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Abstract
Bagging (bootstrap aggregating) is a smoothing method to improve predic-
tive ability under the presence of parameter estimation uncertainty and model
uncertainty. In Lee and Yang (2006), we examined how (equal-weighted and
BMA-weighted) bagging works for one-step-ahead binary prediction with an
asymmetric cost function for time series, where we considered simple cases with
particular choices of a linlin tick loss function and an algorithm to estimate a lin-
ear quantile regression model. In the present chapter, we examine how bagging
predictors work with different aggregating (averaging) schemes, for multi-step
forecast horizons, with a general class of tick loss functions, with different es-
timation algorithms, for nonlinear quantile regression models, and for different
data frequencies. Bagging quantile predictors are constructed via (weighted) av-
eraging over predictors trained on bootstrapped training samples, and bagging
binary predictors are conducted via (majority) voting on predictors trained on
the bootstrapped training samples. We find that median bagging and trimmed-
mean bagging can alleviate the problem of extreme predictors from bootstrap
samples and have better performance than equally weighted bagging predictors;
that bagging works better at longer forecast horizons; that bagging works well
with highly nonlinear quantile regression models (e.g., artificial neural network),
and with general tick loss functions. We also find that the performance of bag-
ging may be affected by using different quantile estimation algorithms (in small
samples, even if the estimation is consistent) and by using different frequencies
of time series data.
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1. Introduction

To improve on unstable forecasts, bootstrap aggregating or bagging is intro-
duced by Breiman (1996). In Lee and Yang (2006), we show how bagging,
with equal-weight averaging and weighted averaging using Bayesian model av-
eraging (BMA) methods, works for one-step-ahead binary prediction under an
asymmetric cost function for time series. In that paper, we considered simple
cases with particular choices of a loss function (linlin) and a regression model
(linear).

We now consider the following extensions: (a) aggregating the bootstrap fore-
casts by other combination schemes as considered, e.g., by Stock and Watson
(1999) and Timmermann (2006); (b) multi-step forecasts; (c) nonlinear models,
such as the neural network quantile model of White (1992); (d) different quan-
tile estimation algorithms, as discussed by Komunjer (2005); (e) a general class
of the tick loss functions of Komunjer (2005) and Komunjer and Vuong (2005);
and (f) using other macroeconomic and financial time series sample at various
frequencies.

According to our experience in Monte Carlo and empirical experiments,
some bootstrap predictors may generate extreme values that will seriously
worsen the forecasts of equally weighted bagging predictors. To alleviate this
problem of extreme forecasts, we consider alternative averaging schemes to
generate bagging predictors (an idea borrowed from the forecast combination
literature). The first is BMA-weighted bagging, as used in Lee and Yang (2006).
The second is trimmed bagging, for which we remove extreme bootstrap fore-
casts in forming a bagging predictor. However, it will be very hard to decide
which bootstrap predictors to keep and which to discard beforehand. In this
chapter, we simply trim a certain number of the largest and the smallest bootstrap
predictors. We also use the median of the bootstrap predictors as our bagging
predictor, which can be considered as an extreme case of trimmed bagging
predictors. Hence, we consider the equal-weighted, BMA-weighted, trimmed-
mean, and median bagging. Our Monte Carlo and empirical experiments show
the following: when the sample size is small and/or predictors lie on the sparse
parts of the density, median bagging and trimmed-mean bagging generally give
better bagging forecasts than the equal-weighted bagging (which is better than
unbagged predictors); when sample size is large and/or the predictor lies on the
dense part of the data density, median bagging and trimmed bagging have no ob-
vious advantage over equal-weighted bagging (whose advantage over unbagged
predictors is also weak in such a case).

We also explore the performance of bagging predictors for multi-step fore-
casts (for the conditional quantile) in this chapter. As discussed by Brown and
Mariano (1989) and Lin and Granger (1994), there are several ways to generate
multi-step forecasts. These methods can be put into two groups: iteration of one-
step-ahead forecasts and direct multi-step forecasts. Among iterated multi-step
forecasting methods, we can further classify them as the naïve, exact, Monte
Carlo, and bootstrap methods. If the true forecast model is linear and known, all
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these methods should give the same predictions. However, if the true forecast
model is nonlinear or unknown, different multi-step forecasting methods give
quite different predictions. We use the direct multi-step forecast method for the
conditional quantile prediction in our Monte Carlo experiments. It is found that,
compared with unbagged predictors, the performance of a bagging predictor
tends to improve at longer forecast horizons.

Lee and Yang (2006) attributed a part of success of bagging predictors to
small-sample estimation uncertainties. Therefore, a question that may arise is
whether the good performance of bagging predictors critically depends on the
algorithms employed in estimation. Lee and Yang (2006) used the interior point
algorithm for quantile estimation as suggested by Portnoy and Koenker (1997).
To examine how other algorithms may work for bagging, we also use the mini-
max algorithm of Komunjer (2005) in this chapter. The interior point algorithm
for quantile estimation can be used for a linear quantile regression model under
the standard linlin tick loss function, while the minimax algorithm allows flexi-
ble functional forms for quantile regressions, such as a neural network model.

We use the minimax algorithm to estimate linear and nonlinear quantile
regression models under a general class of tick functions, namely, the tick-
exponential family defined by Komunjer (2005). Our simulation results show
that the bagging works (i.e., better than unbagged predictors) for quantiles al-
most equally well for the different tick functions in the tick-exponential family in
small samples. Komunjer (2005) shows that QMLE under the tick-exponential
family is consistent.

With the flexibility provided by the minimax algorithm, we check the perfor-
mance of bagging predictors on highly nonlinear quantile regression models –
artificial neural network models. When the sample size is limited, it is usually
hard to choose the number of hidden nodes and the number of inputs (lags) and
to estimate the large number of parameters in neural network models. Therefore,
a neural network model can generate poor predictions with a small sample. In
such cases, bagging can do an excellent job of improving forecasting perfor-
mance, as shown in our empirical experiments.

We finally investigate whether the performance of bagging can be affected by
the frequency of the data.

The plan of this chapter is as follows. Section 2 gives a brief introduction to
bagging predictors. Section 3 explains different ways to aggregating bootstrap
predictors. In Section 4, we examine how bagging works for multi-step predic-
tions of conditional quantiles. In Section 5, we examine how bagging works for
quantile prediction under the different tick loss functions of the tick-exponential
family. In Section 6, we consider whether the performance of bagging predictor
will be affected by different estimation algorithms. In Section 7, we examine
bagging predictors on (nonlinear) neural network quantile regression models.
Section 8 examines the effect of different data frequencies on the bagging perfor-
mance of bagging. In Section 9, we discuss a potential extension with pretesting
for bagging. Section 10 summarizes what we have learned in this chapter and
provides concluding comments.
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2. What is bagging?

A bagging predictor is a combined predictor formed over a set of training sets
to smooth out the “instability” caused by parameter estimation uncertainty and
model uncertainty. A predictor is said to be “unstable” if a small change in the
training set will lead to a significant change in the predictor (Breiman, 1996). In
this section, we will show how a bagging predictor may improve the predicting
performance of its underlying predictor. Let

Dt ≡ {
(Ys, Xs−1)

}t

s=t−R+1 (t = R, . . . , T )

be a training set at time t and let ϕ(Xt ,Dt ) be a forecast of Yt+1 or of the binary
variable Gt+1 ≡ 1(Yt+1 � 0) using this training set Dt and the explanatory
variable vector Xt . The optimal forecast ϕ(Xt ,Dt ) for Yt+1 will be the condi-
tional mean of Yt+1 given Xt if we have the squared error loss function or the
conditional quantile of Yt+1 on Xt if the loss is a tick function. Below, we also
consider the binary forecast for Gt+1 ≡ 1(Yt+1 � 0).

Suppose each training set Dt consists of R observations generated from the
underlying probability distribution P. The forecast {ϕ(Xt ,Dt )}Tt=R can be im-
proved if more training sets were able to be generated from P and the forecast
can be formed from averaging the multiple forecasts obtained from the mul-
tiple training sets. Ideally, if P were known and multiple training sets D(j)

t

(j = 1, . . . , J ) may be drawn from P, an ensemble aggregating predictor
ϕA(Xt ) can be constructed by the weighted averaging of ϕ(Xt ,D(j)

t ) over j ,
i.e.,

(1)ϕA(Xt ) ≡ EDt
ϕ(Xt ,Dt ) ≡

J∑
j=1

wj,tϕ
(
Xt ,D(j)

t

)
,

where EDt
(·) denotes the expectation over P, wj,t is the weight function with∑J

j=1 wj,t = 1, and the subscript A in ϕA denotes “aggregation.”
Lee and Yang (2006, Propositions 1 and 4) show that the ensemble aggre-

gating predictor ϕA(Xt ) has no larger expected loss than the original predictor
ϕ(Xt ,Dt ). For any convex loss function c(·) on the forecast error zt+1, we will
have

EDt ,Yt+1,Xt
c(zt+1) � EYt+1,Xt

c
(
EDt

(zt+1)
)
,

where EDt
(zt+1) is the aggregating forecast error and EDt ,Yt+1,Xt

(·) ≡
EXt

[EYt+1|Xt
{EDt

(·)|Xt }] denotes the expectation EDt
(·) taken over P (i.e.,

averaging over the multiple training sets generated from P), then taking an ex-
pectation of Yt+1 conditioning on Xt , and then taking an expectation of Xt .
Similarly, we define the notation EYt+1,Xt

(·) ≡ EXt
[EYt+1|Xt

(·)|Xt ]. Therefore,
the aggregating predictor will always have no larger expected cost than the orig-
inal predictor for a convex loss function ϕ(Xt ,Dt ). Examples of the convex loss
function includes the squared error loss and a tick (or check) loss of Koenker
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and Basset (1978),

(2)ρα(z) ≡ [
α − 1(z < 0)

]
z.

How much improvement the aggregating predictor can improve depends on
the distance between EDt ,Yt+1,Xt

c(zt+1) and EYt+1,Xt
c(EDt

(zt+1)). We can de-
fine this distance by Δ ≡ EDt ,Yt+1,Xt

c(zt+1)−EYt+1,Xt
c(EDt

(zt+1)). Therefore,
the effectiveness of the aggregating predictor depends on the convexity of the
cost function. The more convex the cost function, the more effective the aggre-
gating predictor can be. We will see the effect of the convexity on the perfor-
mance of bagging later in this chapter (Section 6). If the loss function is squared
error loss, then it can be shown that Δ = VDt

[ϕ(Xt ,Dt )] is the variance of the
predictor, which measures the “instability” of the predictor; see Lee and Yang
(2006, Proposition 1) and Breiman (1996). If the loss is the tick function, the
effectiveness of bagging is also different for different quantile predictions: bag-
ging works better for tail-quantile prediction than for mid-quantile prediction.

In practice, however, P is not known. In this case, we may estimate P by its
empirical distribution, P̂(Dt ), for a given Dt . Then, from the empirical distribu-
tion P̂(Dt ), multiple training sets may be drawn by the bootstrap method. Bag-
ging predictors, ϕB(Xt ,D∗

t ), can then be computed by taking weighted average
of the predictors trained over a set of bootstrap training sets. More specifically,
the bagging predictor ϕB(Xt ,D∗

t ) can be obtained by the following steps:

1. Given a training set of data at time t , Dt ≡ {(Ys, Xs−1)}ts=t−R+1, construct

the j th bootstrap sample D∗(j)
t ≡ {(Y ∗(j)

s , X∗(j)

s−1)}ts=t−R+1, j = 1, . . . , J ,

according to the empirical distribution of P̂(Dt ) of Dt .
2. Train the model (estimate parameters) from the j th bootstrapped sample

D∗(j)
t .

3. Compute the bootstrap predictor ϕ∗(j)(Xt ,D∗(j)
t ) from the j th bootstrapped

sample D∗(j)
t .

4. Finally, for mean and quantile forecasts, the bagging predictor ϕB(Xt ,D∗
t )

can be constructed by averaging over J bootstrap predictors:

ϕB
(
Xt ,D∗

t

) ≡
J∑

j=1

ŵj,tϕ
∗(j)

(
Xt ,D∗(j)

t

);
for binary forecasts, the bagging binary predictor ϕB(Xt ,D∗

t ) can be con-
structed by majority voting over J bootstrap predictors:

ϕB
(
Xt ,D∗

t

) ≡ 1

(
J∑

j=1

ŵj,tϕ
∗(j)

(
Xt ,D∗(j)

t

)
> 1/2

)
,

with
∑J

j=1 ŵj,t = 1 in both cases.

One concern with applying bagging to time series is whether a bootstrap can
provide a sound simulation sample for dependent data, for which the bootstrap
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is required to be consistent. It has been shown that some bootstrap procedure
(such as the moving block bootstrap) can provide consistent densities for mo-
ment estimators and quantile estimators; see, e.g., Fitzenberger (1997).

3. Bagging with different averaging schemes

There are several ways to generate the averaging weight ŵj,t for bagging pre-
dictors introduced in the previous section. The most commonly used one is
equal-weighting across all bootstrap samples, i.e., ŵj,t = 1/J , j = 1, . . . , J .
However, one problem with equal weighted bagging is that some bootstrap sam-
ples could (and typically do) make extreme forecasts. Possible sources of these
extreme forecasts include random procedures of generating bootstrap samples
(especially from small samples), difficulties arising from multiple local op-
tima for nonlinear models, and estimation difficulties for non-differentiable loss
functions. In these cases, we may get some erratic values for the predictive pa-

rameter β̂
∗(j)

t (D∗(j)
t ) and hence “crazy” bootstrap predictors ϕ∗(j)(Xt ,D∗(j)

t ).
The extreme forecasts may happen more frequently for conditional quantile pre-
dictions than for conditional mean predictions. The effect may be large, so that
such crazy bootstrap sample predictors may deteriorate performance of bagging
predictors. By finding a way to alleviate or eliminate the effect of such crazy
bootstrap predictors, we may improve bagging predictors.

We consider several ways to solve these extreme forecast problems. One is
to estimate the combination weight based on in-sample performance of each
predictor, for example, using Bayesian model averaging (BMA) weighting. By
setting

ŵj,t ≡ Pr
[
β̂α

(
D∗(j)

t

)|Dt

]
, j = 1, . . . , J,

a bootstrap predictor with better in-sample performance will be assigned a larger
weight. Extreme-valued predictors are generated when parameters in the fore-
casting model are poorly estimated for bootstrap samples, in which case it is
expected that the in-sample performance of the bootstrap estimators will not be
good either. Therefore, by assigning the weights according to the in-sample per-
formance, BMA-bagging predictors can alleviate the extreme-valued predictor
problem to a certain extent. However, BMA-bagging predictors still put some
positive weight on the extreme value predictors and thus does not completely
eliminate the effects of crazy forecasts.

Another way to deal with these extreme value predictors is to sort all the
bootstrap predictors and trim a certain number of bootstrap predictors from both
tails before the averaging procedure. This procedure will be called the trimmed
bagging. The user can decide the number of bootstrap predictors to trim depend-
ing on the seriousness of the extreme value predictors problem. However, it is
hard to decide a priori, and thus in our Monte Carlo and empirical analysis, we
choose to trim a fixed number (e.g., 5 and 10) of bootstrap predictors on each tail
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of the sorted bootstrap predictors without checking whether they are extreme or
not.

