The second-order bias of quantile estimators ${ }^{\star \pi}$

Tae-Hwy Lee*, Aman Ullah, He Wang
Department of Economics, University of California, Riverside, CA 92521, United States

H I G H L I G H T S

- Analytical results of second-order bias of quantile estimators are derived.
- Second-order bias result of quantile estimator enables an improved bias correction.
- Second-order bias is larger towards the tails of a density than near the median.
- Simulation confirms the benefit of second-order bias correction.

A R T I C L E I N F O

Article history:

Received 28 March 2018
Received in revised form 21 September 2018
Accepted 25 September 2018
Available online 11 October 2018

JEL classification:

C1
C2
C13
Keywords:
Delta function
Quantile regression
Second-order bias

Abstract

The finite sample theory using higher-order asymptotics provides better approximations of the bias for a class of estimators. Phillips (1991) demonstrated the higher-order asymptotic expansions for LAD estimators. Rilstone et al. (1996) provided the second-order bias results of conditional mean regression estimators. This paper develops new analytical results on the second-order bias of the conditional quantile regression estimators, which enables an improved bias correction and thus to obtain improved quantile estimation. In particular, we show that the second-order bias is larger towards the tails of the conditional density than near the median, and therefore the benefit of the second-order bias correction is greater when we are interested in the deeper tail quantiles, e.g., for the study of income distribution and financial risk management. The Monte Carlo simulation confirms the theory that the bias is larger at the tail quantiles, and the second-order bias correction improves the behavior of the quantile estimators.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The finite sample properties have been almost entirely developing for the mean regression models. ${ }^{1}$ Rilstone et al. (RSU 1996) developed the second-order bias of a class of nonlinear estimators in models with i.i.d. samples. Bao and Ullah (2007) analyzed the RSU results for time series dependent observations. On the other hand, there is little finite sample results in the quantile regression although there is extensive literature on the first-order asymptotic results, see Koenker and Bassett (1978), and Koenker (2005). The literature on higher-order distributional properties focused on the order of the remainder term of the expansion of $\sqrt{N}(\widehat{\beta}-\beta)$, that is often referred to as the second-order asymptotic (distributional) representations (SOADR), see Bahadur (1966),

[^0]Kiefer (1967), and Jureckova and Sen (1996). Unlike these literature, our goal is to derive the explicit expression of the secondorder bias up to $O\left(N^{-1}\right)$, rather than only studying the asymptotic distribution of the remainder term. Portnoy (2012) provided an alternative approximation expansion for the quantile process with the remainder bound of nearly \sqrt{N}, beyond that provided by the Bahadur representation, and made the bias up to $O\left(N^{-1}\right)$.

The challenge to study the high-order asymptotic properties of quantile estimators is due to the non-differentiability of the objective function for the quantile estimation. Horowitz (1998) smoothed the objective function to deal with the nondifferentiability. Alternatively, Komunjer (2005) and Elliott et al. (2005) focused on a family of conditional quantile models with the 'smooth' objective functions that are continuously differentiable. ${ }^{2}$ Instead of smoothing an objective function (Horowitz, 1998) or of using a smooth objective function (Komunjer, 2005),

[^1]Phillips (1991) overcame the non-differentiability of least absolute deviation (LAD) regression by using the generalized function (or Dirac delta function). ${ }^{3}$ In this paper, we follow Phillips (1991) and Chernozhukov et al. (2007), with noting that Chernozhukov et al. (2007, Appendix C) state that it is an informal justification in using the Dirac delta function. ${ }^{4}$

We develop the second-order bias of quantile estimators using the Dirac delta function. We discover that while the median is unbiased for symmetric error distributions and the bias of the other quantiles is larger at the tails of any distribution. The Monte Carlo simulations results present that the second-order bias corrected estimator has better behavior than the uncorrected ones.

