55 32.14 32.57 32.57 32.57 32.57 32.71 
p=3 33.01 33.20 33.20 33.20 33.20 33.04 32.50 32.53 32.53 32.53 32.53 32.58 32.28 32.15 32.15 32.15 32.15 32.30 

α=.30 tick 65.93 63.52 63.52 63.52 63.52 63.90 63.51 62.66 62.66 62.66 62.66 62.64 63.18 62.84 62.84 62.84 62.84 62.72 
p=1 65.23 63.60 63.60 63.60 63.60 63.85 63.46 62.65 62.65 62.65 62.65 62.62 63.02 62.87 62.87 62.87 62.87 62.72 
p=2 64.00 62.93 62.93 62.93 62.93 62.71 62.69 62.74 62.74 62.74 62.74 62.80 62.84 62.72 62.72 62.72 62.72 62.90 
p=3 63.60 63.65 63.65 63.65 63.65 63.56 63.13 63.04 63.04 63.04 63.04 62.97 62.88 62.80 62.80 62.80 62.80 62.74 

α=.50 tick 69.99 68.66 68.66 68.66 68.66 68.65 68.74 68.12 68.12 68.12 68.12 68.02 68.48 67.69 67.69 67.69 67.69 67.65 
p=1 70.03 68.66 68.66 68.66 68.66 68.67 68.65 68.17 68.17 68.17 68.17 68.16 68.39 67.70 67.70 67.70 67.70 67.55 

 p=2 68.81 68.25 68.25 68.25 68.25 68.26 68.55 68.05 68.05 68.05 68.05 68.18 68.85 67.91 67.91 67.91 67.91 67.88 
 p=3 74.22 73.62 73.62 73.62 73.62 73.87 72.07 71.93 71.93 71.93 71.93 72.03 71.44 71.79 71.79 71.79 71.79 71.89 
α=.70 tick 59.81 59.85 59.85 59.85 59.85 59.87 60.08 59.49 59.49 59.49 59.49 59.41 60.54 60.10 60.10 60.10 60.10 60.20 
 p=1 60.44 59.84 59.84 59.84 59.84 59.99 60.10 59.48 59.48 59.48 59.48 59.44 60.52 60.08 60.08 60.08 60.08 60.08 
 p=2 59.48 59.55 59.55 59.55 59.55 59.69 59.59 59.77 59.77 59.77 59.77 59.96 60.39 59.60 59.60 59.60 59.60 59.60 
 p=3 69.18 64.53 64.53 64.53 64.53 67.42 65.21 60.55 60.55 60.55 60.55 60.79 68.61 59.50 59.50 59.50 59.50 61.56 
α=.90 tick 32.37 31.95 31.95 31.95 31.95 32.13 32.19 31.45 31.45 31.45 31.45 31.34 33.31 32.75 32.75 32.75 32.75 32.62 
 p=1 31.55 31.91 31.91 31.91 31.91 32.07 31.64 31.43 31.43 31.43 31.43 31.33 33.29 32.74 32.74 32.74 32.74 32.64 
 p=2 31.72 31.87 31.87 31.87 31.87 32.03 32.48 31.93 31.93 31.93 31.93 32.07 33.32 32.78 32.78 32.78 32.78 32.74 

p=3 32.68 31.83 31.83 31.83 31.83 32.19 33.71 31.11 31.11 31.11 31.11 31.77 33.25 31.69 31.69 31.69 31.69 32.28 
α=.95 tick 19.68 18.94 18.94 18.94 18.94 19.36 18.99 18.84 18.84 18.84 18.84 18.80 20.03 19.40 19.40 19.40 19.40 19.33 

p=1 19.87 18.82 18.82 18.82 18.82 19.26 18.94 18.92 18.92 18.92 18.92 18.84 19.89 19.38 19.38 19.38 19.38 19.36 
p=2 18.57 18.43 18.43 18.43 18.43 18.23 19.01 18.55 18.55 18.55 18.55 18.40 19.74 19.45 19.45 19.45 19.45 19.45 
p=3 18.02 18.41 18.41 18.41 18.41 18.25 18.58 18.99 18.99 18.99 18.98 18.44 20.96 19.28 19.28 19.28 19.28 19.44 

α=.99 tick 5.44 5.33 5.33 5.33 5.33 5.52 4.75 4.41 4.41 4.41 4.41 4.42 5.96 5.30 5.30 5.30 5.30 5.46 
p=1 5.19 5.38 5.39 5.38 5.38 5.49 4.44 4.45 4.45 4.45 4.45 4.44 5.95 5.52 5.52 5.52 5.52 5.60 
p=2 4.66 4.69 4.69 4.69 4.69 4.55 4.68 4.34 4.34 4.34 4.34 4.22 6.20 5.69 5.69 5.69 5.69 5.42 
p=3 4.52 4.26 4.25 4.26 4.25 4.16 5.74 4.98 4.97 4.97 4.97 4.23 11.94 5.61 5.55 5.55 5.54 4.85 

Note: The four rows for each α report the tick loss of quantile predictors estimated by four different tick-exponential loss function as defined in text. 
The out-of-sample evaluation period is 01/13/2004 ~ 01/07/2005.  



