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Abstract

The �nite sample theory using higher-order asymptotics provides better approximations of
the bias for a class of estimators. Phillips (1991) demonstrated the higher-order asymptotic
expansions for LAD estimators. Rilstone, Srivastava and Ullah (1996) provided the second-
order bias results of conditional mean regression estimators. This paper develops new analytical
results on the second-order bias of the conditional quantile regression estimators, which enables
an improved bias correction and thus to obtain improved quantile estimation. In particular, we
show that the second-order bias is larger towards the tails of the conditional density than near
the median, and therefore the bene�t of the second-order bias correction is greater when we are
interested in the deeper tail quantiles, e.g., for the study of income distribution and �nancial
risk management. The Monte Carlo simulation con�rms the theory that the bias is larger at
the tail quantiles, and the second-order bias correction improves the behavior of the quantile
estimators.
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1 Introduction

The �nite sample properties have been almost entirely developing for the mean regression models.1

Rilstone, Srivastava and Ullah (RSU, 1996) developed the second-order bias of a class of nonlinear

estimators in models with i.i.d. samples. Bao and Ullah (2007) analyzed the RSU results for time

series dependent observations. On the other hand, there is little �nite sample results in the quantile

regression although there is extensive literature on the �rst-order asymptotic results, see Koenker

and Bassett (1978), and Koenker (2005). The literature on higher-order distributional properties

focused on the order of the remainder term of the expansion of
p
N
�b� � ��, that is often referred

to as the second-order asymptotic (distributional) representations (SOADR), see Bahadur (1966),

Kiefer (1967), and Jureckova and Sen (1996). Unlike these literature, our goal is to derive the

explicit expression of the second-order bias up to O(N�1); rather than only studying the asymp-

totic distribution of the remainder term. Portnoy (2012) provided an alternative approximation

expansion for the quantile process with the remainder bound of nearly
p
N; beyond that provided

by the Bahadur representation, and made the bias up to O(N�1).

The challenge to study the high-order asymptotic properties of quantile estimators is due to the

non-di¤erentiability of the objective function for the quantile estimation. Horowitz (1998) smoothed

the objective function to deal with the non-di¤erentiability. Alternatively, Komunjer (2005) and

and Elliott, Komunjer, and Timmermann (2005) focused on a family of conditional quantile models

with the �smooth�objective functions that are continuously di¤erentiable.2 Instead of smoothing

an objective function (Horowitz 1998) or of using a smooth objective function (Komunjer 2005),

Phillips (1991) overcame the non-di¤erentiability of least absolute deviation (LAD) regression by

using the generalized function (or Dirac delta function).3 In this paper, we follow Phillips (1991) and

Chernozhukov, Fernandez-Val, and Galichon (2007), with noting that Chernozhukov, Fernandez-

1We refer to the higher-order asymptotic properties as the �nite sample properties. The �nite sample properties
in this paper is not the exact moment or distributional properties. See Ullah (2004).

2Komunjer (2005, page 147) states, �The non-di¤erentiability problem has prompted several authors to develop as-
ymptotic normality results under a weaker set of assumptions, generally requiring that r�LT (�) exist with probability
one. Examples include: Daniels (1961), Huber (1967), Pollard (1985), Newey and McFadden (1994). In this paper,
we focus on conditional quantile models that are continuously di¤erentiable on � (A0), so that the log-likelihood
function LT (�) is continuously di¤erentiable a.s.-P0 on �.�

3Phillips (1991, p. 451) states, �If the criterion function has nonregularities like discontinuities in its derivatives,
these may be accommodated directly by the use of generalized functions, provided the discontinuities are smoothed
out asymptotically.�
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Val, and Galichon (2007, Appendix C) state that it is an informal justi�cation in using the Dirac

delta function.4

We develop the second-order bias of quantile estimators using the Dirac delta function. We

discover that while the median is unbiased for symmetric error distributions and the bias of the

other quantiles is larger at the tails of any distribution. The Monte Carlo simulations results present

that the second-order bias corrected estimator has better behavior than the uncorrected ones.

The paper is organized as follows. In Section 2, we present the moment condition of the

quantile regression and the assumptions used in this paper. In Section 3, we develop the high-order

asymptotic expansion of quantile estimators and derive the second-order bias of quantile estimators.

In Section 4, we present Monte Carlo simulations. Section 5 concludes.