Alternatively, we can simply use the median of the bootstrap predictors (in-
stead of the mean or trimmed mean of the bootstrap predictors), which is the
extreme case of trimmed bagging that uses only the middle one or two bootstrap
predictors. In median bagging, we can avoid the arbitrary choice of how many
bootstrap predictors are to be discarded in the trimmed bagging predictor.

We use a set of Monte Carlo simulation to gain further insights on how these
different bootstrap aggregating weighting schemes work. For quantile predic-
tions, we obtain the out-of-sample mean loss values for the unbagged predictors
with J = 1 (S1) and for bagging predictors with J = 50 (Sa , a � 2). We
consider nine quantile levels with left tail probability α = 0.01, 0.05, 0.1,

0.3, 0.5, 0.7, 0.9, 0.95, and 0.99. It will be said that bagging “works” if S1 > Sa .
To rule out the chance of pure luck by a certain criterion, we compute the fol-
lowing three summary performance statistics from 100 Monte Carlo replications
(r = 1, . . . , 100):

T1,a ≡ 1

100

100∑
r=1

Sr
a,

T2,a ≡
(

1

100

100∑
r=1

(
Sr

a − T1,a

)2

)1/2

,

T3,a ≡ 1

100

100∑
r=1

1
(
Sr

1 > Sr
a

)
,

where a = 1 for the non-bagged predictor (J = 1) and a � 2 for various bag-
ging predictors with different weighting (equally weighted, BMA, median, and
trimmed mean). T1 measures the Monte Carlo mean of the out-of-sample mean
loss, T2 measures the Monte Carlo standard deviation of the out-of-sample
mean loss, T3 measures the Monte Carlo frequency that bagging works. We
present T1, T2, and T3 in Tables 1A–1F. To make the comparison of the bagging
predictors and unbagged predictors easier, we also report two relative perfor-
mance statistics (Figure 1, panels (a)–(f)): T1,a/T1,1 and T2,a/T2,1. For both,

Table 1A. AR(0)-ARCH(1)-Gaussian. Bagging quantile predictions for
AR-ARCH models

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.01 T1 2.92 2.62 2.61 2.61 2.62 2.55 2.60 2.57
T2 1.04 0.72 0.70 0.70 0.72 0.85 0.72 0.71
T3 0.77 0.78 0.78 0.78 0.85 0.78 0.81

(continued on next page)
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Table 1A. (continued)

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.05 T1 9.97 9.60 9.60 9.60 9.60 9.57 9.58 9.57
T2 1.83 1.61 1.62 1.61 1.61 1.70 1.62 1.64
T3 0.83 0.82 0.83 0.83 0.92 0.85 0.87

α = 0.10 T1 16.73 16.30 16.30 16.30 16.30 16.23 16.28 16.26
T2 2.73 2.50 2.51 2.50 2.50 2.50 2.50 2.49
T3 0.81 0.82 0.83 0.81 0.86 0.83 0.85

α = 0.30 T1 32.86 32.27 32.31 32.27 32.27 32.25 32.27 32.27
T2 4.51 4.27 4.31 4.28 4.27 4.26 4.27 4.27
T3 0.88 0.89 0.88 0.88 0.89 0.90 0.91

α = 0.50 T1 37.53 36.76 36.77 36.76 36.76 36.76 36.76 36.76
T2 4.90 4.74 4.75 4.75 4.74 4.72 4.73 4.72
T3 0.90 0.92 0.91 0.90 0.91 0.91 0.90

α = 0.70 T1 32.70 32.01 32.05 32.02 32.01 32.02 32.02 32.02
T2 4.42 4.20 4.24 4.21 4.20 4.19 4.20 4.20
T3 0.92 0.93 0.92 0.92 0.94 0.91 0.93

α = 0.90 T1 16.86 16.36 16.36 16.36 16.36 16.35 16.35 16.35
T2 2.58 2.36 2.37 2.36 2.36 2.37 2.36 2.36
T3 0.88 0.89 0.89 0.88 0.90 0.92 0.93

α = 0.95 T1 10.12 9.72 9.72 9.72 9.72 9.66 9.70 9.68
T2 1.74 1.53 1.53 1.53 1.53 1.51 1.52 1.51
T3 0.87 0.85 0.87 0.86 0.90 0.88 0.88

α = 0.99 T1 2.96 2.63 2.62 2.63 2.63 2.61 2.64 2.63
T2 1.05 0.69 0.68 0.69 0.69 0.78 0.72 0.73
T3 0.74 0.77 0.75 0.74 0.83 0.81 0.80

R = 500

α = 0.01 T1 2.64 2.57 2.57 2.57 2.57 2.57 2.57 2.57
T2 0.57 0.46 0.47 0.47 0.46 0.50 0.47 0.48
T3 0.58 0.58 0.58 0.58 0.61 0.61 0.63

α = 0.05 T1 9.97 9.84 9.83 9.84 9.84 9.83 9.84 9.84
T2 1.53 1.43 1.42 1.43 1.43 1.43 1.43 1.43
T3 0.68 0.71 0.69 0.68 0.76 0.72 0.73

α = 0.10 T1 16.74 16.69 16.68 16.69 16.69 16.68 16.69 16.69
T2 2.28 2.32 2.30 2.31 2.32 2.32 2.32 2.32
T3 0.71 0.74 0.74 0.71 0.75 0.72 0.73

α = 0.30 T1 32.52 32.30 32.29 32.30 32.30 32.30 32.30 32.30
T2 3.86 3.88 3.88 3.88 3.88 3.89 3.89 3.89
T3 0.70 0.70 0.70 0.70 0.70 0.69 0.69

α = 0.50 T1 37.12 36.70 36.69 36.70 36.70 36.70 36.69 36.69
T2 4.49 4.41 4.40 4.40 4.41 4.40 4.40 4.40
T3 0.86 0.86 0.86 0.86 0.88 0.86 0.87

α = 0.70 T1 32.48 32.30 32.28 32.30 32.30 32.31 32.30 32.30
T2 4.07 4.22 4.17 4.21 4.22 4.24 4.23 4.23
T3 0.77 0.76 0.77 0.77 0.75 0.75 0.75



Bagging Binary and Quantile Predictors for Time Series: Further Issues 485

Table 1A. (continued)

R = 500

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.90 T1 16.62 16.51 16.52 16.51 16.51 16.52 16.52 16.52
T2 2.36 2.38 2.37 2.38 2.38 2.40 2.39 2.39
T3 0.74 0.71 0.74 0.74 0.79 0.73 0.72

α = 0.95 T1 9.84 9.71 9.72 9.71 9.71 9.70 9.70 9.70
T2 1.67 1.58 1.59 1.58 1.58 1.59 1.58 1.59
T3 0.71 0.73 0.72 0.71 0.76 0.75 0.79

α = 0.99 T1 2.65 2.59 2.59 2.59 2.59 2.57 2.58 2.58
T2 0.76 0.64 0.65 0.64 0.64 0.68 0.65 0.66
T3 0.58 0.58 0.58 0.58 0.66 0.60 0.63

Note: The ARCH(1) parameter is θ = 0.5 in Equation (3). See the definition of T1, T2, and T3 in
the text, which are computed from 100 Monte Carlo replications.

Table 1B. AR(1)-ARCH(0)-Gaussian. Bagging quantile predictions for
AR-ARCH models

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.01 T1 3.07 2.81 2.79 2.80 2.80 2.77 2.79 2.78
T2 0.85 0.51 0.43 0.48 0.51 0.53 0.51 0.50
T3 0.64 0.67 0.66 0.64 0.64 0.64 0.65

α = 0.05 T1 10.64 10.55 10.54 10.55 10.55 10.51 10.53 10.52
T2 1.23 1.03 1.02 1.03 1.03 1.05 1.03 1.04
T3 0.55 0.54 0.55 0.55 0.60 0.59 0.58

α = 0.10 T1 17.90 17.85 17.83 17.84 17.85 17.83 17.83 17.83
T2 1.76 1.73 1.71 1.73 1.73 1.74 1.72 1.72
T3 0.58 0.58 0.58 0.58 0.55 0.58 0.59

α = 0.30 T1 35.29 35.27 35.22 35.25 35.26 35.25 35.25 35.25
T2 2.92 2.98 2.96 2.97 2.98 2.99 2.98 2.98
T3 0.58 0.58 0.58 0.58 0.55 0.59 0.57

α = 0.50 T1 40.23 40.16 40.12 40.14 40.16 40.12 40.15 40.14
T2 3.11 3.17 3.15 3.16 3.17 3.17 3.16 3.16
T3 0.58 0.61 0.60 0.59 0.61 0.59 0.59

α = 0.70 T1 34.93 34.89 34.85 34.87 34.89 34.86 34.87 34.86
T2 2.65 2.68 2.66 2.67 2.68 2.66 2.67 2.66
T3 0.58 0.62 0.58 0.58 0.61 0.61 0.61

α = 0.90 T1 17.80 17.69 17.67 17.68 17.69 17.66 17.68 17.67
T2 1.60 1.43 1.42 1.43 1.43 1.45 1.43 1.43
T3 0.54 0.54 0.54 0.54 0.57 0.57 0.57

α = 0.95 T1 10.55 10.46 10.45 10.45 10.46 10.39 10.44 10.42
T2 1.13 0.94 0.93 0.94 0.94 0.93 0.93 0.93
T3 0.53 0.53 0.53 0.53 0.61 0.55 0.57

(continued on next page)
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Table 1B. (continued)

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.99 T1 3.01 2.76 2.75 2.75 2.76 2.73 2.74 2.74
T2 0.67 0.39 0.39 0.39 0.39 0.44 0.39 0.40
T3 0.65 0.66 0.65 0.65 0.67 0.66 0.66

R = 500

α = 0.01 T1 2.78 2.78 2.79 2.79 2.78 2.78 2.78 2.78
T2 0.53 0.37 0.37 0.37 0.37 0.40 0.38 0.39
T3 0.37 0.37 0.37 0.37 0.37 0.39 0.37

α = 0.05 T1 10.59 10.67 10.66 10.67 10.67 10.66 10.67 10.66
T2 1.33 1.27 1.24 1.26 1.27 1.26 1.27 1.27
T3 0.43 0.44 0.43 0.43 0.39 0.4 0.38

α = 0.10 T1 17.86 18.05 18.04 18.05 18.05 18.04 18.05 18.05
T2 1.80 1.85 1.84 1.84 1.85 1.84 1.85 1.85
T3 0.32 0.32 0.32 0.32 0.32 0.32 0.32

α = 0.30 T1 34.83 35.07 35.05 35.06 35.07 35.04 35.06 35.05
T2 2.55 2.56 2.56 2.56 2.56 2.54 2.55 2.54
T3 0.33 0.32 0.33 0.33 0.34 0.32 0.33

α = 0.50 T1 39.81 40.01 39.99 40.01 40.01 40.01 40.00 40.00
T2 2.79 2.84 2.83 2.84 2.84 2.84 2.83 2.83
T3 0.43 0.43 0.43 0.43 0.44 0.44 0.43

α = 0.70 T1 34.69 34.86 34.84 34.85 34.85 34.83 34.84 34.84
T2 2.53 2.55 2.55 2.55 2.55 2.53 2.55 2.54
T3 0.45 0.44 0.45 0.45 0.44 0.45 0.46

α = 0.90 T1 17.61 17.67 17.67 17.67 17.67 17.66 17.67 17.67
T2 1.66 1.62 1.62 1.62 1.62 1.62 1.62 1.62
T3 0.51 0.5 0.5 0.51 0.5 0.49 0.49

α = 0.95 T1 10.33 10.42 10.42 10.42 10.42 10.41 10.42 10.42
T2 1.22 1.13 1.13 1.13 1.13 1.13 1.13 1.12
T3 0.4 0.4 0.4 0.4 0.4 0.41 0.42

α = 0.99 T1 2.81 2.76 2.76 2.76 2.76 2.77 2.77 2.76
T2 0.57 0.48 0.48 0.47 0.48 0.51 0.49 0.49
T3 0.48 0.48 0.48 0.48 0.48 0.48 0.48

Note: The AR(1) parameter is ρ = 0.6 in Equation (3). See the definition of T1, T2, and T3 in the
text, which are computed from 100 Monte Carlo replications.

a value smaller than 1 indicates bagging predictors work better than the un-
bagged predictor.

We generate the data from

Yt = ρYt−1 + εt ,

εt = zt

[
(1 − θ) + θε2

t−1

]1/2
,

(3)zt ∼ i.i.d. MWi ,
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Table 1C. AR(1)-ARCH(0)-Skewed unimodal. Bagging quantile predictions
for AR-ARCH models

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.01 T1 4.15 3.55 3.53 3.55 3.55 3.56 3.57 3.57
T2 1.36 0.75 0.73 0.75 0.75 0.92 0.80 0.82
T3 0.79 0.81 0.79 0.79 0.80 0.76 0.81

α = 0.05 T1 13.13 12.73 12.71 12.72 12.73 12.67 12.71 12.70
T2 2.00 1.67 1.65 1.66 1.67 1.70 1.67 1.68
T3 0.74 0.77 0.74 0.74 0.78 0.76 0.77

α = 0.10 T1 21.03 20.71 20.67 20.70 20.71 20.67 20.69 20.67
T2 2.89 2.54 2.53 2.53 2.54 2.58 2.54 2.55
T3 0.65 0.67 0.65 0.65 0.72 0.69 0.70

α = 0.30 T1 36.34 36.37 36.32 36.35 36.37 36.35 36.36 36.36
T2 3.80 3.81 3.78 3.80 3.81 3.83 3.81 3.81
T3 0.51 0.55 0.53 0.51 0.53 0.53 0.53

α = 0.50 T1 38.53 38.57 38.52 38.55 38.57 38.50 38.54 38.53
T2 3.52 3.56 3.54 3.55 3.56 3.54 3.55 3.55
T3 0.49 0.51 0.50 0.49 0.58 0.50 0.51

α = 0.70 T1 31.59 31.63 31.58 31.61 31.63 31.60 31.61 31.60
T2 2.78 2.83 2.81 2.82 2.83 2.83 2.82 2.82
T3 0.50 0.55 0.50 0.50 0.50 0.50 0.49

α = 0.90 T1 15.32 15.39 15.38 15.38 15.39 15.35 15.37 15.36
T2 1.64 1.43 1.44 1.43 1.43 1.44 1.44 1.44
T3 0.47 0.47 0.47 0.47 0.46 0.47 0.48

α = 0.95 T1 9.01 9.02 9.02 9.02 9.02 8.98 9.01 9.00
T2 1.09 0.94 0.95 0.94 0.94 0.96 0.95 0.95
T3 0.50 0.51 0.51 0.51 0.51 0.51 0.50

α = 0.99 T1 2.60 2.35 2.35 2.35 2.35 2.32 2.34 2.33
T2 0.73 0.35 0.35 0.35 0.35 0.35 0.35 0.35
T3 0.58 0.58 0.58 0.58 0.64 0.60 0.63

R = 500

α = 0.01 T1 3.50 3.40 3.40 3.40 3.40 3.41 3.40 3.40
T2 0.80 0.60 0.59 0.60 0.60 0.66 0.62 0.64
T3 0.53 0.54 0.53 0.53 0.52 0.54 0.53

α = 0.05 T1 12.67 12.61 12.58 12.60 12.61 12.59 12.61 12.60
T2 1.80 1.71 1.67 1.70 1.71 1.69 1.72 1.71
T3 0.57 0.59 0.58 0.57 0.53 0.58 0.58

α = 0.10 T1 20.61 20.50 20.49 20.50 20.50 20.48 20.50 20.50
T2 2.58 2.36 2.37 2.36 2.36 2.40 2.37 2.39
T3 0.57 0.56 0.57 0.57 0.61 0.59 0.60

α = 0.30 T1 36.10 36.17 36.16 36.16 36.17 36.16 36.16 36.15
T2 3.57 3.48 3.47 3.47 3.48 3.47 3.48 3.48
T3 0.47 0.48 0.48 0.47 0.48 0.49 0.48

α = 0.50 T1 38.36 38.40 38.40 38.40 38.40 38.38 38.40 38.39
T2 3.12 3.11 3.11 3.11 3.11 3.12 3.11 3.12
T3 0.49 0.50 0.50 0.49 0.52 0.49 0.50

(continued on next page)
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Table 1C. (continued)

R = 500

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.70 T1 31.66 31.72 31.72 31.72 31.72 31.70 31.71 31.71
T2 2.40 2.44 2.44 2.44 2.44 2.43 2.44 2.44
T3 0.46 0.46 0.46 0.46 0.49 0.46 0.46

α = 0.90 T1 15.11 15.33 15.33 15.33 15.33 15.30 15.32 15.31
T2 1.29 1.28 1.28 1.28 1.28 1.27 1.28 1.28
T3 0.30 0.30 0.30 0.30 0.31 0.30 0.31

α = 0.95 T1 8.78 9.03 9.03 9.03 9.03 9.02 9.03 9.02
T2 0.87 0.89 0.89 0.89 0.89 0.90 0.89 0.90
T3 0.22 0.22 0.22 0.22 0.22 0.20 0.21

α = 0.99 T1 2.34 2.37 2.37 2.37 2.37 2.36 2.37 2.37
T2 0.58 0.32 0.32 0.32 0.32 0.33 0.32 0.33
T3 0.36 0.36 0.36 0.36 0.36 0.34 0.36

Note: The AR(1) parameter is ρ = 0.6 in Equation (3). See the definition of T1, T2, and T3 in the
text, which are computed from 100 Monte Carlo replications.