The paper is organized as follows. In Section 2, we present the moment condition of the quantile regression and the assumptions used in this paper. In Section 3, we develop the high-order asymptotic expansion of quantile estimators and derive the second-order bias of quantile estimators. In Section 4, we present Monte Carlo simulations. Section 5 concludes.

Notation: The notation used in the paper is summarized here. $f_{y \mid x}(\cdot)$ denotes the density of y conditional on $x, f_{y \mid x}^{(j)}(\cdot)$ denotes the j th-order derivative of $f_{y \mid x}(\cdot), f_{u}(\cdot)$ denotes the density of u, and $f_{u}^{(j)}(\cdot)$ denotes the j th-order derivative of $f_{u}(\cdot)$. The j th-order partial derivative of a matrix $A(\beta)$ is defined as $\nabla_{\beta}^{j} A(\beta)$. If $A(\beta)$ and β are both $k \times 1$ vectors, then $\nabla_{\beta}^{j} A(\beta)$ is a $k \times k^{j}$ matrix. For a matrix A, $\|A\|$ denotes the usual norm, $\left[\operatorname{trace}\left(A A^{\prime}\right)\right]^{1 / 2}$. If A is a $k \times 1$ vector, then $\|A\|=\left(A^{\prime} A\right)^{1 / 2}$. The Kronecker product is defined in the usual way. For an $m \times n$ matrix A and a $p \times q$ matrix B, we have $A \otimes B$ as an $m p \times n q$ matrix. \bar{X} denotes the expectation $E(X)$ of a random vector X.

Generalized function: Let $\phi(z)=\mathbf{1}(z \geq 0)$ is a step function. The delta function is defined as $\delta(z)=\mathrm{d} \phi(z) / \mathrm{d} z$. See Gelfand and Shilov (1964, p. 4). Denote the derivatives of delta function by $\delta^{(j)}(\cdot)$ for $j=1,2, \ldots$. The properties of the delta function are critical in this paper, which are summarized here: (i) $\delta(-z)=\delta(z)$, (ii) $\delta^{(1)}(-z)=-\delta^{(1)}(z)$, (iii) $\delta^{(2)}(-z)=\delta^{(2)}(z)$, (iv) $\int_{-\infty}^{+\infty} \delta(z-$ a) $f(z) \mathrm{d} z=f(a)$, and $(\mathrm{v}) \int_{-\infty}^{+\infty} \delta^{(n)}(z-a) f(z) \mathrm{d} z=(-1)^{n} \int_{-\infty}^{+\infty} \delta(z-$ a) $f^{(n)}(z) \mathrm{d} z=(-1)^{n} f^{(n)}(a)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a real function differentiable around $a \in \mathbb{R}$. See Gelfand and Shilov (1964, pp. 4, 5,26). More properties of the delta function used in this paper are: (vi) $\phi(z) \delta(z)=\frac{1}{2} \delta(z)$.

2. Conditional quantile estimators

Consider a random variable y from distribution $F(\cdot)$. Given $\alpha \in$ $(0,1)$, consider a general linear regression quantile model, $q_{\alpha}=$ $x^{\prime} \beta_{\alpha}$, where q_{α} is the conditional α-quantile of y, the quantile estimators β_{α} vary across α. Then the location-scale version of the linear regression quantile model is $y_{i}=x_{i}^{\prime} \beta_{\alpha}+u_{i}$, where y_{i} is a scalar, x_{i} is a $k \times 1$ vector, and u_{i} is the error defined as the difference between y_{i} and its conditional α-quantile. For simplicity, we set x_{i} and u_{i} to be i.i.d. in this paper. ${ }^{5}$ To simplify the notation, we use β to denote β_{α} hereafter. The $k \times 1$ vector quantile estimators $\widehat{\beta}$ can be obtained by solving $\min _{\beta} E\left[L_{\alpha}(\beta)\right]=E\left[\left(\alpha-\mathbf{1}\left(y_{i}<x_{i}^{\prime} \beta\right)\right)\left(y_{i}-x_{i}^{\prime} \beta\right)\right]$. The moment condition can be written as $\nabla_{\beta}^{1} E\left[L_{\alpha}(\beta)\right]=E[(\alpha-$ $\left.\left.\mathbf{1}\left(y_{i}<x_{i}^{\prime} \beta\right)\right)\left(-x_{i}\right)\right]=E\left[s_{i}\left(x_{i}, \beta\right)\right]$, where the score function