Notation: The notation used in the paper is summarized here. fyjx (�) denotes the density

of y conditional on x; f (j)yjx(�) denotes the jth-order derivative of fyjx(�), fu(�) denotes the density

of u; and f (j)u (�) denotes the jth-order derivative of fu(�): The jth-order partial derivative of a

matrix A(�) is de�ned as rj�A(�). If A(�) and � are both k � 1 vectors, then r
j
�A(�) is a k � kj

matrix. For a matrix A, kAk denotes the usual norm, [trace (AA0)]1=2 : If A is a k � 1 vector, then

kAk = (A0A)1=2 : The Kronecker product is de�ned in the usual way. For an m� n matrix A and

a p � q matrix B; we have A 
 B as an mp � nq matrix. X denotes the expectation E(X) of a

random vector X.

Generalized function: Let �(z) = 1 (z � 0) is a step function. The delta function is de�ned as

�(z) = d�(z)=dz: See Gelfand and Shilov (1964, p. 4). Denote the derivatives of delta function

by �(j) (�) for j = 1; 2; : : : : The properties of the delta function are critical in this paper, which

are summarized here: (i) �(�z) = �(z); (ii) �(1)(�z) = ��(1)(z); (iii) �(2)(�z) = �(2)(z), (iv)R +1
�1 �(z � a)f(z)dz = f(a); and (v)

R +1
�1 �(n)(z � a)f(z)dz = (�1)n

R +1
�1 �(z � a)f (n)(z)dz =

(�1)nf (n)(a); where f : R ! R is a real function di¤erentiable around a 2 R: See Gelfand and

Shilov (1964, pp. 4, 5, 26). More properties of the delta function used in this paper are: (vi)

�(z)�(z) = 1
2�(z):

4We thank a referee for this point and the reference.
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2 Conditional Quantile Estimators

Consider a random variable y from distribution F (�): Given � 2 (0; 1); consider a general linear

regression quantile model, q� = x0��; where q� is the conditional �-quantile of y; the quantile

estimators �� vary across �: Then the location-scale version of the linear regression quantile model

is yi = x0i��+ui; where yi is a scalar, xi is a k�1 vector, and ui is the error de�ned as the di¤erence

between yi and its conditional �-quantile. For simplicity, we set xi and ui to be i.i.d. in this paper.5

To simplify the notation, we use � to denote �� hereafter. The k � 1 vector quantile estimators b�
can be obtained by solving min

�
E[L�(�)] = E[(�� 1(yi < x0i�)) (yi � x0i�)]: The moment condition

can be written as r1�E[L�(�)] = E[(��1(yi < x0i�))(�xi)] = E[si(xi; �)]; where the score function

si(xi; �) � si(�) = (��1(yi < x0i�))(�xi) is a known k�1 vector-valued function of the observable

k-dimensional random vectors xi and a parameter vector � 2 Rk with true value �0 such that

E[si(�)] = 0 holds only at � = �0 for all i. The sample moment condition can be written as

	N (�) =
1

N

NX
i=1

si(�): (1)

An estimator b� is a solution to a set of moment equations of the form
	N (b�) = 1

N

NX
i=1

si(b�) = 0: (2)

Equation (2) is the �rst-order conditions for the quantile estimator b�; which is the analogous to
equation (4) in Phillips (1991, p. 452) for the LAD estimator.6

RSU (1996) developed the second-order bias of a class of nonlinear estimators in models with

i.i.d. samples. Assumptions in RSU (1996) are su¢ cient to obtain the stochastic expansion of b�.
Now we give the modi�ed high-level Assumptions A-C for quantile models as follows and some

remarks are made.

Assumption A. The jth-order derivative of si(�) exists in a neighborhood of �0, and

E
h
jjxijj(j+1) f (j�1)u (0)

i2
< 1; for j = 1; 2; with f (0)u (0) = fu(0):

5 In mean regression, Bao and Ullah (2007) show that the RSU results continue to hold for non-i.i.d cases. The
same may be the case in quantile regression, which we leave it to our future work.