Table 1D. AR(1)-ARCH(0)-Strongly skewed. Bagging quantile predictions
for AR-ARCH models

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.01 T1 1.08 1.53 1.53 1.53 1.53 1.54 1.54 1.54
T2 0.16 0.19 0.19 0.19 0.19 0.19 0.19 0.19
T3 0.02 0.02 0.02 0.02 0.02 0.02 0.02

α = 0.05 T1 4.79 5.64 5.63 5.63 5.64 5.61 5.60 5.60
T2 0.45 0.68 0.68 0.68 0.68 0.69 0.68 0.68
T3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

α = 0.10 T1 9.25 9.87 9.85 9.85 9.86 9.61 9.77 9.70
T2 0.92 1.12 1.11 1.12 1.12 1.10 1.11 1.10
T3 0.01 0.01 0.01 0.01 0.07 0.01 0.03

α = 0.30 T1 25.27 25.31 25.29 25.30 25.31 25.24 25.27 25.26
T2 2.68 2.68 2.68 2.68 2.68 2.67 2.67 2.67
T3 0.50 0.50 0.51 0.50 0.56 0.52 0.52

α = 0.50 T1 36.90 36.96 36.94 36.95 36.96 36.90 36.94 36.93
T2 3.97 3.93 3.92 3.93 3.93 3.94 3.94 3.94
T3 0.47 0.51 0.49 0.47 0.55 0.51 0.52

α = 0.70 T1 39.40 39.36 39.31 39.33 39.35 39.29 39.33 39.32
T2 4.40 4.21 4.18 4.20 4.21 4.23 4.22 4.22
T3 0.56 0.54 0.55 0.56 0.58 0.55 0.56

α = 0.90 T1 24.17 23.68 23.66 23.66 23.68 23.55 23.65 23.62
T2 2.70 2.58 2.57 2.57 2.58 2.63 2.58 2.59
T3 0.72 0.73 0.74 0.72 0.81 0.75 0.78
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Table 1D. (continued)

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.95 T1 14.94 14.42 14.39 14.39 14.42 14.37 14.40 14.39
T2 1.91 1.67 1.63 1.64 1.66 1.68 1.68 1.68
T3 0.76 0.79 0.78 0.76 0.83 0.79 0.82

α = 0.99 T1 4.35 3.85 3.83 3.84 3.85 3.77 3.84 3.81
T2 1.23 0.76 0.68 0.72 0.76 0.92 0.83 0.84
T3 0.76 0.76 0.76 0.76 0.82 0.77 0.83

R = 500

α = 0.01 T1 1.04 1.58 1.58 1.58 1.58 1.59 1.59 1.59
T2 0.15 0.22 0.22 0.22 0.22 0.23 0.23 0.23
T3 0.02 0.02 0.02 0.02 0.01 0.02 0.01

α = 0.05 T1 4.76 5.66 5.65 5.65 5.66 5.69 5.66 5.68
T2 0.51 0.79 0.79 0.79 0.79 0.81 0.80 0.81
T3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

α = 0.10 T1 9.18 9.63 9.62 9.63 9.63 9.46 9.56 9.52
T2 0.98 1.15 1.15 1.15 1.15 1.11 1.13 1.12
T3 0.00 0.00 0.00 0.00 0.05 0.01 0.02

α = 0.30 T1 24.97 25.01 25.01 25.01 25.01 25.01 25.01 25.01
T2 2.74 2.75 2.75 2.75 2.75 2.75 2.75 2.75
T3 0.46 0.46 0.46 0.46 0.46 0.45 0.45

α = 0.50 T1 36.33 36.39 36.38 36.39 36.39 36.38 36.38 36.38
T2 3.93 3.91 3.91 3.91 3.91 3.93 3.92 3.93
T3 0.45 0.43 0.45 0.45 0.46 0.46 0.46

α = 0.70 T1 38.80 38.88 38.87 38.88 38.88 38.87 38.87 38.87
T2 4.22 4.13 4.12 4.13 4.13 4.15 4.14 4.14
T3 0.53 0.53 0.53 0.53 0.51 0.51 0.51

α = 0.90 T1 23.23 23.18 23.16 23.17 23.18 23.12 23.17 23.15
T2 2.56 2.40 2.37 2.39 2.40 2.39 2.40 2.40
T3 0.59 0.57 0.58 0.59 0.58 0.58 0.59

α = 0.95 T1 14.14 14.03 14.02 14.03 14.03 14.00 14.02 14.02
T2 1.72 1.54 1.55 1.54 1.54 1.61 1.56 1.57
T3 0.60 0.62 0.61 0.60 0.59 0.61 0.59

α = 0.99 T1 3.75 3.66 3.67 3.66 3.66 3.63 3.66 3.65
T2 0.82 0.56 0.58 0.57 0.56 0.53 0.58 0.58
T3 0.52 0.52 0.52 0.52 0.60 0.59 0.63

Note: The AR(1) parameter is ρ = 0.6 in Equation (3). See the definition of T1, T2, and T3 in the
text, which are computed from 100 Monte Carlo replications.

where the i.i.d. innovation zt is generated from the first eight mixture nor-
mal distributions of Marron and Wand (1992, p. 717), each of which will be
denoted as MWi (i = 1, . . . , 8).1 In Table 1A, and Figure 1, panel (a), we con-

1 MW1 is Gaussian, MW2 is Skewed unimodal, MW3 Strongly skewed, MW4 Kurtoic unimodal,
MW5 Outlier, MW6 Bimodal, MW7 Separated bimodal, and MW8 is Skewed bimodal; see Mar-
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Table 1E. AR(1)-ARCH(0)-Kurtotic unimodal. Bagging quantile predictions
for AR-ARCH models

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.01 T1 3.59 3.16 3.13 3.15 3.16 3.16 3.16 3.15
T2 1.02 0.73 0.67 0.72 0.73 0.83 0.75 0.77
T3 0.71 0.73 0.73 0.72 0.71 0.74 0.73

α = 0.05 T1 11.82 11.61 11.57 11.59 11.61 11.55 11.58 11.56
T2 1.68 1.63 1.57 1.60 1.63 1.59 1.61 1.60
T3 0.63 0.63 0.64 0.63 0.64 0.63 0.62

α = 0.10 T1 19.33 19.10 19.06 19.08 19.10 19.05 19.08 19.07
T2 2.44 2.34 2.31 2.32 2.34 2.37 2.34 2.35
T3 0.58 0.59 0.58 0.58 0.60 0.58 0.60

α = 0.30 T1 32.65 32.88 32.83 32.86 32.87 32.78 32.83 32.81
T2 3.85 3.79 3.78 3.78 3.79 3.81 3.79 3.80
T3 0.42 0.44 0.42 0.42 0.45 0.43 0.43

α = 0.50 T1 34.17 34.43 34.40 34.41 34.43 34.28 34.35 34.32
T2 3.74 3.74 3.74 3.74 3.74 3.71 3.73 3.73
T3 0.29 0.29 0.29 0.29 0.37 0.32 0.35

α = 0.70 T1 32.75 33.01 32.96 32.99 33.01 32.96 32.98 32.96
T2 3.67 3.53 3.53 3.53 3.54 3.59 3.55 3.56
T3 0.38 0.40 0.38 0.38 0.37 0.38 0.39

α = 0.90 T1 19.51 19.37 19.35 19.35 19.37 19.36 19.36 19.36
T2 2.30 2.18 2.19 2.18 2.18 2.18 2.18 2.17
T3 0.60 0.63 0.63 0.60 0.60 0.60 0.60

α = 0.95 T1 12.11 11.86 11.85 11.85 11.86 11.81 11.84 11.83
T2 1.80 1.53 1.53 1.53 1.53 1.56 1.53 1.54
T3 0.62 0.60 0.62 0.62 0.65 0.63 0.64

α = 0.99 T1 3.76 3.27 3.28 3.27 3.27 3.26 3.27 3.26
T2 1.12 0.66 0.67 0.66 0.66 0.76 0.67 0.68
T3 0.73 0.74 0.73 0.73 0.73 0.73 0.74

R = 500

α = 0.01 T1 3.20 3.12 3.12 3.12 3.12 3.10 3.11 3.10
T2 0.56 0.42 0.42 0.42 0.42 0.42 0.41 0.41
T3 0.57 0.57 0.57 0.57 0.57 0.57 0.57

α = 0.05 T1 11.61 11.66 11.65 11.65 11.66 11.66 11.66 11.66
T2 1.44 1.31 1.30 1.30 1.31 1.33 1.32 1.32
T3 0.48 0.48 0.48 0.48 0.45 0.47 0.47

α = 0.10 T1 18.93 19.08 19.07 19.08 19.08 19.07 19.08 19.07
T2 2.00 1.95 1.95 1.95 1.95 1.96 1.96 1.96
T3 0.37 0.38 0.38 0.37 0.37 0.38 0.38

ron and Wand (1992, p. 717). To save space, we only report results for MWi (i = 1, . . . , 5) in
Tables 1A–1F and in each panel of Figure 1. The results for i = 5, . . . , 8 are basically similar in
pattern as to how bagging works and are available upon request.
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Table 1E. (continued)

R = 500

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.30 T1 32.47 32.71 32.70 32.70 32.71 32.69 32.69 32.69
T2 3.55 3.49 3.48 3.48 3.49 3.51 3.49 3.50
T3 0.35 0.35 0.35 0.35 0.35 0.35 0.34

α = 0.50 T1 34.31 34.40 34.40 34.40 34.40 34.38 34.39 34.38
T2 3.79 3.78 3.78 3.78 3.78 3.78 3.78 3.78
T3 0.41 0.40 0.41 0.41 0.44 0.43 0.43

α = 0.70 T1 32.71 32.93 32.92 32.92 32.93 32.91 32.92 32.92
T2 4.29 4.02 4.02 4.02 4.02 4.06 4.04 4.05
T3 0.37 0.38 0.37 0.37 0.37 0.38 0.38

α = 0.90 T1 19.38 19.34 19.33 19.34 19.34 19.33 19.34 19.34
T2 2.54 2.36 2.35 2.36 2.36 2.37 2.37 2.37
T3 0.55 0.52 0.54 0.55 0.52 0.50 0.50

α = 0.95 T1 11.84 11.72 11.71 11.71 11.72 11.70 11.71 11.71
T2 1.83 1.58 1.58 1.58 1.58 1.59 1.59 1.59
T3 0.58 0.58 0.58 0.58 0.57 0.57 0.58

α = 0.99 T1 3.27 3.14 3.14 3.14 3.14 3.13 3.14 3.13
T2 0.81 0.57 0.57 0.57 0.57 0.58 0.57 0.57
T3 0.49 0.49 0.49 0.49 0.54 0.51 0.52

Note: The AR(1) parameter is ρ = 0.6 in Equation (3). See the definition of T1, T2, and T3 in the
text, which are computed from 100 Monte Carlo replications.

sider data-generating processes for ARCH-MW1 with θ = 0.5 (and ρ = 0),
while in Tables 1B–1F and Figure 1, panels (b)–(f), we consider data-generating
processes for AR-MWi (i = 1, . . . , 5) with ρ = 0.6 (and θ = 0). Therefore,
our data generating processes fall into two categories: the (mean-unpredictable)
martingale-difference ARCH(1) processes without AR structure and the mean-
predictable AR(1) processes without ARCH structure.

For each series, 100 extra observations are generated and then discarded to
alleviate the effect of the starting values in random number generation. We con-
sider one fixed out-of-sample size P = 100, and a range of estimation sample
sizes, R = 200 and 500. Our bagging predictors are generated by averaging over
J = 50 bootstrap predictors.