[^2]$s_{i}\left(x_{i}, \beta\right) \equiv s_{i}(\beta)=\left(\alpha-\mathbf{1}\left(y_{i}<x_{i}^{\prime} \beta\right)\right)\left(-x_{i}\right)$ is a known $k \times 1$ vectorvalued function of the observable k-dimensional random vectors x_{i} and a parameter vector $\beta \in \mathbb{R}^{k}$ with true value β_{0} such that $E\left[s_{i}(\beta)\right]=0$ holds only at $\beta=\beta_{0}$ for all i. The sample moment condition can be written as
$\Psi_{N}(\beta)=\frac{1}{N} \sum_{i=1}^{N} s_{i}(\beta)$.
An estimator $\widehat{\beta}$ is a solution to a set of moment equations of the form
$\Psi_{N}(\widehat{\beta})=\frac{1}{N} \sum_{i=1}^{N} s_{i}(\widehat{\beta})=0$.
Eq. (2) is the first-order conditions for the quantile estimator $\widehat{\beta}$, which is the analogous to Eq. (4) in Phillips (1991, p. 452) for the LAD estimator. ${ }^{6}$

RSU (1996) developed the second-order bias of a class of nonlinear estimators in models with i.i.d. samples. Assumptions in RSU (1996) are sufficient to obtain the stochastic expansion of $\widehat{\beta}$. Now we give the modified high-level Assumptions A-C for quantile models as follows and some remarks are made.

Assumption A. The j th-order derivative of $s_{i}(\beta)$ exists in a neighborhood of β_{0}, and

$$
E\left[\left\|x_{i}\right\|^{(j+1)} f_{u}^{(j-1)}(0)\right]^{2}<\infty, \text { for } j=1,2, \text { with } f_{u}^{(0)}(0)=f_{u}(0)
$$

RSU (1996) assumes that the j th-order derivative of score function $s_{i}(\beta)$ exists in a neighborhood of β_{0}, and $E\left\|\nabla_{\beta}^{j} s_{i}\left(\beta_{0}\right)\right\|^{2}<\infty$, for $j \geq 1$. We modify this assumption for quantile models. To derive the second-order bias of $\widehat{\beta}$, we require $j=1,2$. Noting that $\mathbf{1}\left(y_{i}-x_{i}^{\prime} \beta<0\right)=\mathbf{1}\left(x_{i}^{\prime} \beta-y_{i} \geq 0\right) \equiv \phi\left(x_{i}^{\prime} \beta-y_{i}\right)$ and $\delta(z)=$ $\mathrm{d} \phi(z) / \mathrm{d} z$, the first derivative of a $k \times 1$ vector $s_{i}(\beta)$ with respect to a $k \times 1$ vector β is a $k \times k$ matrix, $\nabla_{\beta}^{1} s_{i}(\beta)=\nabla_{\beta}^{1}\left[\left(\alpha-\mathbf{1}\left(y_{i}<\right.\right.\right.$ $\left.\left.\left.x_{i}^{\prime} \beta\right)\right)\left(-x_{i}\right)\right]=x_{i} x_{i}^{\prime} \delta\left(x_{i}^{\prime} \beta-y_{i}\right)$, and
$E\left\|\nabla_{\beta}^{1} s_{i}\left(\beta_{0}\right)\right\|^{2}=E\left[\left\|x_{i}\right\|^{2} f_{y \mid x}\left(x_{i}^{\prime} \beta_{0}\right)\right]^{2}<\infty$.
The second-order derivative of a $k \times 1$ vector $s_{i}(\beta)$ with respect to a $k \times 1$ vector β is a $k \times k^{2}$ matrix, $\nabla_{\beta}^{2} s_{i}(\beta)=\nabla_{\beta}^{1}\left[x_{i} x_{i}^{\prime} \delta\left(x_{i}^{\prime} \beta-y_{i}\right)\right]=$ $\left(x_{i} x_{i}^{\prime}\right) \otimes x_{i}^{\prime} \delta^{(1)}\left(x_{i}^{\prime} \beta-y_{i}\right)$, and
$E\left\|\nabla_{\beta}^{2} s_{i}\left(\beta_{0}\right)\right\|^{2}=E\left[\left\|x_{i}\right\|^{3} f_{y \mid x}^{(1)}\left(x_{i}^{\prime} \beta_{0}\right)\right]^{2}<\infty$.
Since the conditional density of y_{i} given x_{i} evaluated at $y_{i}=x_{i}^{\prime} \beta_{0}$ is the same as the conditional density of u_{i} given x_{i} evaluated at $u_{i}=$ 0 , and since u_{i} and x_{i} are independent, we have $f_{y \mid X}\left(x_{i}^{\prime} \beta_{0}\right)=f_{u}(0)$. Then the above boundedness conditions on the derivatives can be rewritten as shown in Assumption A.