6We note that the empirical moment equation for quantile regression may not be exactly zero but 	N (b�) =
op
�
N�1=2

�
as discussed in Angrist, Chernozhukov, and Fernandez-Val (2006, Appendix). We thank a referee for this

reference. This may a¤ect the order of the remainder term of b� � �0 for quantile regression as in Bahadur (1966).
See equation (8). Nevertheless, we will show in the next section that this would not a¤ect the second-order bias as
long as equation (9) holds.
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RSU (1996) assumes that the jth-order derivative of score function si(�) exists in a neighbor-

hood of �0, and E
rj�si(�0)2 <1; for j � 1:We modify this assumption for quantile models. To

derive the second-order bias of b�; we require j = 1; 2. Noting that 1(yi � x0i� < 0) = 1(x0i� � yi �
0) � �(x0i� � yi) and �(z) = d�(z)=dz; the �rst derivative of a k � 1 vector si(�) with respect to a

k � 1 vector � is a k � k matrix, r1�si(�) = r1� [(�� 1(yi < x0i�))(�xi)] = xix0i�(x0i� � yi); and

E
r1�si(�0)2 = E hkxik2 fyjx(x0i�0)i2 <1: (3)

The second-order derivative of a k � 1 vector si(�) with respect to a k � 1 vector � is a k � k2

matrix, r2�si(�) = r1� [xix0i�(x0i� � yi)] = (xix0i)
 x0i�(1)(x0i� � yi); and

E
r2�si(�0)2 = E hkxik3 f (1)yjx(x0i�0)i2 <1: (4)

Since the conditional density of yi given xi evaluated at yi = x0i�0 is the same as the conditional

density of ui given xi evaluated at ui = 0; and since ui and xi are independent, we have fyjx (x0i�0) =

fu (0) : Then the above boundedness conditions on the derivatives can be rewritten as shown in

Assumption A.

Assumption B. For some neighborhood of �0;
�
Er1�	N (�)

��1
= O(1).

Note that
�
Er1�	N (�)

��1
= (E (xix

0
i) fu(0))

�1 = O(1) from (3). Under Assumption B, we will

be able to rewrite (12) as (13) to obtain the second-order bias in the next section.

Assumption C. (i) For any "! 0; rj (�) �
rj�1� si(�)�rj�1� si(�0)�r

j
�si(�0) (� � �0)

 = k� � �0k !
0 as � ! �0; E

h
supk���0k<" rj (�)

i
<1; with probability 1. (ii)N�1PN

i=1r
j
�si(�0)

p! E
h
rj�si(�0)

i
for j � 1; where r0�si(�) = si(�):

Assumption C(i) gives the modi�ed Lipschitz condition for a quantile model. To derive the

second-order bias of the quantile estimators, we use the high-order Taylor expansion of 	N (�)

around �0; which satis�es 	N (b�) = 0: This approach requires 	N (�) and the derivatives of 	N (�)
to be su¢ ciently smooth, which is not the case with the quantile regression. Assumption C requires

not only the stochastic equicontinuity to handle the nonsmooth objective function but also the

higher-order stochastic equicontinuity to handle nonsmooth derivatives of the objective function.

This problem has been discussed by Newey and McFadden (1994, Theorem 7.3), Horowitz (1998),
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Komunjer (2005), and Elliott, Komunjer, and Timmermann (2005). The basic insight is that

smoothness of a function can be replaced by the smoothness of its limit if the remainder term is

small enough. Therefore, the stochastic equicontinuity conditions do not require di¤erentiability of

the criterion function but require that the remainder term of the expansion can be controlled in a

particular way over a neighborhood of �0. Assumption C(ii) gives the weak law of large numbers

condition. This condition is stated and discussed in Phillips (1991, pp. 453-455) and it requires

that the right-hand-side, E
h
rj�si(�0)

i
for j � 1, be bounded, which we veri�ed in the discussion

of Assumption A above.

3 Second-order Bias of Quantile Estimators

To obtain the second-order bias for quantile estimators which is to be summarized in Theorem 1

below, let us begin with taking the Taylor�s expansion of 	N (b�) = 0 around �0,
0 = 	N +r	N (b� � �0) + 12r2	N h

(b� � �0)
 (b� � �0)i+ op �N�1� ; (5)

where 	N = 	N (�0) : The ordinary stochastic expansion of b� can be obtained from equation (5).