We consider a group of simple univariate polynomial quantile regression
function of Chernozhukov and Umantsev (2001) as our predictive method:

(4)Qα(Yt+h|Xt ) = X̃′
tβα,h,

with h representing the forecast horizons, Xt = (Yt . . . Yt−h+1), X̃t = (1 Yt Y 2
t

. . . Yt−h+1 Y 2
t−h+1)

′, and βα,h = [βα,h,0 βα,h,1 βα,h,2 . . . βα,h,2h−1 βα,h,2h]′.
For now, we set h = 1 to generate one-step-ahead forecasts, and we will talk
about multi-step forecasts later in this chapter.
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Table 1F. AR(1)-ARCH(0)-Outlier. Bagging quantile predictions for
AR-ARCH models

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.05 T1 13.41 13.43 13.42 13.42 13.42 13.22 13.36 13.32
T2 5.34 4.74 4.79 4.75 4.74 4.78 4.79 4.81
T3 0.49 0.48 0.49 0.49 0.49 0.49 0.49

α = 0.10 T1 15.83 16.18 16.18 16.18 16.17 16.12 16.12 16.11
T2 5.45 5.30 5.31 5.30 5.30 5.33 5.31 5.32
T3 0.27 0.26 0.27 0.27 0.29 0.29 0.31

α = 0.30 T1 21.62 21.88 21.85 21.86 21.88 21.69 21.81 21.76
T2 4.78 4.75 4.74 4.75 4.75 4.70 4.74 4.72
T3 0.28 0.31 0.31 0.31 0.43 0.31 0.40

α = 0.50 T1 23.19 23.44 23.39 23.42 23.43 23.25 23.35 23.31
T2 4.48 4.49 4.47 4.48 4.49 4.40 4.45 4.43
T3 0.27 0.28 0.28 0.27 0.45 0.36 0.39

α = 0.70 T1 21.38 21.66 21.61 21.64 21.65 21.48 21.57 21.53
T2 4.85 4.80 4.80 4.80 4.80 4.79 4.79 4.78
T3 0.24 0.25 0.25 0.24 0.39 0.30 0.36

α = 0.90 T1 15.54 15.85 15.83 15.83 15.85 15.76 15.79 15.77
T2 5.47 5.25 5.25 5.24 5.25 5.33 5.26 5.28
T3 0.31 0.33 0.31 0.32 0.37 0.35 0.35

α = 0.95 T1 13.01 13.02 12.99 13.00 13.02 12.79 12.92 12.87
T2 5.12 4.45 4.45 4.46 4.46 4.54 4.50 4.51
T3 0.47 0.48 0.47 0.49 0.54 0.49 0.51

α = 0.99 T1 7.84 5.36 5.36 5.36 5.36 5.42 5.40 5.45
T2 4.82 1.87 1.83 1.88 1.87 2.18 1.98 2.14
T3 0.89 0.89 0.89 0.89 0.94 0.90 0.93

R = 500

α = 0.01 T1 5.91 5.39 5.40 5.39 5.39 5.38 5.38 5.39
T2 2.67 1.98 2.01 1.99 1.98 2.10 2.00 2.05
T3 0.69 0.69 0.69 0.69 0.74 0.71 0.73

α = 0.05 T1 12.86 13.13 13.15 13.12 13.13 13.07 13.09 13.08
T2 5.42 4.81 4.87 4.80 4.82 4.90 4.85 4.87
T3 0.36 0.36 0.36 0.37 0.37 0.36 0.38

α = 0.10 T1 15.49 16.00 16.00 16.00 16.00 16.00 16.00 16.00
T2 5.32 5.21 5.23 5.22 5.21 5.21 5.22 5.21
T3 0.17 0.18 0.16 0.17 0.17 0.16 0.15

α = 0.30 T1 21.34 21.53 21.52 21.52 21.53 21.46 21.49 21.47
T2 4.66 4.66 4.66 4.66 4.66 4.65 4.65 4.65
T3 0.29 0.29 0.29 0.29 0.33 0.29 0.32

α = 0.50 T1 23.15 23.22 23.21 23.21 23.22 23.17 23.19 23.19
T2 4.45 4.50 4.50 4.50 4.50 4.46 4.48 4.48
T3 0.40 0.40 0.40 0.40 0.44 0.41 0.40

α = 0.70 T1 21.48 21.58 21.57 21.58 21.58 21.53 21.55 21.54
T2 4.80 4.78 4.78 4.78 4.78 4.77 4.77 4.77
T3 0.31 0.33 0.32 0.32 0.44 0.35 0.38
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Table 1F. (continued)

R = 500

J = 1 J = 50

mean BMA1 BMA5 BMAR med trim5 trim10

α = 0.90 T1 15.54 15.98 15.98 15.98 15.98 15.99 15.98 15.98
T2 5.34 5.13 5.14 5.13 5.13 5.14 5.14 5.14
T3 0.19 0.21 0.21 0.19 0.21 0.23 0.21

α = 0.95 T1 13.02 13.22 13.22 13.21 13.21 13.16 13.18 13.17
T2 5.21 4.65 4.67 4.66 4.66 4.72 4.68 4.70
T3 0.38 0.39 0.38 0.38 0.41 0.40 0.42

α = 0.99 T1 6.24 5.61 5.64 5.62 5.62 5.65 5.63 5.65
T2 2.71 2.01 2.05 2.01 2.01 2.12 2.06 2.09
T3 0.71 0.71 0.71 0.71 0.69 0.70 0.73

Note: The AR(1) parameter is ρ = 0.6 in Equation (3). See the definition of T1, T2, and T3 in the
text, which are computed from 100 Monte Carlo replications.

We estimate βα,h recursively using the “rolling” samples of size R − 2h + 1.
Suppose there are T (≡ R + P) observations in total. We use the most recent
R − 2h + 1 observations available at time t , R � t < T − h, as a training
sample, Dt ≡ {(Ys, Xs−h)}ts=t−R+2h. We then generate P(= T − R) h-step-
ahead forecasts for the remaining forecast validation sample. For each time t in
the P prediction periods, we use a rolling training sample Dt of size R − 2h+ 1
to estimate model parameters:

(5)β̂α,h(Dt ) ≡ arg min
βα,h

t∑
s=t−R+h+1

ρα(us), t = R, . . . , T ,

where us ≡ Ys − Qα(Ys |Xs−h) = Ys − X̃′
s−hβα,h. β̂α,h(Dt ) is estimated using

the interior-point algorithm suggested by Portnoy and Koenker (1997).
To generate bootstrap samples, we use the block bootstrap for both the Monte

Carlo experiments and empirical applications. We choose the block size that
minimizes the in-sample average cost recursively and therefore we use a dif-
ferent block size at each forecasting time t and for each loss function with
different α’s.

The Monte Carlo results are reported in Tables 1A–1F and Figure 1, pan-
els (a)–(f), where mean, BMAk , med, and trimk denote the equal-weighted
bagging predictors, BMA-weighted bagging predictors using the k-most recent
in-sample observations, median-weighted bagging predictors, and k-trimmed on
each tail weighted bagging predictors, respectively.

According to our Monte Carlo results on quantile predictions shown in Ta-
bles 1A–1F, we summarize our observations as follows. First, in most of cases,
BMA-weighted, median, and trimmed bagging predictors have better predictive
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(a) AR(0)-ARCH(1)-Gaussian

Note: The ARCH(1) parameter in (1) is θ = 0.5. The two figures report the tick loss ratio and
standard error ratio of bagging predictors over unbagged predictors for 100 Monte Carlo replications.

(b) AR(1)-ARCH(0)-Gaussian

Note: The AR(1) parameter in (1) is ρ = 0.6.

(c) AR(1)-ARCH(0)-Skewed unimodal

Fig. 1. Bagging quantile prediction for AR-ARCH models.
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(d) AR(1)-ARCH(0)-Strongly skewed

(e) AR(1)-ARCH(0)-Kurtotic unimodal

(f) AR(1)-ARCH(0)-Outlier

Fig. 1. (Continued.)

performance (smaller T1 and T2 and larger T3) compared to the mean bagging
predictor, even when we have a relatively large sample size. Second, on average,
the improvement brought by median bagging is larger than the trimmed bagging
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and BMA-weighted bagging predictors, so median bagging tends to give the
smallest T1 and largest T3 among all predictors. Third, the outstanding perfor-
mance of the median bagging predictors is most obvious when α values are close
to 0 or 1, where the extreme value problem are most serious because there are
fewer observations in the tails and the parameter regression estimates are sensi-
tive to the estimation sample. When the sample size R is 200 and α values are
close to 0 or 1, the median bagging predictors can further reduce the average
loss (T1) by about 1% on average and increase the percentage of times bagging
works (T3) by about 4% on average compared with mean bagging predictors.
However, the advantage of median bagging predictors are not as evident when
α values are close to 0.5.

From Figure 1, panels (a)–(e), we can see that different bagging predictors
work in similar trends. First, bagging predictors work better when the sample
size is smaller, so the R = 200 lines lie below the R = 500 lines in the fig-
ures, and both R = 200 and R = 500 lie below the unit line most of the time.
Second, bagging predictors works better when α values are close to 0 or 1, so
the bagging lines look like the letter “n,” especially when R = 200. Third, bag-
ging predictors work better when α-quantiles lie on the sparse part of the error
distribution. Our explanation is that for the sparse part of the error distribution,
there are fewer observations, therefore quantile predictions are sensitive to the
estimation sample and bagging predictors work better for unstable predictions.
For example, when the error term is left skewed, as in Figure 1, panel (c), bag-
ging predictors give larger loss reductions for the prediction of small α-quantiles
than for large α-quantiles; when the error term are right skewed, as in Figure 1,
panel (d), bagging predictors give large loss reduction for the prediction of larger
α-quantiles but do not work for small α-quantiles; and among panels (a)–(f) of
Figure 1, panel (f) has the sparsest distribution on both tails among all DGPs,
and bagging predictors deliver the best performance (smallest T1 and T2 and
largest T3).

Our conclusions on the performance of BMA bagging predictors and median
bagging predictors are further supported by empirical experiments. We make
pseudo real-time forecasts of the daily returns of six major US stock indices and
two major foreign exchange rates. We split the series into two parts: one for in-
sample estimation with sizes R = 100 and 300 and another for out-of-sample
forecast validation with sample size P = 250 (fixed for both R’s). We choose
the most recent P = 250 days in the sample as the out-of-sample validation
sample. We use a rolling-sample scheme, that is, the first forecast is based on
observations T − P − R + 1 through T − P , the second forecast is based on
observations T −P −R+2 through T −P +1, and so on. The eight series are the
Dow Jones Industrial Averages (Dow Jones), New York Stock Exchange Com-
posite (NYSE), Standard and Poor’s 500 (S&P 500), National Association of
Securities Dealers Automated Quotations Composite (NASDAQ), Russell 2000
index (Rusell 2000), Pacific Exchange Technology (PET), US Dollar per Euro
(USD/EUR), and US Dollar per Japanese Yen (USD/JPY). The total sample pe-
riod and the out-of-sample forecasting period are summarized as follows:
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Total sample period Out-of-sample period (P = 250)

Dow Jones 10/27/1998–12/31/2000 01/05/2000–12/31/2000
NYSE 10/27/1998–12/31/2000 01/05/2000–12/31/2000
S&P 500 10/27/1998–12/31/2000 01/05/2000–12/31/2000
NASDAQ 10/27/1998–12/31/2000 01/05/2000–12/31/2000
Rusell 2000 10/27/1998–12/31/2000 01/05/2000–12/31/2000
PET 10/27/1998–12/31/2000 01/05/2000–12/31/2000
USD/EUR 10/10/2003–04/11/2005 08/05/2004–04/11/2005
USD/YEN 10/10/2003–04/11/2005 08/05/2004–04/11/2005

We consider nine quantile parameters, α = 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9,
0.95, and 0.99. The empirical experiments are reported in Tables 2A–2H and
Figure 2, panels (a)–(h). Our findings are as follows. First, bagging predictors
works better when the sample size is smaller. Second, bagging predictors work
better for α values close to 0 or 1 than for α values close to 0.5. Third, for
the six stock return series, bagging predictors work better for α values close
to 0 than α values close to 1 because the distribution of stock returns all have
long left tails. However, for the two foreign exchange series, bagging works
rather symmetrically for α values close to 0 and 1 because they have symmetric
distributions.

4. Bagging multi-step quantile forecasts

We will show how bagging works for multi-step predictions in this section. It is
important to make multi-step forecasts in the real world. For example, a group
of users for time series predictions are policy makers, and since it potentially
takes a long time for monetary and fiscal policies to generate expected effects in
the economy, policy makers have to produce predictions more than one-period-
ahead.

We check four multi-step horizons, h = 1, 2, 3, 4. If we have a simple linear
model, then multi-step forecasts can be achieved by simple iteration of the one-
step-ahead predictors. However, we may not apply this naïve iteration method
to generate multi-step forecasts for nonlinear models. We use polynomial quan-
tile regression models to take account of the nonlinear structures in the data.
As mentioned by Tsay (1993), Lin and Tsay (1996), and Chevillon and Hendry
(2004), the “direct” multi-step method will suffer less from model misspecifi-
cation than the “iterated” multi-step methods; therefore, the direct multi-step
method is also called “adaptive estimation,” and it should be able to generate
better or at least as good predictions as iterated methods in the case of model
uncertainty or misspecification.

There are few papers discussing how to make multi-step conditional quantile
forecasts. We can either iterate one-step-ahead forecast or model the relation-
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Table 2A. USD/EUR Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 5.59 3.51 3.51 3.51 3.51 3.39 4.07 3.94 3.94 3.94 3.94 4.01
α = 0.05 14.62 12.21 12.23 12.21 12.21 12.01 14.18 13.95 13.94 13.93 13.95 13.77
α = 0.10 23.35 22.01 22.03 22.01 22.02 21.98 22.95 22.70 22.68 22.69 22.70 22.74
α = 0.30 37.76 36.58 36.55 36.57 36.58 36.50 36.80 36.10 36.09 36.10 36.10 36.04
α = 0.50 40.90 40.22 40.20 40.21 40.22 40.06 40.38 39.74 39.73 39.74 39.74 39.70
α = 0.70 38.43 36.92 36.90 36.93 36.93 36.80 38.29 37.59 37.58 37.59 37.59 37.50
α = 0.90 23.80 22.53 22.53 22.54 22.53 22.67 23.24 22.86 22.86 22.87 22.86 22.74
α = 0.95 15.15 13.96 13.99 13.97 13.96 14.09 14.37 14.35 14.35 14.35 14.35 14.32
α = 0.99 7.18 3.71 3.71 3.71 3.71 3.43 4.32 4.18 4.18 4.18 4.18 4.14

Note: Each cell gives the tick loss of quantile prediction over the period 08/05/2004–04/11/2005.
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Table 2B. USD/JPY Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 7.20 3.81 3.81 3.81 3.82 3.21 4.36 3.98 3.98 3.98 3.98 4.09
α = 0.05 15.74 13.68 13.67 13.67 13.68 13.64 15.23 14.41 14.4 14.4 14.41 14.47
α = 0.10 23.63 22.91 22.89 22.91 22.91 23.17 22.59 22.3 22.3 22.3 22.3 22.17
α = 0.30 39.43 38.58 38.58 38.58 38.58 38.54 38.12 37.49 37.49 37.49 37.49 37.53
α = 0.50 40.60 39.86 39.86 39.86 39.86 39.65 40.79 40.83 40.84 40.83 40.83 40.82
α = 0.70 37.17 36.66 36.65 36.66 36.66 36.23 37.35 38.08 38.08 38.08 38.08 38.16
α = 0.90 24.66 22.09 22.05 22.09 22.09 21.96 23.06 22.01 22 22.01 22.01 22.07
α = 0.95 16.10 14.47 14.40 14.46 14.47 14.41 13.91 13.88 13.87 13.88 13.88 13.8
α = 0.99 6.88 4.18 4.17 4.18 4.18 4.87 3.75 3.64 3.64 3.64 3.64 3.62

Note: Each cell gives the tick loss of quantile prediction over the period 08/05/2004–04/11/2005.
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Table 2C. Dow Jones Industrial Averages Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 14.17 10.43 10.53 10.47 10.43 9.15 11.30 10.17 10.22 10.18 10.17 10.12
α = 0.05 38.67 33.43 33.98 33.51 33.46 32.07 39.10 37.60 37.89 37.65 37.60 37.76
α = 0.10 65.82 58.75 59.25 58.78 58.78 57.27 62.58 59.27 59.34 59.28 59.28 59.41
α = 0.30 114.68 110.87 111.26 110.84 110.88 110.72 110.42 109.17 109.18 109.18 109.17 109.14
α = 0.50 129.14 124.29 124.52 124.24 124.33 124.17 125.10 123.48 123.54 123.49 123.48 123.49
α = 0.70 109.85 108.48 108.59 108.39 108.47 107.43 106.85 106.09 106.25 106.14 106.09 106.36
α = 0.90 61.60 57.59 58.56 57.82 57.59 56.72 57.81 54.69 55.12 54.83 54.69 54.26
α = 0.95 37.73 34.09 34.07 34.19 34.11 33.03 32.44 31.45 31.67 31.52 31.45 31.90
α = 0.99 13.34 14.45 14.18 14.42 14.40 14.11 9.30 8.66 8.40 8.61 8.66 8.31

