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• Analytical results of second-order bias of quantile estimators are derived.
• Second-order bias result of quantile estimator enables an improved bias correction.
• Second-order bias is larger towards the tails of a density than near the median.
• Simulation confirms the benefit of second-order bias correction.
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a b s t r a c t

The finite sample theory using higher-order asymptotics provides better approximations of the bias
for a class of estimators. Phillips (1991) demonstrated the higher-order asymptotic expansions for LAD
estimators. Rilstone et al. (1996) provided the second-order bias results of conditional mean regression
estimators. This paper develops newanalytical results on the second-order bias of the conditional quantile
regression estimators, which enables an improved bias correction and thus to obtain improved quantile
estimation. In particular, we show that the second-order bias is larger towards the tails of the conditional
density than near the median, and therefore the benefit of the second-order bias correction is greater
whenwe are interested in the deeper tail quantiles, e.g., for the study of income distribution and financial
risk management. The Monte Carlo simulation confirms the theory that the bias is larger at the tail
quantiles, and the second-order bias correction improves the behavior of the quantile estimators.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The finite sample properties have been almost entirely devel-
oping for the mean regression models.1 Rilstone et al. (RSU 1996)
developed the second-order bias of a class of nonlinear estima-
tors in models with i.i.d. samples. Bao and Ullah (2007) analyzed
the RSU results for time series dependent observations. On the
other hand, there is little finite sample results in the quantile
regression although there is extensive literature on the first-order
asymptotic results, see Koenker and Bassett (1978), and Koenker
(2005). The literature on higher-order distributional properties
focused on the order of the remainder term of the expansion of√
N

(̂
β − β

)
, that is often referred to as the second-order asymp-

totic (distributional) representations (SOADR), see Bahadur (1966),

✩ We thank an anonymous referee for many useful comments and suggestions.
∗ Corresponding author.

E-mail addresses: tae.lee@ucr.edu (T.-H. Lee), aman.ullah@ucr.edu (A. Ullah),
he.wang001@email.ucr.edu (H. Wang).
1 We refer to the higher-order asymptotic properties as the finite sample

properties. The finite sample properties in this paper is not the exact moment or
distributional properties. See Ullah (2004).

Kiefer (1967), and Jureckova and Sen (1996). Unlike these litera-
ture, our goal is to derive the explicit expression of the second-
order bias up to O(N−1), rather than only studying the asymptotic
distribution of the remainder term. Portnoy (2012) provided an
alternative approximation expansion for the quantile process with
the remainder bound of nearly

√
N, beyond that provided by the

Bahadur representation, and made the bias up to O(N−1).
The challenge to study the high-order asymptotic properties

of quantile estimators is due to the non-differentiability of the
objective function for the quantile estimation. Horowitz (1998)
smoothed the objective function to deal with the non-
differentiability. Alternatively, Komunjer (2005) and Elliott et al.
(2005) focused on a family of conditional quantile models with
the ‘smooth’ objective functions that are continuously differen-
tiable.2 Instead of smoothing an objective function (Horowitz,
1998) or of using a smooth objective function (Komunjer, 2005),

2 Komunjer (2005, page 147) states, “The non-differentiability problem has
prompted several authors to develop asymptotic normality results under a weaker
set of assumptions, generally requiring that ∇θ LT (θ) exist with probability one.
Examples include: Daniels (1961), Newey and McFadden (1994). In this paper, we
focus on conditional quantilemodels that are continuously differentiable onΘ (A0),
so that the log-likelihood function LT (θ) is continuously differentiable a.s.-P0 onΘ .”
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Phillips (1991) overcame the non-differentiability of least absolute
deviation (LAD) regression by using the generalized function (or
Dirac delta function).3 In this paper, we follow Phillips (1991) and
Chernozhukov et al. (2007), with noting that Chernozhukov et al.
(2007, Appendix C) state that it is an informal justification in using
the Dirac delta function.4

We develop the second-order bias of quantile estimators using
the Dirac delta function. We discover that while the median is
unbiased for symmetric error distributions and the bias of the other
quantiles is larger at the tails of any distribution. The Monte Carlo
simulations results present that the second-order bias corrected
estimator has better behavior than the uncorrected ones.