Assumption B. For some neighborhood of $\beta_{0},\left(E \nabla_{\beta}^{1} \Psi_{N}(\beta)\right)^{-1}=$ $O(1)$.

Note that $\left(E \nabla_{\beta}^{1} \Psi_{N}(\beta)\right)^{-1}=\left(E\left(x_{i} x_{i}^{\prime}\right) f_{u}(0)\right)^{-1}=O(1)$ from (3) . Under Assumption B, we will be able to rewrite (12) as (13) to obtain the second-order bias in the next section.

Assumption C. (i) For any $\varepsilon \rightarrow 0, r_{j}(\beta) \equiv \| \nabla_{\beta}^{j-1} s_{i}(\beta)-\nabla_{\beta}^{j-1} s_{i}\left(\beta_{0}\right)$ $-\nabla_{\beta}^{j} s_{i}\left(\beta_{0}\right)\left(\beta-\beta_{0}\right)\|/\| \beta-\beta_{0} \| \rightarrow 0$ as $\beta \rightarrow \beta_{0}, E\left[\sup _{\left\|\beta-\beta_{0}\right\|<\varepsilon} r_{j}\right.$

6 We note that the empirical moment equation for quantile regression may not be exactly zero but $\Psi_{N}(\widehat{\beta})=o_{p}\left(N^{-1 / 2}\right)$ as discussed in Angist et al. (2006, Appendix). We thank a referee for this reference. This may affect the order of the remainder term of $\widehat{\beta}-\beta_{0}$ for quantile regression as in Bahadur (1966). See Eq. (8). Nevertheless, we will show in the next section that this would not affect the secondorder bias as long as Eq. (9) holds.
$(\beta)]<\infty$, with probability 1. (ii) $N^{-1} \sum_{i=1}^{N} \nabla_{\beta}^{j} s_{i}\left(\beta_{0}\right) \xrightarrow{p} E$ $\left[\nabla_{\beta}^{j} s_{i}\left(\beta_{0}\right)\right]$ for $j \geq 1$, where $\nabla_{\beta}^{0} s_{i}(\beta)=s_{i}(\beta)$.