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/2000–12/31/2000.
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Table 2D. New York Stock Exchange Composite Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 11.39 8.43 8.50 8.45 8.43 7.73 9.31 7.85 7.93 7.87 7.85 8.05
α = 0.05 36.33 28.23 28.56 28.32 28.24 26.65 32.25 29.88 30.08 29.93 29.88 29.20
α = 0.10 55.37 47.77 48.21 47.86 47.78 46.96 49.57 47.83 47.95 47.86 47.84 47.27
α = 0.30 94.59 90.80 91.00 90.81 90.82 90.72 91.18 89.62 89.63 89.62 89.63 89.69
α = 0.50 105.49 102.21 102.37 102.27 102.23 101.42 103.02 102.45 102.56 102.49 102.46 102.67
α = 0.70 94.18 92.39 92.34 92.37 92.39 91.97 92.73 90.92 91.03 90.96 90.92 91.12
α = 0.90 56.58 49.43 49.77 49.61 49.46 49.03 52.01 49.05 49.43 49.12 49.05 48.77
α = 0.95 34.57 30.16 30.54 30.31 30.18 31.27 31.68 29.49 29.71 29.57 29.49 29.73
α = 0.99 15.57 10.01 10.11 9.86 9.99 9.34 9.34 8.29 8.34 8.31 8.29 8.72

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/2000–12/31/2000.
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Table 2E. Standard and Poor’s 500 Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 16.54 10.13 10.21 10.16 10.13 7.99 13.18 9.82 9.94 9.86 9.82 9.49
α = 0.05 43.20 37.60 38.29 37.67 37.62 35.67 36.58 35.53 35.56 35.53 35.53 35.69
α = 0.10 67.41 62.86 63.10 62.83 62.87 62.66 62.62 58.85 58.84 58.82 58.85 58.58
α = 0.30 113.91 113.15 113.16 113.09 113.15 112.82 112.75 111.89 111.89 111.88 111.89 112.04
α = 0.50 135.85 129.14 129.27 129.16 129.17 128.88 131.30 130.63 130.63 130.62 130.63 130.40
α = 0.70 120.03 117.25 117.23 117.16 117.26 117.11 118.37 116.01 116.04 116.05 116.01 116.35
α = 0.90 71.74 66.46 66.82 66.39 66.48 67.83 67.71 65.53 65.30 65.49 65.53 65.82
α = 0.95 46.60 39.49 39.59 39.51 39.50 40.25 39.98 39.30 39.58 39.38 39.31 38.67
α = 0.99 18.44 13.18 13.49 13.19 13.14 15.19 13.66 11.40 11.45 11.45 11.40 11.92

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/2000–12/31/2000.
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Table 2F. NASDAQ Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 40.75 28.79 28.33 28.07 28.75 27.01 30.00 24.83 25.30 24.49 24.84 25.20
α = 0.05 100.35 88.50 88.61 87.38 88.51 89.28 90.40 83.17 83.21 82.92 83.18 82.97
α = 0.10 144.47 132.42 132.46 131.75 132.54 129.04 143.22 138.43 138.91 138.48 138.44 136.49
α = 0.30 274.40 254.31 253.92 255.04 254.56 252.35 277.28 269.61 269.51 269.44 269.64 270.23
α = 0.50 310.14 294.82 295.50 295.34 295.09 295.45 309.47 303.89 304.19 304.16 303.91 304.09
α = 0.70 270.05 261.54 261.76 262.32 261.62 261.50 267.21 262.99 262.75 263.18 263.00 263.09
α = 0.90 153.03 142.64 140.41 142.08 142.73 142.44 143.95 134.93 135.16 135.11 134.96 133.81
α = 0.95 96.11 83.19 81.37 81.95 83.22 80.51 96.98 84.92 84.67 84.67 84.95 84.00
α = 0.99 40.68 31.65 30.55 29.94 31.44 34.98 33.91 29.85 28.49 28.56 29.84 28.95

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/2000–12/31/2000.
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Table 2G. Russell 2000 Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 39.12 16.12 16.18 16.05 16.14 1605 22.33 16.17 16.28 16.19 16.18 15.84
α = 0.05 55.79 50.81 50.92 50.51 50.82 48.96 54.96 53.36 53.59 53.24 53.36 52.77
α = 0.10 94.53 85.34 85.74 85.01 85.37 85.57 92.39 86.78 87.12 86.80 86.79 87.01
α = 0.30 170.80 161.92 161.54 161.87 162.03 162.53 165.96 165.76 165.72 165.75 165.76 165.63
α = 0.50 192.64 184.05 184.83 184.58 184.11 182.66 187.40 183.92 184.03 184.00 183.92 183.65
α = 0.70 165.53 163.11 163.30 163.36 163.11 162.96 164.40 161.70 161.79 161.76 161.70 161.37
α = 0.90 101.89 86.55 86.96 86.67 86.61 85.78 97.04 91.45 91.44 91.43 91.46 91.76
α = 0.95 65.35 51.60 51.47 51.50 51.63 50.06 60.60 56.25 56.46 56.30 56.25 55.55
α = 0.99 29.24 22.36 21.93 21.82 22.31 24.83 21.75 14.49 14.86 14.56 14.51 15.26

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/2000–12/31/2000.
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Table 2H. Pacific Exchange Technology Daily Returns. Empirical applications of bagging quantile predictions

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 30.17 21.15 20.12 20.08 21.13 21.27 26.16 19.83 19.99 19.81 19.83 20.49
α = 0.05 83.32 70.34 70.04 69.47 70.35 66.23 74.15 71.39 71.67 71.14 71.40 71.44
α = 0.10 130.88 114.82 115.41 114.58 114.91 115.68 126.60 121.82 122.29 121.77 121.82 120.31
α = 0.30 257.32 249.79 247.66 249.31 249.99 249.57 256.27 253.02 252.03 252.96 253.04 253.02
α = 0.50 289.98 283.59 282.72 283.59 283.66 283.96 288.93 282.36 281.78 282.61 282.38 282.32
α = 0.70 245.96 239.35 238.88 239.53 239.40 239.37 249.67 245.34 245.17 245.49 245.35 245.76
α = 0.90 145.41 134.41 132.97 134.11 134.39 132.29 134.88 126.13 126.57 126.45 126.17 124.15
α = 0.95 83.24 79.86 79.50 80.31 79.83 78.72 87.76 79.15 79.28 79.30 79.17 78.42
α = 0.99 29.51 23.79 23.37 23.35 23.75 25.42 25.86 22.16 22.04 21.97 22.17 23.42

Note: Each cell gives the tick loss of quantile prediction over the period 01/05/2000–12/31/2000.
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ship between Qα(Yt+h|Xt ) and Xt directly. To apply the iterated method for
multi-step quantile, we need to set up a quantile regression model based on
the lags of quantile itself, such as the CaViaR model of Engle and Manganelli
(2004):

(6)Qα(Yt+1|Xt ) = b0 + b1Qα(Yt |Xt−1) + et+1.

Even with the CaViaR model, we can only use “naïve” iteration to get the
multi-step quantile forecast. The naïve iterated multi-step quantile method may
generate poor forecasts. To be comparable with the results from other part of
this chapter, we model the relationship between Qα(Yt+h|Xt ) and Xt directly

(a) USD/EUR Daily Returns (b) USD/JPY Daily Return

Note: Panels (a) and (b) report the tick loss ratio of bagging predictors over unbagged predictors for
08/05/2004–04/11/2005.

(c) Dow Jones Industrial Averages
Daily Returns

(d) New York Stock Exchange Com-
posite Daily Returns

Note: Panels (c) and (d) report the tick loss ratio of bagging predictors over unbagged predictors for
01/05/2000–12/31/2000.

Fig. 2. Empirical applications of bagging quantile prediction.
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(e) Standard and Poor’s 500 Daily Re-
turns

(f) NASDAQ Daily Returns

Note: Panels (e) and (f) report the tick loss ratio of bagging predictors over unbagged predictors for
01/05/2000–12/31/2000.

(g) Russell 2000 Daily Returns
(h) Pacific Exchange Technology
Daily Returns

Note: Panels (g) and (h) report the tick loss ratio of bagging predictors over unbagged predictors for
01/05/2000–12/31/2000.

Fig. 2. (Continued.)

using the polynomial quantile regression model as shown in (4) in Section 2.
We use the same DGP as in (3) for our Monte Carlo experiments. We will only
make “direct” multi-step quantile forecasts.

According to our Monte Carlo results for quantile forecasts reported in Ta-
ble 3 and Figure 3, we find the following: the loss level (T1) for both unbagged
and bagging predictors increases as the forecast horizon increase; the frequen-
cies that bagging predictors outperform unbagged predictors (T3) also increase
with the forecast horizon; the relative average loss of bagging predictors com-
pared to unbagged predictors (T1,a/T1,1) and relative standard error of loss for
the bagging predictors compared to unbagged predictors (T2,a/T2,1) decrease
with the forecast horizon.
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Table 3. Bagging multi-step quantile forecasts for AR(0)-ARCH(1)-Gaussian model

R = 20, P = 100 h = 1 h = 2 h = 3 h = 4

J = 1 J = 50 J = 1 J = 50 J = 1 J = 50 J = 1 J = 50

mean med mean med mean med mean med

α = 0.01 T1 14.73 9.54 8.72 21.38 12.29 11.49 30.90 14.56 13.37 42.75 15.26 13.81
T2 6.90 2.89 2.84 13.25 4.15 3.61 23.99 6.42 5.00 53.20 6.12 4.37
T3 0.93 0.96 0.92 0.96 0.97 0.96 0.99 1.00

α = 0.05 T1 19.97 14.14 13.39 26.44 17.10 16.32 35.68 18.74 17.82 46.80 19.62 18.47
T2 7.11 3.36 3.17 13.16 4.87 3.90 23.54 6.46 4.97 51.51 6.06 4.85
T3 0.97 0.98 0.98 0.97 0.98 0.98 0.99 0.99

α = 0.10 T1 25.46 19.52 18.66 30.83 22.52 22.05 37.88 23.89 23.06 50.88 25.05 24.05
T2 6.75 3.39 3.32 11.72 5.20 4.24 17.48 5.94 4.92 48.86 6.55 5.19
T3 0.98 1.00 0.99 1.00 0.99 0.99 1.00 1.00

α = 0.30 T1 40.75 34.52 33.55 43.05 36.70 36.36 45.89 37.50 37.00 51.27 38.32 37.78
T2 7.03 4.72 4.72 7.90 5.44 5.24 11.32 5.81 5.48 14.26 6.22 5.76
T3 1.00 1.00 0.99 0.99 0.98 1.00 1.00 1.00

α = 0.50 T1 45.31 38.88 38.08 47.61 40.81 40.67 49.12 41.54 41.11 53.58 42.16 41.70
T2 7.12 5.25 5.22 8.27 5.91 5.86 9.02 5.80 5.67 13.66 6.43 6.07
T3 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

α = 0.70 T1 40.10 34.36 33.38 42.91 36.14 35.89 44.81 37.24 36.83 49.11 37.74 37.21
T2 6.32 5.11 4.83 8.27 5.54 5.31 9.67 5.72 5.24 13.28 6.05 5.61
T3 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.99

α = 0.90 T1 24.64 19.55 18.70 30.02 21.46 21.12 34.45 23.22 22.45 43.77 23.87 23.00
T2 5.18 3.79 3.37 10.98 4.80 4.59 17.75 5.67 4.91 24.49 5.53 5.01
T3 0.97 0.99 1.00 0.99 0.99 0.98 1.00 1.00

α = 0.95 T1 19.04 14.07 13.17 26.34 16.44 15.54 31.06 18.29 17.27 39.54 18.62 17.72
T2 5.48 3.97 3.14 13.45 5.46 4.06 21.97 5.74 4.71 25.76 5.54 4.79
T3 0.96 0.97 0.96 0.98 0.95 0.95 1.00 0.98
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Table 3. (continued)

R = 20, P = 100 h = 1 h = 2 h = 3 h = 4

J = 1 J = 50 J = 1 J = 50 J = 1 J = 50 J = 1 J = 50

mean med mean med mean med mean med

α = 0.99 T1 14.00 9.51 8.49 21.31 11.40 10.63 26.30 13.49 12.35 35.31 14.48 13.07
T2 5.42 3.24 2.73 13.56 3.97 3.53 22.49 5.23 4.32 26.23 5.63 4.36
T3 0.93 0.94 0.98 0.98 0.92 0.94 0.98 0.99

R = 50, P = 100 h = 1 h = 2 h = 3 h = 4

α = 0.01 T1 5.74 4.30 4.41 8.16 5.34 5.59 12.22 5.50 5.77 12.16 6.15 6.48
T2 2.45 1.39 1.49 6.66 2.32 2.38 41.34 2.53 2.72 17.53 3.10 3.51
T3 0.83 0.91 0.89 0.86 0.93 0.87 0.87 0.84

α = 0.05 T1 12.31 10.89 10.89 13.98 12.15 12.36 14.68 12.37 12.67 16.44 12.91 13.12
T2 2.38 1.81 1.82 3.97 2.86 2.80 4.57 3.13 3.38 8.73 3.68 3.74
T3 0.92 0.94 0.89 0.83 0.94 0.89 0.90 0.88

α = 0.10 T1 19.27 17.73 17.65 20.51 18.85 18.92 21.00 19.28 19.36 22.20 19.65 19.66
T2 3.02 2.57 2.61 4.52 3.25 3.27 5.14 3.81 3.86 6.97 4.29 3.91
T3 0.94 0.98 0.89 0.90 0.87 0.85 0.92 0.91

α = 0.30 T1 35.74 33.59 33.56 36.02 34.13 34.29 36.10 34.42 34.54 36.36 34.57 34.58
T2 4.83 4.26 4.32 5.42 4.41 4.56 5.59 4.68 4.69 5.47 4.82 4.66
T3 0.98 0.99 0.94 0.94 0.91 0.88 0.94 0.94

α = 0.50 T1 40.62 37.98 37.88 40.25 38.29 38.38 40.27 38.52 38.53 40.03 38.45 38.54
T2 5.43 4.42 4.45 6.03 4.56 4.64 5.44 4.72 4.70 5.31 4.67 4.70
T3 0.99 1.00 0.90 0.93 0.95 0.96 0.91 0.91

α = 0.70 T1 35.56 33.14 33.12 35.75 33.71 33.77 35.59 33.89 33.84 35.61 33.98 34.00
T2 5.12 3.91 4.01 6.13 4.28 4.32 5.22 4.23 4.17 4.86 4.44 4.35
T3 0.98 0.99 0.94 0.92 0.92 0.93 0.90 0.90

(continued on next page)
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Table 3. (continued)