The paper is organized as follows. In Section 2, we present the
moment condition of the quantile regression and the assumptions
used in this paper. In Section 3, we develop the high-order asymp-
totic expansion of quantile estimators and derive the second-order
bias of quantile estimators. In Section 4, we present Monte Carlo
simulations. Section 5 concludes.

Notation: The notation used in the paper is summarized here.
fy|x (·) denotes the density of y conditional on x, f (j)y|x(·) denotes the
jth-order derivative of fy|x(·), fu(·) denotes the density of u, and
f (j)u (·) denotes the jth-order derivative of fu(·). The jth-order partial
derivative of a matrix A(β) is defined as ∇

j
βA(β). If A(β) and β are

both k × 1 vectors, then ∇
j
βA(β) is a k × kj matrix. For a matrix A,

∥A∥ denotes the usual norm,
[
trace

(
AA′

)]1/2
. If A is a k×1 vector,

then ∥A∥ =
(
A′A

)1/2
. The Kronecker product is defined in the usual

way. For an m × n matrix A and a p × q matrix B, we have A ⊗ B
as anmp × nqmatrix. X denotes the expectation E(X) of a random
vector X .

Generalized function: Let φ(z) = 1 (z ≥ 0) is a step function.
The delta function is defined as δ(z) = dφ(z)/dz. See Gelfand and
Shilov (1964, p. 4). Denote the derivatives of delta function by
δ(j) (·) for j = 1, 2, . . . . The properties of the delta function are
critical in this paper, which are summarized here: (i) δ(−z) = δ(z),
(ii) δ(1)(−z) = −δ(1)(z), (iii) δ(2)(−z) = δ(2)(z), (iv)

∫
+∞

−∞
δ(z −

a)f (z)dz = f (a), and (v)
∫

+∞

−∞
δ(n)(z − a)f (z)dz = (−1)n

∫
+∞

−∞
δ(z −

a)f (n)(z)dz = (−1)nf (n)(a), where f : R → R is a real function
differentiable around a ∈ R. See Gelfand and Shilov (1964, pp. 4,
5, 26). More properties of the delta function used in this paper are:
(vi) φ(z)δ(z) =

1
2δ(z).

2. Conditional quantile estimators

Consider a random variable y from distribution F (·). Given α ∈

(0, 1), consider a general linear regression quantile model, qα =

x′βα, where qα is the conditional α-quantile of y, the quantile esti-
mators βα vary across α. Then the location-scale version of the lin-
ear regression quantile model is yi = x′

iβα +ui,where yi is a scalar,
xi is a k × 1 vector, and ui is the error defined as the difference be-
tween yi and its conditionalα-quantile. For simplicity,we set xi and
ui to be i.i.d. in this paper.5 To simplify the notation,we useβ to de-
note βα hereafter. The k×1 vector quantile estimators β̂ can be ob-
tained by solving min

β
E[Lα(β)] = E[

(
α − 1(yi < x′

iβ)
) (

yi − x′

iβ
)
].

The moment condition can be written as ∇
1
βE[Lα(β)] = E[(α −

1(yi < x′

iβ))(−xi)] = E[si(xi, β)], where the score function

3 Phillips (1991, p. 451) states, “If the criterion function has nonregularities
like discontinuities in its derivatives, these may be accommodated directly by
the use of generalized functions, provided the discontinuities are smoothed out
asymptotically.”
4 We thank a referee for this point and the reference.
5 In mean regression, Bao and Ullah (2007) show that the RSU results continue

to hold for non-i.i.d cases. The same may be the case in quantile regression, which
we leave it to our future work.

si(xi, β) ≡ si(β) = (α − 1(yi < x′

iβ))(−xi) is a known k × 1 vector-
valued function of the observable k-dimensional random vectors
xi and a parameter vector β ∈ Rk with true value β0 such that
E[si(β)] = 0 holds only at β = β0 for all i. The sample moment
condition can be written as