Table 5. Bagging Quantile Prediction for SP500 Daily Returns  
 

   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  mean BMA1 BMA5 BMAR Med  mean BMA1 BMA5  BMAR Med 
α=.01 6.72 5.04 5.01 5.03 5.04 4.59 4.71 4.80 4.80 4.80 4.80 4.62 
α=.05 20.63 19.37 19.28 19.33 19.36 19.13 18.66 18.41 18.42 18.41 18.41 18.24 
α=.10 34.69 31.95 31.95 31.95 31.95 31.47 32.64 32.00 32.00 32.00 32.00 32.00 
α=.30 66.22 62.68 62.84 62.75 62.70 62.64 63.28 61.72 61.70 61.72 61.72 61.77 
α=.50 70.19 68.54 68.6 68.59 68.55 68.61 68.40 67.96 67.95 67.97 67.96 67.96 
α=.70 59.95 59.54 59.51 59.53 59.54 59.16 60.45 60.19 60.19 60.19 60.19 60.22 
α=.90 31.96 31.38 31.39 31.39 31.38 31.33 33.15 32.40 32.41 32.40 32.40 32.37 
α=.95 19.98 18.38 18.41 18.4 18.38 18.86 19.91 19.69 19.68 19.68 19.69 19.57 
α=.99 5.36 5.55 5.56 5.56 5.55 6.01 5.97 5.40 5.40 5.40 5.40 5.41 
Note: Each cell gives the tick loss of quantile prediction over the period 01/13/2004 ~ 01/07/2005. 



Table 6. Bagging Quantile Predictions for SP500 Monthly Returns  
with Different Regression Models 

 
   R=10 R=20 R=30 R=40 R=50 R=60 R=70 R=80 R=90 R=100 
α=.10 J=1 176.40 148.05 127.88 110.75 128.19 104.49 108.95 106.48 118.67 109.68 

 
PN 

J=50  155.54 113.05 111.78 96.33 98.96 95.82 88.37 99.42 103.92 99.36 
 J=1 147.72 103.77 107.56 106.82 96.68 73.58 76.52 63.29 81.39 76.71 
 

NN 
J=50  106.78 95.21 104.30 100.84 92.39 71.48 65.61 66.29 73.10 69.59 

α=.30 J=1 259.51 215.73 197.99 190.70 182.65 187.37 190.61 192.54 188.85 187.91 
 

PN 
J=50  222.54 163.38 179.19 179.46 182.48 180.13 178.97 181.44 182.24 183.60 

 J=1 250.14 190.15 188.59 170.97 159.59 139.24 134.02 132.63 133.01 131.44 
 

NN 
J=50  176.34 163.32 165.44 158.73 150.32 130.68 122.14 127.02 132.52 129.04 

α=.50 J=1 285.33 221.18 201.47 203.87 205.49 206.28 204.95 208.30 208.57 201.01 
 

PN 
J=50  230.49 161.15 173.50 190.35 187.59 185.38 196.26 196.06 188.81 193.78 

 J=1 238.24 212.11 201.32 178.79 154.36 146.44 146.73 143.45 145.34 142.54 
 

NN 
J=50  186.58 179.40 172.79 168.43 158.84 139.33 131.57 136.56 140.16 136.60 

α=.70 J=1 235.22 167.92 171.43 183.12 171.77 169.55 170.17 165.58 171.91 167.27 
 

PN 
J=50  170.15 170.60 159.98 157.00 167.01 166.43 163.22 167.65 157.78 167.29 

 J=1 206.36 158.48 160.24 140.66 144.30 125.15 115.57 124.37 126.95 115.15 
 

NN 
J=50  152.51 150.00 144.50 138.59 133.36 118.25 109.09 114.22 116.41 110.17 

α=.90 J=1 224.54 105.44 103.49 102.94 86.34 82.77 80.88 80.34 82.36 77.69 
 

PN 
J=50  164.33 60.45 81.57 83.29 75.61 78.54 76.53 75.60 75.68 76.43 

 J=1 141.10 101.57 90.12 84.99 78.12 69.39 67.28 67.45 61.12 56.61 
 

NN 
J=50  85.78 79.45 79.51 78.07 72.02 62.39 62.00 62.40 59.62 55.13 

Note: The four rows for each α report the tick losses of quantile predictors of SP500 monthly returns over the period November 1995 ~ February 
2004 using polynomial (PN), mean bagging PN, neural network (NN), and mean bagging NN predictors.  



Table 7. Bagging Binary Prediction for SP500 Daily Returns  
 

   R   = 100     R  = 300   
 J=1  J  = 50   J=1  J  = 50   
  Mean BMA1 BMA5 BMAR Med  Mean BMA1 BMA5  BMAR Med 
α=.01 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 
α=.05 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 
α=.10 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 
α=.30 43.60 40.80 41.10 40.80 40.80 40.80 41.20 41.10 41.10 41.10 41.10 41.10 
α=.50 60.50 58.00 58.00 58.00 59.00 58.00 57.00 56.00 56.00 55.50 56.00 56.00 
α=.70 35.70 34.30 34.30 34.30 34.30 34.30 33.90 33.90 33.90 33.90 33.90 33.90 
α=.90 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 
α=.95 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 
α=.99 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 

Note: Each cell reports the asymmetric binary prediction loss with parameter α over the period 01/13/2004 ~ 
01/07/2005. 
 