R = 50, P = 100 h = 1 h = 2 h = 3 h = 4

J = 1 J = 50 J = 1 J = 50 J = 1 J = 50 J = 1 J = 50

mean med mean med mean med mean med

α = 0.90 T1 19.19 17.37 17.29 20.87 18.51 18.58 20.91 18.76 18.84 21.39 19.10 19.17
T2 3.96 2.63 2.52 6.46 3.50 3.54 5.32 3.29 3.39 7.79 4.56 4.24
T3 0.95 0.96 0.95 0.90 0.90 0.89 0.91 0.92

α = 0.95 T1 12.15 10.62 10.61 14.29 11.89 12.10 14.89 12.21 12.53 15.27 12.50 12.67
T2 3.57 1.92 2.03 6.16 2.88 3.05 5.69 2.96 3.07 5.63 3.69 3.67
T3 0.88 0.91 0.90 0.89 0.89 0.85 0.94 0.91

α = 0.99 T1 5.49 4.05 4.10 7.66 5.00 5.17 9.32 5.34 5.58 9.19 5.72 6.04
T2 3.96 1.49 1.56 5.98 2.16 2.34 9.26 2.50 2.54 6.27 3.14 2.99
T3 0.85 0.88 0.89 0.84 0.87 0.87 0.87 0.83

R = 100, P = 100 h = 1 h = 2 h = 3 h = 4

α = 0.01 T1 3.69 3.19 3.22 5.32 3.87 4.20 5.41 3.92 4.23 6.01 4.12 4.40
T2 1.58 1.11 1.21 5.43 1.70 2.20 3.37 1.79 2.20 4.68 2.17 2.40
T3 0.78 0.83 0.83 0.75 0.82 0.78 0.89 0.86

α = 0.05 T1 10.97 10.27 10.31 12.23 11.51 11.65 12.60 11.59 11.75 12.84 11.68 11.79
T2 2.23 1.89 1.99 3.22 2.84 2.97 3.63 2.99 3.10 4.33 3.25 3.27
T3 0.83 0.91 0.89 0.83 0.90 0.85 0.92 0.88

α = 0.10 T1 17.83 17.10 17.12 18.98 18.26 18.32 19.09 18.30 18.38 19.44 18.36 18.40
T2 3.27 2.72 2.79 4.15 3.52 3.58 3.88 3.52 3.60 4.69 3.76 3.81
T3 0.85 0.87 0.87 0.85 0.89 0.86 0.92 0.92

α = 0.30 T1 34.28 33.18 33.17 34.29 33.62 33.65 34.29 33.60 33.61 34.43 33.64 33.63
T2 5.12 4.73 4.70 5.41 4.90 4.90 5.26 4.92 4.88 5.47 5.03 5.03
T3 0.95 0.95 0.84 0.86 0.84 0.86 0.84 0.86
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Table 3. (continued)

R = 100, P = 100 h = 1 h = 2 h = 3 h = 4

J = 1 J = 50 J = 1 J = 50 J = 1 J = 50 J = 1 J = 50

mean med mean med mean med mean med

α = 0.50 T1 38.87 37.58 37.59 38.59 37.84 37.86 38.58 37.91 37.94 38.57 37.90 37.93
T2 6.13 5.22 5.26 5.68 5.35 5.35 5.63 5.37 5.37 5.60 5.38 5.39
T3 0.98 0.99 0.87 0.89 0.91 0.90 0.85 0.83

α = 0.70 T1 33.86 32.78 32.77 34.04 33.32 33.33 33.97 33.30 33.32 33.94 33.37 33.40
T2 5.53 4.82 4.86 5.30 4.96 4.93 5.48 5.04 5.00 5.20 4.99 5.03
T3 0.90 0.94 0.80 0.85 0.88 0.84 0.84 0.84

α = 0.90 T1 17.58 16.86 16.83 18.66 17.92 18.00 18.86 18.04 18.07 18.89 18.18 18.22
T2 3.13 2.73 2.79 4.10 3.47 3.66 4.41 3.67 3.78 4.31 3.85 3.93
T3 0.87 0.89 0.85 0.85 0.84 0.86 0.86 0.87

α = 0.95 T1 10.79 10.14 10.16 12.13 11.32 11.42 12.30 11.39 11.52 12.55 11.58 11.71
T2 2.43 1.91 2.01 3.58 2.81 2.88 3.56 2.75 2.99 3.90 3.21 3.41
T3 0.82 0.90 0.79 0.79 0.88 0.82 0.86 0.87

α = 0.99 T1 4.07 3.21 3.28 5.20 3.87 4.13 5.20 3.92 4.21 6.34 4.09 4.43
T2 2.75 1.20 1.41 3.42 1.76 2.04 3.02 1.71 2.04 6.29 2.07 2.65
T3 0.85 0.89 0.80 0.78 0.84 0.77 0.91 0.90

R = 200, P = 100 h = 1 h = 2 h = 3 h = 4

α = 0.01 T1 2.92 2.72 2.73 3.44 3.24 3.30 3.85 3.37 3.41 3.97 3.41 3.48
T2 1.04 0.89 1.03 1.51 1.37 1.44 1.95 1.53 1.58 2.48 1.82 1.81
T3 0.72 0.73 0.67 0.66 0.82 0.83 0.78 0.78

α = 0.05 T1 9.97 9.68 9.72 10.78 10.56 10.60 11.05 10.67 10.68 11.19 10.70 10.75
T2 1.83 1.63 1.69 2.31 2.19 2.28 2.76 2.40 2.41 3.07 2.42 2.47
T3 0.80 0.83 0.76 0.73 0.75 0.74 0.82 0.80

(continued on next page)
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Table 3. (continued)

R = 200, P = 100 h = 1 h = 2 h = 3 h = 4

J = 1 J = 50 J = 1 J = 50 J = 1 J = 50 J = 1 J = 50

mean med mean med mean med mean med

α = 0.10 T1 16.73 16.38 16.35 17.66 17.31 17.33 17.67 17.34 17.39 17.74 17.36 17.39
T2 2.73 2.50 2.51 3.21 3.02 3.08 3.38 3.08 3.11 3.60 3.13 3.14
T3 0.75 0.82 0.75 0.69 0.67 0.68 0.73 0.77

α = 0.30 T1 32.86 32.37 32.37 33.02 32.72 32.73 33.09 32.73 32.74 32.98 32.75 32.77
T2 4.51 4.30 4.29 4.63 4.46 4.46 4.70 4.50 4.49 4.73 4.54 4.55
T3 0.80 0.83 0.66 0.67 0.74 0.75 0.68 0.65

α = 0.50 T1 37.53 37.02 37.04 37.44 37.16 37.18 37.53 37.21 37.24 37.50 37.22 37.24
T2 4.90 4.75 4.74 5.08 4.95 4.95 5.16 5.02 5.03 5.03 4.96 4.97
T3 0.86 0.88 0.66 0.67 0.81 0.83 0.74 0.79

α = 0.70 T1 32.70 32.23 32.23 32.96 32.71 32.73 32.95 32.70 32.72 32.93 32.69 32.73
T2 4.42 4.24 4.26 4.69 4.58 4.57 4.73 4.60 4.63 4.68 4.58 4.58
T3 0.83 0.87 0.80 0.75 0.74 0.76 0.74 0.71

α = 0.90 T1 16.86 16.48 16.53 17.77 17.49 17.48 17.75 17.50 17.51 17.95 17.60 17.61
T2 2.58 2.42 2.49 3.31 3.23 3.23 3.51 3.31 3.35 3.50 3.33 3.35
T3 0.76 0.80 0.76 0.78 0.74 0.79 0.79 0.82

α = 0.95 T1 10.12 9.87 9.88 11.15 10.96 11.02 11.30 10.99 11.03 11.39 11.07 11.06
T2 1.74 1.62 1.61 2.56 2.44 2.54 2.97 2.53 2.59 3.05 2.65 2.67
T3 0.78 0.80 0.70 0.66 0.72 0.74 0.71 0.75

α = 0.99 T1 2.96 2.75 2.77 3.73 3.39 3.48 4.13 3.48 3.61 3.97 3.43 3.54
T2 1.05 0.77 0.80 1.54 1.34 1.34 2.53 1.45 1.50 2.00 1.43 1.52
T3 0.70 0.73 0.71 0.65 0.82 0.77 0.87 0.85

Notes: The ARCH parameter is θ = 0.5 as defined in Equation (3). The three rows of each multi-step forecast method report the average, the standard error and the
frequency of better performance of bagging predictors in terms of tick loss computed from 100 Monte Carlo replications. See the definition of T1, T2, and T3 in the text.
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Note: The two figures in each row report the tick loss ratio and standard error ratio of bagging
predictors over unbagged predictors over 100 Monte Carlo replications (see the detailed explanation
in the main text).

Fig. 3. Bagging multi-step quantile forecasts for AR(0)-ARCH(1)-Gaussian
model.
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Fig. 3. (Continued.)
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Fig. 3. (Continued.)
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5. Bagging quantile forecasts with different tick losses

Komunjer (2005) introduced a tick-exponential family defined by:

ϕα
t+h

(
Yt+h,Qα(Yt+h|Xt )

)
= exp

(−(1 − α)
[
at

(
Qα(Yt+h|Xt )

) − bt (Yt+h)
]
1
{
Yt+h � Qα(Yt+h|Xt )

}
(7)+ α

[
at

(
Qα(Yt+h|Xt )

) − ct (Yt+h)
]
1
{
Yt+h > Qα(Yt+h|Xt )

})
,

where (i) at is continuously differentiable function and bt and ct are Ft -meas-
urable functions; (ii) ϕα

t+h is a probability density; (iii) Qα(Yt+h|Xt ) is the
α-quantile of Yt+h|Xt .

A class of quasi-maximum likelihood estimators (QMLEs), β̂α,h(Dt ), can be
obtained by solving

(8)βα,h(Dt ) = arg max
βα,h

R−1
t∑

s=t−R+h+1

ln ϕα
s

(
Ys,Qα(Ys |Xs−h)

)
.

If at (Qα(Yt+h|Xt )) = Qα(Yt+h|Xt ) and bt (Yt+h) = ct (Yt+h) = Yt+h,
the maximizing problem in (8) is equivalent to the minimization problem of
Koenker and Bassett (1978) as shown in (2). We also try another group of expo-
nential tick family loss functions introduced by Komunjer (2005) by setting

(9)at (η) = bt (η) = ct (η) = 1

α(1 − α)
sgn(η) ln

(
1 + |η|p)

,

where sgn(η) ≡ 1{η � 0} − 1{η < 0}.
Our empirical results of quantile prediction for S&P 500 daily return during

01/13/2004–01/07/2005 (P = 250) using the rolling estimation samples with
R = 100 and 300 (10/31/2002–01/07/2005) is shown in Table 4, where “tick”

Table 4. Bagging quantile predictions for S&P 500 daily returns using
tick-exponential losses

R = 100

J = 1 J = 50

mean BMA1 BMA5 BMAR med

α = 0.01 tick 5.59 5.45 5.45 5.45 5.45 5.81
p = 1 5.95 5.30 5.30 5.30 5.30 5.21
p = 2 4.90 4.22 4.22 4.22 4.22 4.22
p = 3 4.51 4.26 4.26 4.26 4.26 4.29

α = 0.05 tick 20.49 19.46 19.46 19.46 19.46 19.75
p = 1 20.61 19.66 19.66 19.66 19.66 19.52
p = 2 19.40 19.16 19.16 19.16 19.16 19.22
p = 3 19.17 19.20 19.20 19.20 19.20 19.19

α = 0.10 tick 33.95 33.08 33.08 33.08 33.08 33.25
p = 1 33.98 33.19 33.19 33.19 33.19 33.26
p = 2 33.60 33.12 33.11 33.12 33.12 33.03
p = 3 33.01 33.20 33.20 33.20 33.20 33.04
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Table 4. (continued)

R = 100

J = 1 J = 50

mean BMA1 BMA5 BMAR med

α = 0.30 tick 65.93 63.52 63.52 63.52 63.52 63.90
p = 1 65.23 63.60 63.60 63.60 63.60 63.85
p = 2 64.00 62.93 62.93 62.93 62.93 62.71
p = 3 63.60 63.65 63.65 63.65 63.65 63.56

α = 0.50 tick 69.99 68.66 68.66 68.66 68.66 68.65
p = 1 70.03 68.66 68.66 68.66 68.66 68.67
p = 2 68.81 68.25 68.25 68.25 68.25 68.26
p = 3 74.22 73.62 73.62 73.62 73.62 73.87

α = 0.70 tick 59.81 59.85 59.85 59.85 59.85 59.87
p = 1 60.44 59.84 59.84 59.84 59.84 59.99
p = 2 59.48 59.55 59.55 59.55 59.55 59.69
p = 3 69.18 64.53 64.53 64.53 64.53 67.42

α = 0.90 tick 32.37 31.95 31.95 31.95 31.95 32.13
p = 1 31.55 31.91 31.91 31.91 31.91 32.07
p = 2 31.72 31.87 31.87 31.87 31.87 32.03
p = 3 32.68 31.83 31.83 31.83 31.83 32.19

α = 0.95 tick 19.68 18.94 18.94 18.94 18.94 19.36
p = 1 19.87 18.82 18.82 18.82 18.82 19.26
p = 2 18.57 18.43 18.43 18.43 18.43 18.23
p = 3 18.02 18.41 18.41 18.41 18.41 18.25

α = 0.99 tick 5.44 5.33 5.33 5.33 5.33 5.52
p = 1 5.19 5.38 5.39 5.38 5.38 5.49
p = 2 4.66 4.69 4.69 4.69 4.69 4.55
p = 3 4.52 4.26 4.25 4.26 4.25 4.16

R = 200

α = 0.01 tick 4.66 4.74 4.74 4.74 4.74 4.72
p = 1 4.84 4.81 4.81 4.81 4.81 4.74
p = 2 4.28 4.54 4.43 4.42 4.43 4.22
p = 3 4.95 4.64 4.64 4.64 4.64 4.31

α = 0.05 tick 19.33 18.76 18.76 18.76 18.76 19.09
p = 1 19.36 18.81 18.81 18.81 18.81 19.01
p = 2 18.71 18.63 18.63 18.63 18.63 18.55
p = 3 18.51 18.41 18.41 18.41 18.41 18.53

α = 0.10 tick 33.68 33.03 33.03 33.03 33.03 33.05
p = 1 33.55 32.99 32.99 32.99 32.99 32.98
p = 2 33.13 32.56 32.56 32.56 32.56 32.55
p = 3 32.50 32.53 32.53 32.53 32.53 32.58

α = 0.30 tick 63.51 62.66 62.66 62.66 62.66 62.64
p = 1 63.46 62.65 62.65 62.65 62.65 62.62
p = 2 62.69 62.74 62.74 62.74 62.74 62.80
p = 3 63.13 63.04 63.04 63.04 63.04 62.97

α = 0.50 tick 68.74 68.12 68.12 68.12 68.12 68.02
p = 1 68.65 68.17 68.17 68.17 68.17 68.16
p = 2 68.55 68.05 68.05 68.05 68.05 68.18
p = 3 72.07 71.93 71.93 71.93 71.93 72.03

(continued on next page)
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Table 4. (continued)

R = 200

J = 1 J = 50

mean BMA1 BMA5 BMAR med

α = 0.70 tick 60.08 59.49 59.49 59.49 59.49 59.41
p = 1 60.10 59.48 59.48 59.48 59.48 59.44
p = 2 59.59 59.77 59.77 59.77 59.77 59.96
p = 3 65.21 60.55 60.55 60.55 60.55 60.79