ΨN (β) =
1
N

N∑
i=1

si(β). (1)

An estimator β̂ is a solution to a set of moment equations of the
form

ΨN (̂β) =
1
N

N∑
i=1

si (̂β) = 0. (2)

Eq. (2) is the first-order conditions for the quantile estimator β̂,
which is the analogous to Eq. (4) in Phillips (1991, p. 452) for the
LAD estimator.6

RSU (1996) developed the second-order bias of a class of non-
linear estimators in models with i.i.d. samples. Assumptions in
RSU (1996) are sufficient to obtain the stochastic expansion of β̂ .
Nowwegive themodified high-level Assumptions A–C for quantile
models as follows and some remarks are made.

Assumption A. The jth-order derivative of si(β) exists in a neigh-
borhood of β0, and

E
[
||xi||(j+1) f (j−1)

u (0)
]2

< ∞, for j = 1, 2, with f (0)u (0) = fu(0).

RSU (1996) assumes that the jth-order derivative of score func-

tion si(β) exists in a neighborhood of β0, and E
∇

j
βsi(β0)

2
< ∞,

for j ≥ 1. We modify this assumption for quantile models. To
derive the second-order bias of β̂, we require j = 1,2. Noting that
1(yi − x′

iβ < 0) = 1(x′

iβ − yi ≥ 0) ≡ φ(x′

iβ − yi) and δ(z) =

dφ(z)/dz, the first derivative of a k × 1 vector si(β) with respect
to a k × 1 vector β is a k × k matrix, ∇1

βsi(β) = ∇
1
β [(α − 1(yi <

x′

iβ))(−xi)] = xix′

iδ(x
′

iβ − yi), and

E
∇

1
βsi(β0)

2
= E

[
∥xi∥2 fy|x(x′

iβ0)
]2

< ∞. (3)

The second-order derivative of a k × 1 vector si(β) with respect to
a k× 1 vector β is a k× k2 matrix, ∇2

βsi(β) = ∇
1
β [xix′

iδ(x
′

iβ − yi)] =(
xix′

i

)
⊗ x′

iδ
(1)(x′

iβ − yi), and

E
∇

2
βsi(β0)

2
= E

[
∥xi∥3 f (1)y|x (x

′

iβ0)
]2

< ∞. (4)

Since the conditional density of yi given xi evaluated at yi = x′

iβ0 is
the same as the conditional density of ui given xi evaluated at ui =

0, and since ui and xi are independent, we have fy|x
(
x′

iβ0
)

= fu (0) .
Then the above boundedness conditions on the derivatives can be
rewritten as shown in Assumption A.

Assumption B. For some neighborhood of β0,
(
E∇

1
βΨN (β)

)−1
=

O(1).

Note that
(
E∇

1
βΨN (β)

)−1
=

(
E

(
xix′

i

)
fu(0)

)−1
= O(1) from (3)

. Under Assumption B, we will be able to rewrite (12) as (13) to
obtain the second-order bias in the next section.

AssumptionC. (i) For any ε → 0, rj (β) ≡

∇
j−1
β si(β) − ∇

j−1
β si(β0)

−∇
j
βsi(β0) (β − β0)

 /∥β − β0∥ → 0 asβ → β0, E
[
sup∥β−β0∥<ε rj

6 We note that the empirical moment equation for quantile regression may
not be exactly zero but ΨN (̂β) = op

(
N−1/2

)
as discussed in Angist et al. (2006,

Appendix). We thank a referee for this reference. This may affect the order of the
remainder term of β̂ − β0 for quantile regression as in Bahadur (1966). See Eq. (8).
Nevertheless,wewill show in the next section that thiswould not affect the second-
order bias as long as Eq. (9) holds.
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(β)] < ∞, with probability 1. (ii) N−1 ∑N
i=1 ∇

j
βsi(β0)

p
→ E[

∇
j
βsi(β0)

]
for j ≥ 1, where ∇

0
βsi(β) = si(β).