However, a di¢ culty arises from the derivatives of the moment condition (1). Using the properties

of the delta function summarized earlier at the end of Section 1 or in Phillips (1991, p. 455), it

can be shown that r	N
p! r	N ; i.e., 1

N

PN
i=1 xix

0
i�(x

0
i� � yi)

p! E (xix
0
i) fu(0): See Gelfand and

Shilov (1964, p. 26). Then, similar to Phillips (1991), we rewrite (5) as

0 = 	N +r	N (b� � �0) + �r	N �r	N� (b� � �0) + 12r2	N h
(b� � �0)
 (b� � �0)i+ op �N�1�

� A1 +A2 +A3 +A4 + op
�
N�1� : (6)

To see the order of each of these terms, we recall the asymptotic distribution of the quantile

estimators when xi and ui are i.i.d.

p
N(b� � �0) d! N

�
0;
�(1� �)
[fu(0)]

2

�
E
�
xix

0
i

���1�
: (7)

See, e.g., Koenker (2005), and also Phillips (1991) for the LAD estimator with � = 0:5. As

this textbook result states that the quantile estimator b� is pN -consistent estimator, using the
same argument in Phillips (1991, p. 455), we can obtain that the orders of both A1 = 	N and
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A2 = r	N (b���0) are Op �N�1=2�. In the following Lemma 1 and Lemma 2, we discuss the orders
of A3 and A4.

Before doing that, it is important to recall the following result in this literature. Let b� � �0 =
a�1=2+RN ; where a�1=2 is a random sequence of Op

�
N�1=2� with zero mean E �a�1=2� = 0 and RN

is the remainder term of higher order. Bahadur (1966) and Kiefer (1967) established the celebrated

results on the order of RN , that is

RN = Op

�
N�3=4 (log logN)3=4

�
: (8)

See Koenker (2005, pp. 122-123), and also Jureckova and Sen (1996, pp. 196-202), and van der

Vaart (1998 p. 310). Note that (8) implies that

RN = Op

�
N�3=4+"

�
for some small " > 0: (9)

Below we use this result to obtain Lemma 1(b). Our goal is to obtain the expression of the bias

term E (RN ) = E
�b� � �0� up to the second-order i.e., of order O (N�c) with c � 1: We �rst state

�ve lemmas whose proofs are made available in supplemental appendix.

Lemma 1. Let

A3 =
�
r	N �r	N

�
(b� � �0)

=
�
r	N �r	N

�
a�1=2 +

�
r	N �r	N

� h
(b� � �0)� a�1=2i

� A31 +A32: (10)

Then, (a) A31 = Op(N�7=6); and (b) A32 is smaller than Op(N�1): �

Lemma 2. Let

A4 =
1

2
r2	N

h
(b� � �0)
 (b� � �0)i

=
1

2
r2	N

h
(b� � �0)
 (b� � �0)i+ 12 �r2	N �r2	N� h(b� � �0)
 (b� � �0)i

� A41 +A42; (11)

Then, (a) A41 = Op(N�1); and (b) A42 is smaller than Op(N�1): �
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Given Lemmas 1-2, we can now rewrite equation (6) as

0 = A1 +A2 +A31 +A41 + op
�
N�1� (12)

= 	N +r	N (b� � �0) + �r	N �r	N� a�1=2 + 12r2	N �a�1=2 
 a�1=2�+ op �N�1� :
In equation (12), it is important to note that we keep the term A31 even though it is Op(N�7=6),

because we �nd that the �expectation� of A31 becomes O(N�1) so that E (A31) is a part of the

second-order bias, as we will show shortly.

Solve for b� � �0 in equation (12) to obtain
b� � �0 = �r	N

�1
	N �r	N

�1 �r	N �r	N� a�1=2 � 12r	N�1r2	N �a�1=2 
 a�1=2�+ op �N�1�
= �Q	N �QVNa�1=2 �

1

2
QH2

�
a�1=2 
 a�1=2

�
+ op

�
N�1� (13)

� B1 +B2 +B3 + op
�
N�1� ;

where Hj = rj	N ; for j = 1; 2; Q = H1
�1
; VN = H1 � H1: Note that multiplying equation (13)

by
p
N gives the same as equation (15) of Phillips (1991, p. 457). In order to compute the bias

of b�, that is E �b� � �0� ; we now examine the expectations of the three terms B1; B2; B3 in (13).
Lemma 3 shows that E (B1) is the �rst-order bias which is zero, while Lemmas 4 and 5 show the

second-order bias E (B2 +B3).