Assumption C(i) gives the modified Lipschitz condition for a quantile model. To derive the second-order bias of the quantile estimators, we use the high-order Taylor expansion of $\Psi_{N}(\beta)$ around β_{0}, which satisfies $\Psi_{N}(\widehat{\beta})=0$. This approach requires $\Psi_{N}(\beta)$ and the derivatives of $\Psi_{N}(\beta)$ to be sufficiently smooth, which is not the case with the quantile regression. Assumption C requires not only the stochastic equicontinuity to handle the nonsmooth objective function but also the higher-order stochastic equicontinuity to handle nonsmooth derivatives of the objective function. This problem has been discussed by Newey and McFadden (1994, Theorem7.3), Horowitz (1998), Komunjer (2005), and Elliott et al. (2005). The basic insight is that smoothness of a function can be replaced by the smoothness of its limit if the remainder term is small enough. Therefore, the stochastic equicontinuity conditions do not require differentiability of the criterion function but require that the remainder term of the expansion can be controlled in a particular way over a neighborhood of β_{0}. Assumption C(ii) gives the weak law of large numbers condition. This condition is stated and discussed in Phillips (1991, pp. 453-455) and it requires that the right-hand-side, $E\left[\nabla_{\beta}^{j} s_{i}\left(\beta_{0}\right)\right]$ for $j \geq 1$, be bounded, which we verified in the discussion of Assumption A above.

3. Second-order bias of quantile estimators

To obtain the second-order bias for quantile estimators which is to be summarized in Theorem 1 below, let us begin with taking the Taylor's expansion of $\Psi_{N}(\widehat{\beta})=0$ around β_{0},

$$
\begin{align*}
0 & =\Psi_{N}+\nabla \Psi_{N}\left(\widehat{\beta}-\beta_{0}\right) \\
& +\frac{1}{2} \nabla^{2} \Psi_{N}\left[\left(\widehat{\beta}-\beta_{0}\right) \otimes\left(\widehat{\beta}-\beta_{0}\right)\right]+o_{p}\left(N^{-1}\right) \tag{5}
\end{align*}
$$

where $\Psi_{N}=\Psi_{N}\left(\beta_{0}\right)$. The ordinary stochastic expansion of $\widehat{\beta}$ can be obtained from Eq. (5). However, a difficulty arises from the derivatives of the moment condition (1). Using the properties of the delta function summarized earlier at the end of Section 1 or in Phillips (1991, p. 455), it can be shown that $\nabla \Psi_{N} \xrightarrow{p} \overline{\nabla \Psi_{N}}$, i.e., $\frac{1}{N} \sum_{i=1}^{N} x_{i} x_{i}^{\prime} \delta\left(x_{i}^{\prime} \beta-y_{i}\right) \xrightarrow{p} E\left(x_{i} x_{i}^{\prime}\right) f_{u}(0)$. See Gelfand and Shilov (1964, p. 26). Then, similar to Phillips (1991), we rewrite (5) as

$$
\begin{align*}
0= & \Psi_{N}+\overline{\nabla \Psi_{N}}\left(\widehat{\beta}-\beta_{0}\right)+\left(\nabla \Psi_{N}-\overline{\nabla \Psi_{N}}\right)\left(\widehat{\beta}-\beta_{0}\right) \\
& +\frac{1}{2} \nabla^{2} \Psi_{N}\left[\left(\widehat{\beta}-\beta_{0}\right) \otimes\left(\widehat{\beta}-\beta_{0}\right)\right]+o_{p}\left(N^{-1}\right) \\
\equiv & A_{1}+A_{2}+A_{3}+A_{4}+o_{p}\left(N^{-1}\right) . \tag{6}
\end{align*}
$$