Assumption C(i) gives the modified Lipschitz condition for a
quantile model. To derive the second-order bias of the quantile es-
timators, we use the high-order Taylor expansion of ΨN (β) around
β0, which satisfies ΨN (̂β) = 0. This approach requires ΨN (β)
and the derivatives of ΨN (β) to be sufficiently smooth, which is
not the case with the quantile regression. Assumption C requires
not only the stochastic equicontinuity to handle the nonsmooth
objective function but also the higher-order stochastic equiconti-
nuity to handle nonsmooth derivatives of the objective function.
This problem has been discussed by Newey and McFadden (1994,
Theorem7.3), Horowitz (1998), Komunjer (2005), and Elliott et al.
(2005). The basic insight is that smoothness of a function can be
replaced by the smoothness of its limit if the remainder term is
small enough. Therefore, the stochastic equicontinuity conditions
do not require differentiability of the criterion function but require
that the remainder term of the expansion can be controlled in a
particular way over a neighborhood of β0. Assumption C(ii) gives
the weak law of large numbers condition. This condition is stated
and discussed in Phillips (1991, pp. 453–455) and it requires that
the right-hand-side, E

[
∇

j
βsi(β0)

]
for j ≥ 1, be bounded, which we

verified in the discussion of Assumption A above.

3. Second-order bias of quantile estimators

To obtain the second-order bias for quantile estimators which
is to be summarized in Theorem 1 below, let us begin with taking
the Taylor’s expansion of ΨN (̂β) = 0 around β0,

0 = ΨN + ∇ΨN (̂β − β0)

+
1
2
∇

2ΨN
[
(̂β − β0) ⊗ (̂β − β0)

]
+ op

(
N−1) , (5)

where ΨN = ΨN (β0) . The ordinary stochastic expansion of β̂
can be obtained from Eq. (5). However, a difficulty arises from the
derivatives of the moment condition (1). Using the properties of
the delta function summarized earlier at the end of Section 1 or
in Phillips (1991, p. 455), it can be shown that ∇ΨN

p
→ ∇ΨN ,

i.e., 1
N

∑N
i=1 xix

′

iδ(x
′

iβ − yi)
p

→ E
(
xix′

i

)
fu(0). See Gelfand and Shilov

(1964, p. 26). Then, similar to Phillips (1991), we rewrite (5) as

0 = ΨN + ∇ΨN (̂β − β0) +
(
∇ΨN − ∇ΨN

)
(̂β − β0)

+
1
2
∇

2ΨN
[
(̂β − β0) ⊗ (̂β − β0)

]
+ op

(
N−1)

≡ A1 + A2 + A3 + A4 + op
(
N−1) . (6)

To see the order of each of these terms, we recall the asymptotic
distribution of the quantile estimators when xi and ui are i.i.d.
√
N (̂β − β0)

d
→ N

(
0,

α(1 − α)
[fu(0)]2

[
E

(
xix′

i

)]−1
)

. (7)

See, e.g., Koenker (2005), and also Phillips (1991) for the LAD
estimator with α = 0.5. As this textbook result states that the
quantile estimator β̂ is

√
N-consistent estimator, using the same

argument in Phillips (1991, p. 455), we can obtain that the orders
of both A1 = ΨN and A2 = ∇ΨN (̂β − β0) are Op

(
N−1/2

)
. In the

following Lemma 1 and Lemma 2, we discuss the orders of A3 and
A4.

Before doing that, it is important to recall the following result
in this literature. Let β̂ −β0 = a−1/2 +RN ,where a−1/2 is a random
sequence of Op

(
N−1/2

)
with zeromean E

(
a−1/2

)
= 0 and RN is the

remainder term of higher order. Bahadur (1966) and Kiefer (1967)
established the celebrated results on the order of RN , that is

RN = Op
(
N−3/4 (log logN)3/4

)
. (8)

See Koenker (2005, pp. 122–123), and also Jureckova and Sen
(1996, pp. 196–202), and van der Vaart (1998, p. 310). Note that
(8) implies that

RN = Op
(
N−3/4+ε

)
for some small ε > 0. (9)

Below we use this result to obtain Lemma 1(b). Our goal is to
obtain the expression of the bias term E (RN) = E

(̂
β − β0

)
up to

the second-order i.e., of order O
(
N−c

)
with c ≤ 1. We first state

five lemmas whose proofs are made available in supplemental
appendix.