Lemma 3. Let B1 = �Q	N : Then, (a) B1 = Op(N�1=2) and (b) E (B1) = 0: �

Lemma 4. Let

B2 = �QVNa�1=2 = Q
�
H1 �H1

�
Q	N = QH1Q	N �QH1Q	N � B21 +B22: (14)

Then, (a) B21 = Op(N�7=6), (b) E (B21) = O(N�1), (c) E (B22) = 0; and (d) E (B2) = O(N�1):�

Lemma 5. Let B3 = �1
2QH2

�
a�1=2 
 a�1=2

�
: Then, (a) B3 = Op(N

�1) and (b) E (B3) =

O(N�1): �

Given Lemmas 3-5, and from equation (13), the bias of quantile estimators b� is
E
�b� � �0� = E (�Q	N ) + E (QH1Q	N ) + E

�
�1
2
QH2

�
a�1=2 
 a�1=2

��
+ o

�
N�1� (15)

= E (B1) + E (B21) + E (B3) + o
�
N�1�

� B
�b��+ o �N�1� ;
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where B
�b�� is the �second-order bias�of quantile estimators b� up to O(N�1). We now summarize

the above as a theorem:

Theorem 1. Suppose Assumptions A, B, C hold. In the quantile regression model, suppose xi and

ui are i.i.d., the second-order bias of the quantile estimators b� up to O(N�1) is

B
�b�� = 1

N
Q

��
1

2
� �

�
E
�
xix

0
iQxi

�
fu(0)�

�(1� �)
2

E[
�
xix

0
i

�

 x0i]f (1)u (0) (Q
Q)E (xi 
 xi)

�
:

(16)

Remark: One important point is whether an expansion of the bias may be useful for inference. The

classical �rst-order asymptotic result for regression quantiles in (7) shows that the bias tends to

zero. The results described in Theorem 1 for the second-order bias may be used together with the

second-order asymptotic variance for the second-order asymptotic inference. We will report the

second-order mean-squared errors (MSE) comparable with the second-order bias, so that we can

conduct the second-order asymptotic inference. The fact that the bias tends to be larger in the

tails will make the second-order asymptotic inference more useful and it would be interesting to

compare with the �rst-order results in (7). We thank a referee for pointing this out.

4 Monte Carlo Simulation

We present simulation results for the second-order bias that was derived in Section 3. In the quan-

tile regression model yi = x0i� + ui; the error term ui satis�es E [�� 1 (yi < x0i�) jxi] = 0: The

� conditional quantile of ui given xi is zero. The error term ui is normally distributed with the

CDF F (�) with standard deviation �u; then the mean equals to ���1(�)�u; with � (�) denoting

the standard normal CDF. Therefore, we generate the error term ui following normal distribu-

tion N
�
���1(�)�u; �2u

�
. We generate xi from an exponential distribution with its density being

exp (�x). Finally, yi is generated from yi = x0i� + ui: In this setup, k = 1; � = 0; �u = 0:5;

N = 100: We use the Matlab package by Roger Koenker to estimate the model. We repeat this

10,000 times.

For each level of �, the �rst column in Table 1 presents the Monte Carlo average values of b� from
10,000 simulations. The second column presents the second-order bias B

�b�� derived in Theorem
1. The third column presents the second-order bias-corrected quantile estimators e� = b� � B �b��.

8



The Monte Carlo results are summarized as follows: (i) e� is numerically closer to the true value
� = 0 than b�; as the bias in b� has been substantially corrected; (ii) the magnitude of bias is larger
at lower and upper quantiles; (iii) the bias is zero at the median for symmetric errors; and (iv)

there are upward bias at lower quantiles and downward bias at upper quantiles. The bene�t of the

second-order bias correction is substantial especially towards the tails.

Table 1: Second-order bias correction with x generated from the exponential distribution

� �̂ B(�̂) ~�

0.01 0.0210 0.0163 0.0047
0.05 0.0060 0.0052 0.0009
0.10 0.0032 0.0031 0.0002
0.20 0.0023 0.0016 0.0007
0.30 0.0017 0.0009 0.0008
0.40 0.0010 0.0004 0.0006
0.50 -0.0002 0.0000 -0.0002
0.60 0.0006 -0.0004 0.0010
0.70 -0.0002 -0.0009 0.0007
0.80 -0.0021 -0.0016 -0.0005
0.90 -0.0040 -0.0031 -0.0009
0.95 -0.0063 -0.0052 -0.0011
0.99 -0.0220 -0.0163 -0.0057

Notes: For each level of �, the �rst column presents the quantile estimators �̂. The second

column presents the second-order bias B(�̂) derived in Theorem 1. The third column presents the

second-order bias corrected quantile estimators ~� = �̂ �B(�̂).