α = 0.90 tick 32.19 31.45 31.45 31.45 31.45 31.34
p = 1 31.64 31.43 31.43 31.43 31.43 31.33
p = 2 32.48 31.93 31.93 31.93 31.93 32.07
p = 3 33.71 31.11 31.11 31.11 31.11 31.77

α = 0.95 tick 18.99 18.84 18.84 18.84 18.84 18.80
p = 1 18.94 18.92 18.92 18.92 18.92 18.84
p = 2 19.01 18.55 18.55 18.55 18.55 18.40
p = 3 18.58 18.99 18.99 18.99 18.98 18.44

α = 0.99 tick 4.75 4.41 4.41 4.41 4.41 4.42
p = 1 4.44 4.45 4.45 4.45 4.45 4.44
p = 2 4.68 4.34 4.34 4.34 4.34 4.22
p = 3 5.74 4.98 4.97 4.97 4.97 4.23

R = 300

α = 0.01 tick 4.78 4.77 4.77 4.77 4.77 4.77
p = 1 4.73 4.84 4.84 4.84 4.84 4.73
p = 2 5.06 5.06 5.01 5.02 5.02 4.84
p = 3 5.44 5.71 5.71 5.71 5.71 4.92

α = 0.05 tick 18.51 18.40 18.40 18.40 18.40 18.45
p = 1 18.48 18.27 18.27 18.27 18.27 18.20
p = 2 19.41 18.26 18.26 18.26 18.26 18.29
p = 3 18.39 18.28 18.28 18.28 18.28 18.23

α = 0.10 tick 32.62 31.95 31.95 31.95 31.95 31.85
p = 1 32.47 31.97 31.97 31.97 31.97 31.86
p = 2 32.14 32.57 32.57 32.57 32.57 32.71
p = 3 32.28 32.15 32.15 32.15 32.15 32.30

α = 0.30 tick 63.18 62.84 62.84 62.84 62.84 62.72
p = 1 63.02 62.87 62.87 62.87 62.87 62.72
p = 2 62.84 62.72 62.72 62.72 62.72 62.90
p = 3 62.88 62.80 62.80 62.80 62.80 62.74

α = 0.50 tick 68.48 67.69 67.69 67.69 67.69 67.65
p = 1 68.39 67.70 67.70 67.70 67.70 67.55
p = 2 68.85 67.91 67.91 67.91 67.91 67.88
p = 3 71.44 71.79 71.79 71.79 71.79 71.89

α = 0.70 tick 60.54 60.10 60.10 60.10 60.10 60.20
p = 1 60.52 60.08 60.08 60.08 60.08 60.08
p = 2 60.39 59.60 59.60 59.60 59.60 59.60
p = 3 68.61 59.50 59.50 59.50 59.50 61.56

α = 0.90 tick 33.31 32.75 32.75 32.75 32.75 32.62
p = 1 33.29 32.74 32.74 32.74 32.74 32.64
p = 2 33.32 32.78 32.78 32.78 32.78 32.74
p = 3 33.25 31.69 31.69 31.69 31.69 32.28
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Table 4. (continued)

R = 300

J = 1 J = 50

mean BMA1 BMA5 BMAR med

α = 0.95 tick 20.03 19.40 19.40 19.40 19.40 19.33
p = 1 19.89 19.38 19.38 19.38 19.38 19.36
p = 2 19.74 19.45 19.45 19.45 19.45 19.45
p = 3 20.96 19.28 19.28 19.28 19.28 19.44

α = 0.99 tick 5.96 5.30 5.30 5.30 5.30 5.46
p = 1 5.95 5.52 5.52 5.52 5.52 5.60
p = 2 6.20 5.69 5.69 5.69 5.69 5.42
p = 3 11.94 5.61 5.55 5.55 5.54 4.85

Notes: The four rows for each α report the tick loss of quantile predictors estimated by four different
tick-exponential loss function as defined in text. The out-of-sample evaluation period is 01/13/2004–
01/07/2005.

denotes βα,h(Dt ) is estimated using (2) and p = 1, 2, 3 denote that βα,h(Dt ) is
estimated using (9). We can see from the table that no matter which tick losses
we use, bagging predictors have lower quantile cost when α is small and have
no obvious advantage over the unbagged predictors when α is large.

6. Bagging quantile forecasts with different estimation algorithms

If we want to forecast the conditional mean, usually it is not a big problem to
estimate the parameters for linear models and most nonlinear models. However,
for quantile forecasts, since the quantile loss function is not differentiable, it is
very hard to estimate model parameters, especially when we use nonlinear quan-
tile regression models. Algorithms that can be used for the quantile estimation
have been reviewed by Buchinsky (1998), Koenker and Park (1996), Frenk et al.
(1994), Chernozhukov and Hong (2003), and Komunjer (2005) for both linear
quantile and nonlinear quantile models. We compare two different algorithms
for quantile estimation in this chapter in terms of bagging. The two algorithms
are the interior point algorithm introduced by Portnoy and Koenker (1997) and
minimax algorithm introduced by Komunjer (2005).

Portnoy and Koenker (1997) propose statistical pre-processing for general
quantile regression problems and combine it with “interior point” methods for
solving linear programs. The following is a brief explanation on how to apply
the interior algorithm for quantile estimation. If we put all the error terms us for
s = t −R+h+1, t −R+h+2, . . . , t in (5) into positive numbers, the quantile
estimation problem can be rewritten as

(10)β̂α,h(Dt ) = arg min
βα,h

(
αu+ + (1 − α)u−|Ys = X̃′

s−hβα,h + us

)
,
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where u+ is an (R − h)-vector of positive errors or zeros and u− is an (R − h)-
vector of absolute values of negative errors or zeros. Portnoy and Koenker
(1997) show that the optimization program (10) can be rewritten into the fol-
lowing dual formulations:

(11)

ω = arg max
ω

(
t∑

s=t−R+h+1

Ysωs

∣∣∣∣∣
t∑

s=t−R+h+1

X̃s−hωs = 0, ωs ∈ [−1, 1]
)

,

where ωs = 1 if us > 0, ωs = −1 if us < 0, −1 < ωs < 1 if us = 0; and
ωs is like a Lagrange multiplier on the constraints or marginal cost of relaxing
the constraints. The optimization problem in (11) is the standard formulations
of interior point methods for linear programs with bounded variables.

The interior point algorithm is easy to apply, runs fast, and is embodied in
most popular computer software (for example, GAUSS and MATLAB). How-
ever, the interior point algorithm can only be used for linear quantile models
with the tick loss function. If we have a nonlinear quantile regression model or
use the tick-exponential family introduced by Komunjer (2005) for the quantile
estimation, we have to choose another algorithm for parameter estimation.

Komunjer (2005) introduces a new quantile regression algorithm – the mini-
max algorithm, which is a more flexible method than the interior point algorithm
and can be used for nonlinear quantile regression models and more general quan-
tile loss functions. The idea is that the function ϕα

t+h(Yt+h,Qα(Yt+h|Xt )) in (7)
is twice continuously differentiable by parts and the optimization problem in
(8) can be represented as a maximum of two separated branches which are both
convex and twice continuously differentiable. Defining

ψα
s

(
Ys,Qα(Ys |Xs−h)

) ≡ exp
{
α
[
as

(
Qα(Ys |Xs−h)

) − ct (Ys)
]}

and

φα
s

(
Ys,Qα(Ys |Xs−h)

) ≡ exp
{−(1 − α)

[
as

(
Qα(Ys |Xs−h)

) − bt (Ys)
]}

,

the optimization problem in (8) becomes max ln ψα
1 (Y1,Qα(Y1|X0)) in the case

of t = 1 and h = 1, i.e.,

max min
{
ln ψα

1

(
Y1,Qα(Y1|X0)

)
, ln φα

1

(
Y1,Qα(Y1|X0)

)}
,

or equivalently,

− min
[
max

{− ln ψα
1

(
Y1,Qα(Y1|X0)

)
,− ln φα

1

(
Y1,Qα(Y1|X0)

)}]
.

Therefore, the maximization problem in (8) is transformed into a minimax prob-
lem.

Using this idea, Komunjer (2005, Theorem 6) shows that the QMLE estima-
tor β̂α,h(Dt ) from (8) can be written as a solution to a minimax problem:

min
βα,h(Dt )

[
max

t−R+h�k�t

{−Pk

(
Y,Qα(Y |X)

)}]
,
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where

Pk

(
Y,Qα(Y |X)

)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(R − h)−1
t∑

s=t−R+h+1

ln ψα
s

(
Ys,Qα(Ys |Xs−h)

)
, if k = t − R + h,

(R − h)−1

[
k∑

s=t−R+h+1

ln φα
s

(
Ys,Qα(Ys |Xs−h)

)

+
t∑

s=k+1

ln ψα
s

(
Ys,Qα(Ys |Xs−h)

)]
, if t − R + h < k < t,

(R − h)−1
t∑

s=t−R+h+1

ln φα
s

(
Ys,Qα(Ys |Xs−h)

)
, if k = t.

Intuitively, Komunjer’s minimax algorithm can be decomposed into two step.
First, for a given set of parameters, we assign all the forecast errors proper costs
to make sure all the forecast errors get positive punishment, i.e., maximize the
punishment for a given set of parameters. The second step is to find the set of
parameters that can minimize the forecast cost. However, the minimax algorithm
runs slower than the interior point algorithm and is therefore more computation-
ally costly.

To compare the two algorithms, we can check tick losses of quantile pre-
diction for S&P 500 daily returns reported in Table 4 (minimax algorithm) and
Table 5 (interior point algorithm). The interior point algorithm and minimax al-
gorithm give somewhat different results. Therefore, in small samples, bagging
may work differently depending on the estimation algorithm.

7. Bagging quantile forecasts with different quantile regression models

With the flexibility provided by the minimax algorithm, we check the perfor-
mance of bagging predictors on highly nonlinear quantile regression models –
artificial neural network models. Given model uncertainty, when the sample
size is limited, it is usually hard to choose the number of hidden nodes and
the number of inputs (lags) and estimate the large number of parameters in a
neural network model. Therefore, a neural network model can generate poor
predictions with a small sample. In such cases, bagging can do a wonderful job
improving forecasting performance.

The nonlinear quantile regression function we use in this section is the uni-
variate single-layer feed-forward artificial neural network function of White
(1992). Following the definition in (4), the neural network models are set with
Xt = (1Yt Yt−1 . . . Yt−l+1)

′, X̃t,j = [1 + exp(−X′
t γj )]−1 (j = 2, . . . , k),

X̃t = (X′
t X̃t,2 . . . X̃t,k)

′, βα,h = [β ′
1 β2 . . . βk]′ is an (l + k) vector, β1 is an

(l + 1) vector, and Qα(Yt+h|Xt ) = X̃′
tβα,h. We consider the number of nodes
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Table 5. Bagging quantile predictions for S&P 500 daily returns

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50

mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 6.72 5.04 5.01 5.03 5.04 4.59 4.71 4.80 4.80 4.80 4.80 4.62
α = 0.05 20.63 19.37 19.28 19.33 19.36 19.13 18.66 18.41 18.42 18.41 18.41 18.24
α = 0.10 34.69 31.95 31.95 31.95 31.95 31.47 32.64 32.00 32.00 32.00 32.00 32.00
α = 0.30 66.22 62.68 62.84 62.75 62.70 62.64 63.28 61.72 61.70 61.72 61.72 61.77
α = 0.50 70.19 68.54 68.6 68.59 68.55 68.61 68.40 67.96 67.95 67.97 67.96 67.96
α = 0.70 59.95 59.54 59.51 59.53 59.54 59.16 60.45 60.19 60.19 60.19 60.19 60.22
α = 0.90 31.96 31.38 31.39 31.39 31.38 31.33 33.15 32.40 32.41 32.40 32.40 32.37
α = 0.95 19.98 18.38 18.41 18.4 18.38 18.86 19.91 19.69 19.68 19.68 19.69 19.57
α = 0.99 5.36 5.55 5.56 5.56 5.55 6.01 5.97 5.40 5.40 5.40 5.40 5.41

Note: Each cell gives the tick loss of quantile prediction over the period 01/13/2004–01/07/2005.
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(k − 1) from 0 to 5 and number of lags (l) from 1 to 3. Both l and k are se-
lected for each estimation process using the SIC. We choose one combination of
p and l from 18 candidates for each prediction. When k = 1, we have a linear
regression model; when k � 2, we have a nonlinear regression model.

The neural network model has been widely used in modeling unknown non-
linearities in economics and finance. However, with the choice of explanatory
variables and number of nodes, the model uncertainty and parameter estimation
problems can be very serious. Lee (2000) introduces a method called Bayesian
Random Searching (BARS) to choose the optimal number of hidden nodes as
well as the best subset of explanatory variables. Instead of choosing only one,
he selects several best-performing models and averages over them. He also
provides the asymptotic consistency proof of the posterior neural network re-
gression based on the i.i.d. normal error term assumption. The BARS method is
built upon the model space searching work by Raftery et al. (1997) and is similar
to the approach of Chipman et al. (1998) in their implementation of Bayesian
classification and regression tree (CART). The BARS method is simply BMA-
weighted bagging when our basic model is the artificial neural network.