Lemma 1. Let

A3 =
(
∇ΨN − ∇ΨN

)
(̂β − β0)

=
(
∇ΨN − ∇ΨN

)
a−1/2 +

(
∇ΨN − ∇ΨN

) [
(̂β − β0) − a−1/2

]
≡ A31 + A32. (10)

Then, (a) A31 = Op(N−7/6), and (b) A32 is smaller than Op(N−1). □

Lemma 2. Let

A4 =
1
2
∇

2ΨN
[
(̂β − β0) ⊗ (̂β − β0)

]
=

1
2
∇2ΨN

[
(̂β − β0) ⊗ (̂β − β0)

]
+

1
2

(
∇

2ΨN − ∇2ΨN

) [
(̂β − β0) ⊗ (̂β − β0)

]
≡ A41 + A42, (11)

Then, (a) A41 = Op(N−1), and (b) A42 is smaller than Op(N−1). □

Given Lemmas 1–2, we can now rewrite Eq. (6) as

0 = A1 + A2 + A31 + A41 + op
(
N−1) (12)

= ΨN + ∇ΨN (̂β − β0) +
(
∇ΨN − ∇ΨN

)
a−1/2

+
1
2
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+ op

(
N−1) .

In Eq. (12), it is important to note that we keep the term A31 even
though it is Op(N−7/6), because we find that the “expectation” of
A31 becomes O(N−1) so that E (A31) is a part of the second-order
bias, as we will show shortly.

Solve for β̂ − β0 in Eq. (12) to obtain

β̂ − β0 = −∇ΨN
−1

ΨN − ∇ΨN
−1 (

∇ΨN − ∇ΨN
)
a−1/2

−
1
2
∇ΨN

−1
∇2ΨN

(
a−1/2 ⊗ a−1/2

)
+ op

(
N−1)

= −QΨN − QVNa−1/2 −
1
2
QH2

(
a−1/2 ⊗ a−1/2

)
+ op

(
N−1) (13)

≡ B1 + B2 + B3 + op
(
N−1) ,

where Hj = ∇
jΨN , for j = 1, 2, Q = H1

−1
, VN = H1 − H1.

Note that multiplying Eq. (13) by
√
N gives the same as Eq. (15)

of Phillips (1991, p. 457). In order to compute the bias of β̂ , that is
E

(̂
β − β0

)
, we now examine the expectations of the three terms

B1, B2, B3 in (13). Lemma 3 shows that E (B1) is the first-order bias
which is zero, while Lemmas 4 and 5 show the second-order bias
E (B2 + B3).

Lemma 3. Let B1 = −QΨN . Then, (a) B1 = Op(N−1/2) and (b)
E (B1) = 0. □

Lemma 4. Let

B2 = −QVNa−1/2 = Q
(
H1 − H1

)
QΨN
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= QH1QΨN − QH1QΨN ≡ B21 + B22. (14)

Then, (a) B21 = Op(N−7/6), (b) E (B21) = O(N−1), (c) E (B22) = 0,
and (d) E (B2) = O(N−1). □

Lemma 5. Let B3 = −
1
2QH2

(
a−1/2 ⊗ a−1/2

)
. Then, (a) B3 =

Op(N−1) and (b) E (B3) = O(N−1). □

Given Lemmas 3–5, and from Eq. (13), the bias of quantile
estimators β̂ is

E
(̂
β − β0

)
= E (−QΨN) + E (QH1QΨN)

+ E
(

−
1
2
QH2

(
a−1/2 ⊗ a−1/2

))
+ o

(
N−1) (15)

= E (B1) + E (B21) + E (B3) + o
(
N−1)

≡ B
(̂
β
)
+ o

(
N−1) ,

where B
(̂
β
)
is the “second-order bias” of quantile estimators β̂ up

to O(N−1). We now summarize the above as a theorem:

Theorem 1. Suppose Assumptions A, B, C hold. In the quantile
regression model, suppose xi and ui are i.i.d., the second-order bias
of the quantile estimators β̂ up to O(N−1) is

B
(̂
β
)

=
1
N
Q

[(
1
2

− α

)
E

(
xix′

iQxi
)
fu(0)

−
α(1 − α)

2
E[

(
xix′

i

)
⊗ x′

i]f
(1)
u (0) (Q ⊗ Q ) E (xi ⊗ xi)

]
.(16)

Remark: One important point is whether an expansion of the
bias may be useful for inference. The classical first-order asymp-
totic result for regression quantiles in (7) shows that the bias
tends to zero. The results described in Theorem 1 for the second-
order biasmay be used together with the second-order asymptotic
variance for the second-order asymptotic inference.Wewill report
the second-order mean-squared errors (MSE) comparable with
the second-order bias, so that we can conduct the second-order
asymptotic inference. The fact that the bias tends to be larger in the
tails will make the second-order asymptotic inference more useful
and it would be interesting to compare with the first-order results
in (7). We thank a referee for pointing this out.

4. Monte Carlo simulation

We present simulation results for the second-order bias that
was derived in Section 3. In the quantile regression model yi =

x′

iβ + ui, the error term ui satisfies E
[
α − 1

(
yi < x′

iβ
)
|xi

]
= 0.

The α conditional quantile of ui given xi is zero. The error term ui
is normally distributed with the CDF F (·) with standard deviation
σu, then the mean equals to −Φ−1(α)σu, with Φ (·) denoting the
standard normal CDF. Therefore, we generate the error term ui
following normal distribution N

(
−Φ−1(α)σu, σ

2
u

)
. We generate xi

from an exponential distribution with its density being exp (−x).
Finally, yi is generated from yi = x′

iβ + ui. In this setup, k = 1,
β = 0, σu = 0.5, N = 100. We use the Matlab package by Roger
Koenker to estimate the model. We repeat this 10,000 times.

For each level of α, the first column in Table 1 presents the
Monte Carlo average values of β̂ from 10,000 simulations. The sec-
ond column presents the second-order bias B

(̂
β
)
derived in Theo-

rem 1. The third column presents the second-order bias-corrected
quantile estimators β̃ = β̂ − B

(̂
β
)
. The Monte Carlo results are

summarized as follows: (i) β̃ is numerically closer to the true value
β = 0 than β̂, as the bias in β̂ has been substantially corrected;
(ii) the magnitude of bias is larger at lower and upper quantiles;

Table 1
Second-order bias correction with x generated from the exponential distribution.

α β̂ B (β̂) β̃

0.01 0.0210 0.0163 0.0047
0.05 0.0060 0.0052 0.0009
0.10 0.0032 0.0031 0.0002
0.20 0.0023 0.0016 0.0007
0.30 0.0017 0.0009 0.0008
0.40 0.0010 0.0004 0.0006
0.50 −0.0002 0.0000 −0.0002
0.60 0.0006 −0.0004 0.0010
0.70 −0.0002 −0.0009 0.0007
0.80 −0.0021 −0.0016 −0.0005
0.90 −0.0040 −0.0031 −0.0009
0.95 −0.0063 −0.0052 −0.0011
0.99 −0.0220 −0.0163 −0.0057

(iii) the bias is zero at the median for symmetric errors; and (iv)
there are upward bias at lower quantiles and downward bias at
upper quantiles. The benefit of the second-order bias correction is
substantial especially towards the tails.

Notes: For each level ofα, the first column presents the quantile
estimators β̂ . The second column presents the second-order bias
B(β̂) derived in Theorem 1. The third column presents the second-
order bias corrected quantile estimators β̃ = β̂ − B(β̂).

5. Conclusions

This paper derives the second-order bias of conditional quantile
estimators, which enables an improved bias correction and thus
improved quantile estimation.We show that the second-order bias
are much larger towards the tails of the conditional density than
near the median, and therefore the benefit of the second-order
bias correction is greater when we are interested in the deeper tail
quantiles.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.econlet.2018.09.022.
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