5 Conclusions

This paper derives the second-order bias of conditional quantile estimators, which enables an im-

proved bias correction and thus improved quantile estimation. We show that the second-order bias

are much larger towards the tails of the conditional density than near the median, and therefore

the bene�t of the second-order bias correction is greater when we are interested in the deeper tail

quantiles.
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6 Supplemental Appendix

Due to the page limitation of Economics Letters, the following items will be made available at this

supplemental appendix from authors�website:

1. the proofs of Lemmas 1-5, and

2. additional Monte Carlo results in Section 4 when x follows a mixture normal distribution of

Marron and Wand (1992).

6.1 Proof of Lemmas 1-5

Proof of Lemma 1: (a) According to Phillips (1991, p. 457) and Kim and Pollard (1990), the

term VN � r	N � r	N is Op
�
N�1=3� : Scaling equation (10) by pN; we obtain that pNa�1=2

is bounded and normally distributed with zero mean. Note that
p
NA31 will contribute to

p
NA3

through the variance of
p
Na�1=2; that is

p
NA31 = Op

�
N�2=3� : See Phillips (1991, p. 457).

Therefore, A31 = Op
�
N�7=6� : (b) Since RN is not of zero mean, because E (RN ) is the high-order

bias of quantile estimators. Using (9), A32 = VNRN = Op
�
N�1=3�3=4+"� is smaller than Op(N�1);

i.e. A32 = op
�
N�1� : �

Proof of Lemma 2: (a) Rewrite A4 by adding and subtracting, where r2	N
p! r2	N ; that is

1
N

PN
i=1 (xix

0
i)
 x0i�(1)(x0i� � yi)

p! E [(xix
0
i)
 x0i] f

(1)
u (0): Then, A41 can be rewritten as

A41 =
1

2
r2	N

nh
(b� � �0)� a�1=2 + a�1=2i
 h(b� � �0)� a�1=2 + a�1=2io

=
1

2
r2	N

�
a�1=2 
 a�1=2

�
+
1

2
r2	N

�
a�1=2 


h
(b� � �0)� a�1=2i�

+
1

2
r2	N

�h
(b� � �0)� a�1=2i
 a�1=2�

+
1

2
r2	N

�h
(b� � �0)� a�1=2i
 h(b� � �0)� a�1=2i� ; (17)

where only the �rst term in equation (17), 12r
2	N

�
a�1=2 
 a�1=2

�
; is Op

�
N�1� ; and the other

three terms in equation (17) are of order smaller than Op
�
N�1� : (b) Since �r2	N �r2	N� is of

order smaller than Op (1) ; A42 is of order smaller than Op(N�1); i.e. A42 = op
�
N�1�. �

Proof of Lemma 3: (a) Since only the term B1 in equation (13) is Op
�
N�1=2� ; it should be that

a�1=2 = B1: (b) Since 	N is the sample moment condition, E (B1) = �QE (	N ) = 0: �

1



Proof of Lemma 4: (a) By Lemma 1, A31 = Op(N�7=6): Then B21 = �QA31 = Op(N�7=6); because

Q is bounded. (b) We will show that the expectation of B21 is of order O
�
N�1� even if B21 is of

order Op
�
N�7=6�. To examine E (B21) ; we obtain the following results

H1 = r1�	N =
1

N

NX
i=1

xix
0
i�(x

0
i� � yi); (18)

H1 = E

"
1

N

NX
i=1

xix
0
i�(x

0
i� � yi)

#
= E

�
xix

0
i

�
fu(0); (19)

Q = H1
�1
=
�
E
�
xix

0
i

�
fu(0)

��1
; (20)

where 	N is a k�1 vector, H1; H1; and Q are k�k matrixes. Recalling the properties of the delta

function summarized in Section 1, we have

E (B21) = E (QH1Q	N ) (21)

= QE

24 1
N

NX
i=1

xix
0
i�(x

0
i� � yi)

!
Q

0@ 1

N

NX
j=1

sj

1A35
= Q

1

N2

NX
i=1

E
�
xix

0
i�(x

0
i� � yi)Qsi

�
= Q

1

N
E
�
xix

0
iE
�
�(x0i� � yi)Qsijxi

��
=

1

N
QE

�
xix

0
i

Z +1

�1
�(x0i� � yi)Q(�� 1(yi < x0i�))(�xi)fyjx(yi)dyi

�
=

1

N
QE

�
�xix0iQxi�

Z +1

�1
�(x0i� � yi)fyjx(yi)dyi

�
+
1

N
QE

�
xix

0
iQxi

Z +1

�1
�(x0i� � yi)�(x0i� � yi)fyjx(yi)dyi

�
=

1

N
QE

�
�xix0iQxi�fyjx(x0i�) +

1

2
xix

0
iQxifyjx(x

0
i�)