To see the order of each of these terms, we recall the asymptotic distribution of the quantile estimators when x_{i} and u_{i} are i.i.d.
$\sqrt{N}\left(\widehat{\beta}-\beta_{0}\right) \xrightarrow{d} N\left(0, \frac{\alpha(1-\alpha)}{\left[f_{u}(0)\right]^{2}}\left[E\left(x_{i} x_{i}^{\prime}\right)\right]^{-1}\right)$.
See, e.g., Koenker (2005), and also Phillips (1991) for the LAD estimator with $\alpha=0.5$. As this textbook result states that the quantile estimator $\widehat{\beta}$ is \sqrt{N}-consistent estimator, using the same argument in Phillips (1991, p. 455), we can obtain that the orders of both $A_{1}=\Psi_{N}$ and $A_{2}=\overline{\nabla \Psi_{N}}\left(\widehat{\beta}-\beta_{0}\right)$ are $O_{p}\left(N^{-1 / 2}\right)$. In the following Lemma 1 and Lemma 2, we discuss the orders of A_{3} and A_{4}.

Before doing that, it is important to recall the following result in this literature. Let $\widehat{\beta}-\beta_{0}=a_{-1 / 2}+R_{N}$, where $a_{-1 / 2}$ is a random sequence of $O_{p}\left(N^{-1 / 2}\right)$ with zero mean $E\left(a_{-1 / 2}\right)=0$ and R_{N} is the remainder term of higher order. Bahadur (1966) and Kiefer (1967) established the celebrated results on the order of R_{N}, that is
$R_{N}=O_{p}\left(N^{-3 / 4}(\log \log N)^{3 / 4}\right)$.

See Koenker (2005, pp. 122-123), and also Jureckova and Sen (1996, pp. 196-202), and van der Vaart (1998, p. 310). Note that (8) implies that
$R_{N}=O_{p}\left(N^{-3 / 4+\varepsilon}\right)$ for some small $\varepsilon>0$.
Below we use this result to obtain Lemma 1(b). Our goal is to obtain the expression of the bias term $E\left(R_{N}\right)=E\left(\widehat{\beta}-\beta_{0}\right)$ up to the second-order i.e., of order $O\left(N^{-c}\right)$ with $c \leq 1$. We first state five lemmas whose proofs are made available in supplemental appendix.

Lemma 1. Let

$$
\begin{align*}
A_{3} & =\left(\nabla \Psi_{N}-\overline{\nabla \Psi_{N}}\right)\left(\widehat{\beta}-\beta_{0}\right) \\
& =\left(\nabla \Psi_{N}-\overline{\nabla \Psi_{N}}\right) a_{-1 / 2}+\left(\nabla \Psi_{N}-\overline{\nabla \Psi_{N}}\right)\left[\left(\widehat{\beta}-\beta_{0}\right)-a_{-1 / 2}\right] \\
& \equiv A_{31}+A_{32} . \tag{10}
\end{align*}
$$

Then, (a) $A_{31}=O_{p}\left(N^{-7 / 6}\right)$, and (b) A_{32} is smaller than $O_{p}\left(N^{-1}\right)$.
Lemma 2. Let

$$
\begin{align*}
A_{4}= & \frac{1}{2} \nabla^{2} \Psi_{N}\left[\left(\widehat{\beta}-\beta_{0}\right) \otimes\left(\widehat{\beta}-\beta_{0}\right)\right] \\
= & \frac{1}{2} \overline{\nabla^{2} \Psi_{N}}\left[\left(\widehat{\beta}-\beta_{0}\right) \otimes\left(\widehat{\beta}-\beta_{0}\right)\right] \\
& +\frac{1}{2}\left(\nabla^{2} \Psi_{N}-\overline{\nabla^{2} \Psi_{N}}\right)\left[\left(\widehat{\beta}-\beta_{0}\right) \otimes\left(\widehat{\beta}-\beta_{0}\right)\right] \\
\equiv & A_{41}+A_{42}, \tag{11}
\end{align*}
$$