Because of the large number of parameters to be estimated and the highly
nonlinear structure, we can expect that the neural network model will generate
poor predictions if we have a small sample size, and we can expect that bagging
can play a crucial rule in improving the performance of neural network mod-
els. The only problem with bagging neural network models is that we need to
choose the number of lags and nodes and estimate all the parameters for each
combination of lags and nodes, so it takes substantial computer time to gener-
ate predictions. Therefore, we only conduct one empirical experiment to give
a rough idea on how bagging predictors work for neural network models. We
make quantile predictions with α = 0.1, 0.3, 0.5, 0.7, and 0.9 using S&P 500
monthly data which is summarized as follows:

In-sample period Out-of-sample period T + 1 P

S&P 500 October 1982–
October 1995

November 1995–
February 2004

257 100

From Table 6 and Figure 4, we can see that even when the in-sample size R is
small, unbagged neural network predictors already show some advantage over
the simple polynomial (PN) predictors because of the flexibility of neural net-
work (NN) models to capture nonlinearities in the data. Bagging works well for
both PN and NN models, and the improvement by bagging is quite substantial
when R is small. When the sample size R is large, the neural network model
shows a much clearer advantage over polynomial predictors by always gener-
ating better predictions, and yet bagging neural network predictors still make
further improvement over unbagged neural network predictors. Therefore, using
bagging predictors, we can save a more complicated prediction model which
has more flexibility to capture nonlinear structure but is more difficult to esti-
mate.
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Table 6. Bagging quantile predictions for S&P 500 monthly returns with different regression models

R = 10 R = 20 R = 30 R = 40 R = 50 R = 60 R = 70 R = 80 R = 90 R = 100

α = 0.10 PN J = 1 176.40 148.05 127.88 110.75 128.19 104.49 108.95 106.48 118.67 109.68
J = 50 155.54 113.05 111.78 96.33 98.96 95.82 88.37 99.42 103.92 99.36

NN J = 1 147.72 103.77 107.56 106.82 96.68 73.58 76.52 63.29 81.39 76.71
J = 50 106.78 95.21 104.30 100.84 92.39 71.48 65.61 66.29 73.10 69.59

α = 0.30 PN J = 1 259.51 215.73 197.99 190.70 182.65 187.37 190.61 192.54 188.85 187.91
J = 50 222.54 163.38 179.19 179.46 182.48 180.13 178.97 181.44 182.24 183.60

NN J = 1 250.14 190.15 188.59 170.97 159.59 139.24 134.02 132.63 133.01 131.44
J = 50 176.34 163.32 165.44 158.73 150.32 130.68 122.14 127.02 132.52 129.04

α = 0.50 PN J = 1 285.33 221.18 201.47 203.87 205.49 206.28 204.95 208.30 208.57 201.01
J = 50 230.49 161.15 173.50 190.35 187.59 185.38 196.26 196.06 188.81 193.78

NN J = 1 238.24 212.11 201.32 178.79 154.36 146.44 146.73 143.45 145.34 142.54
J = 50 186.58 179.40 172.79 168.43 158.84 139.33 131.57 136.56 140.16 136.60

α = 0.70 PN J = 1 235.22 167.92 171.43 183.12 171.77 169.55 170.17 165.58 171.91 167.27
J = 50 170.15 170.60 159.98 157.00 167.01 166.43 163.22 167.65 157.78 167.29

NN J = 1 206.36 158.48 160.24 140.66 144.30 125.15 115.57 124.37 126.95 115.15
J = 50 152.51 150.00 144.50 138.59 133.36 118.25 109.09 114.22 116.41 110.17

α = 0.90 PN J = 1 224.54 105.44 103.49 102.94 86.34 82.77 80.88 80.34 82.36 77.69
J = 50 164.33 60.45 81.57 83.29 75.61 78.54 76.53 75.60 75.68 76.43

NN J = 1 141.10 101.57 90.12 84.99 78.12 69.39 67.28 67.45 61.12 56.61
J = 50 85.78 79.45 79.51 78.07 72.02 62.39 62.00 62.40 59.62 55.13

Note: The four rows for each α report the tick losses of quantile predictors of S&P 500 monthly returns over the period November 1995–February 2004 using polynomial
(PN), mean bagging PN, neural network (NN), and mean bagging NN predictors.
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Notes: The five panels report the tick losses of quantile predictors of S&P 500 monthly returns over
the period November 1995–February 2004 using polynomial and neural network quantile regression
models. PN represents the forecast loss from polynomial model and NN represents the forecast loss
from neural network model.

Fig. 4. Bagging quantile predictions with different regression models.
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8. Bagging binary and quantile forecasts in different frequencies

We are concerned about prediction at different frequencies because the pre-
dictability of time series may be different in different frequencies. As discussed
by, e.g., Christofferson and Diebold (2006), the sign predictability of stock re-
turns may depend on the frequency. The optimal binary prediction Gt,1(Xt ) that
minimizes EYt+1(ρα(Gt+1−Gt,1(Xt ))|Xt ) will be the α-quantile of Gt+1 condi-
tioning on Xt , which can be achieved by an indicator function of the α-quantile
of Yt+1 conditioning on Xt (Lee and Yang, 2006), i.e.,

Gt,1(Xt ) = Qα(Gt+1|Xt ) = 1
(
Qα(Yt+1|Xt ) > 0

)
,

where the second equation holds because the indicator function 1(·) is monotonic
(Powell, 1986).

We conduct bagging predictions for S&P 500 binary and quantile prediction
at both daily (Table 2A; Figure 2, panel (e); Table 5; Table 7) and monthly (Ta-
ble 6, Figure 5) frequencies. We find that the bagging quantile prediction works
in a similar pattern for both daily (Table 5) and monthly frequencies (Table 6).
However, for binary predictions, bagging works much less effectively with high
frequency (daily) series, perhaps because daily signs may be too noisy and diffi-
cult to forecast anyway. This result is consistent with Christofferson and Diebold
(2006).

9. Pretesting and bagging

In this section we discuss a potential extension of this chapter, with pretesting as
considered in Bühlmann and Yu (2002), Inoue and Kilian (2006), and Stock and
Watson (2006). Bühlmann and Yu (2002) show that bagging works by smooth-
ing the hard threshold function (e.g., an indicator function). To see this, suppose
the bootstrap works for Ȳn = 1

n

∑n
i=1 Yi and Zn ≡ n1/2(Ȳn−μ)/σ →d N(0, 1)

as n → ∞. Let y ≡ μ + cσn−1/2. Consider a binary model,

θ̂n(y) = 1(Ȳn > y)

= 1
(
Ȳn > μ + cσn−1/2)

= 1
(
n1/2(Ȳn − μ)/σ > c

)
= 1(Zn > c),

whose bagging predictor is

θ̂n,B(y)=E
∗θ̂∗

n (y)

=E
∗1

(
Ȳ ∗

n > y
)

=E
∗1

(
n1/2(Ȳ ∗

n − Ȳn

)
/σ > n1/2(y − Ȳn)/σ

)
≈1 − Φ

(
n1/2(y − Ȳn)/σ

)
=1 − Φ

(
n1/2(μ + cσn−1/2 − Ȳn

)
/σ

)
=1 − Φ(c − Zn),
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Table 7. Bagging binary predictions for S&P 500 daily returns

R = 100 R = 300

J = 1 J = 50 J = 1 J = 50
mean BMA1 BMA5 BMAR med mean BMA1 BMA5 BMAR med

α = 0.01 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37 1.37
α = 0.05 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85
α = 0.10 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70 13.70
α = 0.30 43.60 40.80 41.10 40.80 40.80 40.80 41.20 41.10 41.10 41.10 41.10 41.10
α = 0.50 60.50 58.00 58.00 58.00 59.00 58.00 57.00 56.00 56.00 55.50 56.00 56.00
α = 0.70 35.70 34.30 34.30 34.30 34.30 34.30 33.90 33.90 33.90 33.90 33.90 33.90
α = 0.90 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30 11.30
α = 0.95 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65
α = 0.99 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13

Note: Each cell reports the asymmetric binary prediction loss with parameter α over the period 01/13/2004–01/07/2005.
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Note: The nine graphs above report the asymmetric losses of binary predictors of S&P 500 monthly returns over the period November 1995–February 2004.

Fig. 5. Bagging binary predictions for S&P 500 Monthly Returns.
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where ≈ denotes asymptotic equivalence as n → ∞. When y = μ, θ̂n(y) is
most unstable. Compare the predictors at this value y = μ (or c = 0). When
y = μ (c = 0), θ̂n(μ) has mean 1/2 and variance (1/2)(1 − 1/2) = 1/4.
In comparison, when y = μ (c = 0), the bagging predictor θ̂n,B(μ) ≈ 1 −
Φ(−Zn) = Φ(Zn) = U has mean 1/2 and variance 1/12. Hence, bagging
reduces the variance of the predictor from 1/4 to 1/12.

Bühlmann and Yu (2002) use the idea that bagging works via smoothing
hard-thresholding into soft-thresholding for the location and regression models.
Consider a location model with pretesting (PT),

PT = θ̂n(y) = β̂0,n1(β̂0,n > y) = β̂0,n1(Zn > c),

and its bagging predictor (BA),

BA = θ̂n,B(y) = E
∗θ̂∗

n (y) = E
∗β̂∗

0,n1
(
β̂∗

0,n > y
) = E

∗β̂∗
0,n1

(
Z∗

n > c
)
.

Here the location parameter is β0 if Zn > c and zero otherwise. The PT model
has hard thresholding around Zn = c, while BA has smooth soft-thresholding.

Bühlmann and Yu (2002) also consider the variable-selection in a regression
model by pretesting:

PT = θ̂n(y) =
M∑

j=0

β̂j,n1(β̂j,n > y)x
(j)
n =

M∑
j=0

β̂j,n1(Zn,j > c)x
(j)
n ,

where the j th variable x
(j)
n is included if its coefficient is bigger than a given

threshold c. The variable-selection conducted via pretesting introduces hard-
thresholding. Bagging can smooth hard-thresholding in this case as follows:

BA = θ̂n,B(y) = E
∗θ̂∗

n (y) = E
∗

M∑
j=0

β̂∗
j,n1

(
Z∗

j > c
)
x

(j)
n .

Inoue and Kilian (2006) exploit the idea that bagging can reduce the variance
of the predictor from a regression model when the predictors/regressors are se-
lected by pretesting to show how bagging works for forecasting inflation.

Breiman (1996) and Lee and Yang (2006) consider the case when c = 0. In
other words, they did not consider pretesting, and bagging is applied to an un-
restricted regression (UR) model with all the M predictors/regressors included
(without selecting a subset of them by pretesting). In this case, bagging would
still work, especially when the UR model is bad (particularly in small samples).
Certainly c = 0 is not optimal, as bagging would work better with some larger
values of c. If c = 0, bagging is not asymptotically admissible (Stock and Wat-
son, 2006). An example is shown in Lee and Yang (2006) for bagging binary
prediction with majority voting, where bagging works well in small samples but
does not work asymptotically with c = 0. The choice of c is like the choice of the
shrinkage parameter, as shown in Stock and Watson (2006) and also noted in In-
oue and Kilian (2006). Stock and Watson (2006) show that c = 1.96 is too small
for bagging to be comparable to factor methods. As they note, c = 2.58 makes
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bagging work better. In this chapter, we consider only c = 0 (no pretesting) for
both binary and quantile prediction, as in Lee and Yang (2006). With pretest-
ing (c > 0), we expect that bagging would work better, based on the results
of Bühlmann and Yu (2002), Inoue and Kilian (2006), and Stock and Watson
(2006). Investigation of bagging with pretesting for the binary and quantile pre-
diction is left for future work. It can be conjectured that pretesting would be
more beneficial in improving bagging, particularly for longer multi-step fore-
casting.

10. Summary and conclusion

Bagging is a smoothing method designed to improve predictive ability under
the presence of parameter estimation uncertainty and model uncertainty. There
are two ways of aggregating – averaging or voting. Bagging quantile predictors
are constructed via weighted averaging over predictors trained on bootstrapped
training samples. Bagging binary predictors are conducted via (majority) voting
on predictors trained on the bootstrapped training samples.

To understand how bagging works, various explanations have been made.
It may be hard to understand the meaning of multiple training set D(j)

t in the
time series circumstances, since time is not repeatable. However, considering an
example of estimating and forecasting with panel data may be helpful. Suppose
we want to forecast consumption of a household next period. When historical
observations of the interested household are very limited, estimated parameters
and predictions will have large variances, especially for nonlinear regression
models. If we can find some other households that have similar consumption
patterns (similar underlying probability distribution, P), it would be better to
use historical observations from all similar households rather than just from a
particular household in the estimation process, though we only use data for this
particular household to forecast. Therefore, the ensemble aggregating predictor
is like finding similar households, and the bootstrap aggregating predictor is like
finding similar bootstrapped (artificial) households.

What was done in Lee and Yang (2006) is to examine how bagging works:
(i) with equal-weighted and BMA-weighted averaging; (ii) for one-step-ahead
binary prediction (with voting) and for one-step-ahead quantile prediction (with
averaging); (iii) with a particular choice of loss function (linlin, check); and
(iv) with a particular choice of regression model (linear, polynomial).

What we do in this chapter (“Further Issues”) is to consider: (i) different
aggregating schemes (trimmed-mean bagging, median bagging); (ii) multi-step
forecast horizons (to see how bagging performs in situations with greater un-
certainty); (iii) a more general class of loss functions, i.e., the so-called tick-
exponential family, to examine the effect of the convexity of the loss function
(in addition to the check loss for quantile estimation); (iv) different algorithms
(the minimax algorithm vs. the interior point algorithm for the estimation of the
quantile model); (v) different regression models (polynomial quantile and neural
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network quantile models); and (vi) different data frequencies (monthly and daily
S&P 500 returns).

We find the following. (i) Median bagging and trimmed-mean bagging can be
more robust to extreme predictors from bootstrap samples and have better per-
formance than equally weighted bagging predictors. (ii) Bagging works more
with longer forecast horizons. (iii) Bagging works well under more general
tick loss functions. (iv) Bagging may work differently with different quantile
estimation algorithms. (v) Bagging works well with highly nonlinear quantile
regression models (e.g., artificial neural network). (vi) Bagging quantile predic-
tors is not affected by the frequency of the data, while bagging binary predictor
is significantly affected when daily returns are considered instead of monthly
returns.

From comparing different averaging schemes, we find that (i) the BMA-,
median-, and trimmed-bagging predictors have better predictive performance
than equal-weighted bagging predictors, even when we have a relatively large
sample size. (ii) The median bagging is generally the best. (iii) The outstand-
ing performance of median bagging predictors is most obvious when α values
are close to 0 or 1, where the extreme value problem is most serious because
there are fewer observations in the tails and parameters estimates are sensitive
to the sample. However, the advantage of median bagging predictors is not as
clear when α values are close to 0.5. (iv) Bagging works more when the sample
size is smaller. (v) Bagging works more when α-quantiles lie on the sparse part
of the error distribution. Our explanation is that for the sparse part of the er-
ror distribution, there are fewer observations, and therefore quantile predictions
are sensitive to the estimation sample and bagging predictors work better for
unstable predictions.

From bagging multi-step quantile forecasts, we find that the performance of
bagging relative to unbagged predictor gets better as the forecast horizon in-
creases. From examining how other algorithms may work for the bagging, we
find that the interior point algorithm and minimax algorithm give somewhat
different results. Therefore, in small samples, bagging may work differently
depending on the estimation algorithm. From checking the performance of bag-
ging predictors on highly nonlinear quantile regression models (artificial neural
network models), we find that, given model uncertainty when the sample size
is limited, it is usually hard to choose the number of hidden nodes and the
number of inputs (lags), and to estimate the large number of parameters in a
neural network model, in which cases, using bagging predictors, we can save
the complicated model (more flexible to capture nonlinear structure but harder
to estimate) for out-of-sample forecasting.

Finally, we conclude with some additional comments on how and/or why
bagging may be useful in the presence of structural breaks and model uncer-
tainty.

In the presence of structural breaks. In this chapter, we find that bagging
may work more when the size of the training sample is small and the predictor
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is unstable. Bagging seems to smooth the parameter estimation uncertainty due
to a small sample to improve the forecasting performance. The potential advan-
tage of bagging lies in areas where small samples are common. Bagging may be
useful when structural breaks are frequent so that simply using as many observa-
tions as possible is not a wise choice for out-of-sample prediction, and forecasts
can “fail” in the presence of breaks. It is very likely that the optimal estimation
window size for generating forecasts will be affected by the breaks, as recently
shown by Clark and McCracken (2004) and Pesaran and Timmermann (2007).
It would be interesting in future work to examine more extensively how bagging
performs in the presence of structural breaks.

In the presence of model uncertainty. Bagging is a smoothing method to im-
prove predictive ability under the presence of parameter estimation and model
uncertainty. For example, as we find in Section 4, the gains to bagging increase
with the forecast horizon, as there is more uncertainty at longer forecast hori-
zons and more smoothing can operate. Bagging may also improve forecasting
when there is uncertainty concerning the measurement of a variable, functional
form, and best proxy to use for a variable of interest. These are forms of model
uncertainty that bagging may smooth it out, and it would also be interesting to
examines this in future research. A number of issues are left for future research,
even after the “Further Issues” considered in the present chapter.
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