�
=

�
1

2
� �

�
1

N
QE

�
xix

0
iQxi

�
fu(0)

= O
�
N�1� :

Therefore, the cube-root asymptotic behavior in B21 arising from VN = H1�H1 = Op
�
N�1=3� (see

14) disappears in E (B21) : (c) E (B22) = �E
�
QH1Q	N

�
= �QE (	N ) = 0 since Q = H1

�1
: (d)

E (B2) = E (B21 +B22) = E (B21) is O
�
N�1�. Hence, only E (B21) is a part of the second-order

bias. �

2



Proof of Lemma 5: (a) By Lemma 2, A41 = Op(N�1): Thus B3 = �QA41 = Op(N�1); because Q

is bounded. (b) To examine E (B3) ; we obtain the following results

H2 = r2�	N =
1

N

NX
i=1

�
xix

0
i

�

 x0i�(1)(x0i� � yi); (22)

H2 = E

"
1

N

NX
i=1

�
xix

0
i

�

 x0i�(1)(x0i� � yi)

#
= E

��
xix

0
i

�

 x0i

�
f (1)u (0); (23)

where H2 and H2 are k � k2 matrixes. Then,

E (B3) = E

�
�1
2
QH2

�
a�1=2 
 a�1=2

��
(24)

= �1
2
QH2E [(Q	N )
 (Q	N )]

= �1
2
QH2 (Q
Q)E

24 1
N

NX
i=1

si

!



0@ 1

N

NX
j=1

sj

1A35
= �1

2
QH2 (Q
Q)

1

N2
E

"
NX
i=1

(xi 
 xi)
�
�� 1(yi < x0i�)

�2#

= �1
2
QH2 (Q
Q)

1

N
E
�
(xi 
 xi)E

�
(�� 1(yi < x0i�))2jxi

��
= �1

2
QH2 (Q
Q)

1

N
�(1� �)E (xi 
 xi)

= � 1
N

�(1� �)
2

QE[
�
xix

0
i

�

 x0i]f (1)u (0) (Q
Q)E (xi 
 xi)

= O
�
N�1� :

�

6.2 Monte Carlo Results when x is generated from a mixture of normal

In addition to the result reported in Table 1 for which we generate xi from an exponential dis-

tribution with its density being exp (�x) ; we also generate xi from a mixture-normal distribution

1
5N(0; 1) +

1
5N
�
1
2 ; (

2
3)
2
�
+ 3
5N
�
13
12 ; (

5
9)
2
�
which is a skewed unimodal density considered in Marron

and Wand (1992). The result is reported here in Table 2. The �ndings are similar whether x follows

the exponential distribution (Table 1) or the Marron-Wand�s mixture-normal distribution (Table

2). In both cases, the bene�ts of the second-order bias correction are very substantial especially

towards the tails.

Reference: Marron, J. S., Wand, M. P., 1992. Exact mean integrated squared error. The Annals

of Statistics, 20, 712-736.
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Table 2: Second-order bias correction with x generated from a Marron-Wand mixture normal
distribution

� �̂ B(�̂) ~�

0.01 0.0089 0.0110 -0.0020
0.05 0.0027 0.0035 -0.0007
0.10 0.0014 0.0021 -0.0006
0.20 0.0017 0.0011 0.0006
0.30 0.0000 0.0006 -0.0006
0.40 0.0010 0.0003 0.0007
0.50 -0.0006 0.0000 -0.0006
0.60 -0.0002 -0.0003 0.0001
0.70 -0.0004 -0.0006 0.0002
0.80 -0.0016 -0.0011 -0.0005
0.90 -0.0018 -0.0021 0.0002
0.95 -0.0029 -0.0035 0.0006
0.99 -0.0090 -0.0110 0.0020

Notes: For each level of �, the �rst column presents the quantile estimators �̂. The second

column presents the second-order bias B(�̂) derived in Theorem 1. The third column presents the

second-order bias corrected quantile estimators ~� = �̂ �B(�̂).
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