Then, (a) $A_{41}=O_{p}\left(N^{-1}\right)$, and (b) A_{42} is smaller than $O_{p}\left(N^{-1}\right)$.
Given Lemmas 1-2, we can now rewrite Eq. (6) as

$$
\begin{align*}
0= & A_{1}+A_{2}+A_{31}+A_{41}+o_{p}\left(N^{-1}\right) \tag{12}\\
= & \Psi_{N}+\overline{\nabla \Psi_{N}}\left(\widehat{\beta}-\beta_{0}\right)+\left(\nabla \Psi_{N}-\overline{\nabla \Psi_{N}}\right) a_{-1 / 2} \\
& +\frac{1}{2} \overline{\nabla^{2} \Psi_{N}}\left(a_{-1 / 2} \otimes a_{-1 / 2}\right)+o_{p}\left(N^{-1}\right) .
\end{align*}
$$

In Eq. (12), it is important to note that we keep the term A_{31} even though it is $O_{p}\left(N^{-7 / 6}\right)$, because we find that the "expectation" of A_{31} becomes $O\left(N^{-1}\right)$ so that $E\left(A_{31}\right)$ is a part of the second-order bias, as we will show shortly.

Solve for $\widehat{\beta}-\beta_{0}$ in Eq. (12) to obtain

$$
\begin{align*}
& \widehat{\beta}-\beta_{0}=-{\overline{\nabla \Psi_{N}}}^{-1} \Psi_{N}-{\overline{\nabla \Psi_{N}}}^{-1}\left(\nabla \Psi_{N}-\overline{\nabla \Psi_{N}}\right) a_{-1 / 2} \\
&-\frac{1}{2}{\overline{\nabla \Psi_{N}}}^{-1} \bar{\nabla}^{2} \Psi_{N} \\
&\left(a_{-1 / 2} \otimes a_{-1 / 2}\right)+o_{p}\left(N^{-1}\right) \\
&=-Q \Psi_{N}-Q V_{N} a_{-1 / 2}-\frac{1}{2} Q \overline{H_{2}}\left(a_{-1 / 2} \otimes a_{-1 / 2}\right) \tag{13}\\
&+o_{p}\left(N^{-1}\right) \\
& \equiv B_{1}+B_{2}+B_{3}+o_{p}\left(N^{-1}\right)
\end{align*}
$$

where $H_{j}=\nabla^{j} \Psi_{N}$, for $j=1,2, Q={\overline{H_{1}}}^{-1}, V_{N}=H_{1}-\overline{H_{1}}$. Note that multiplying Eq. (13) by \sqrt{N} gives the same as Eq. (15) of Phillips (1991, p. 457). In order to compute the bias of $\widehat{\beta}$, that is $E\left(\widehat{\beta}-\beta_{0}\right)$, we now examine the expectations of the three terms B_{1}, B_{2}, B_{3} in (13). Lemma 3 shows that $E\left(B_{1}\right)$ is the first-order bias which is zero, while Lemmas 4 and 5 show the second-order bias $E\left(B_{2}+B_{3}\right)$.

Lemma 3. Let $B_{1}=-Q \Psi_{N}$. Then, (a) $B_{1}=O_{p}\left(N^{-1 / 2}\right)$ and (b) $E\left(B_{1}\right)=0$.

Lemma 4. Let
$B_{2}=-Q V_{N} a_{-1 / 2}=Q\left(H_{1}-\overline{H_{1}}\right) Q \Psi_{N}$

$$
\begin{equation*}
=Q H_{1} Q \Psi_{N}-Q \overline{H_{1}} Q \Psi_{N} \equiv B_{21}+B_{22} \tag{14}
\end{equation*}
$$

Then, (a) $B_{21}=O_{p}\left(N^{-7 / 6}\right)$, (b) $E\left(B_{21}\right)=O\left(N^{-1}\right)$, (c) $E\left(B_{22}\right)=0$, and (d) $E\left(B_{2}\right)=O\left(N^{-1}\right)$.

Lemma 5. Let $B_{3}=-\frac{1}{2} Q \overline{H_{2}}\left(a_{-1 / 2} \otimes a_{-1 / 2}\right)$. Then, (a) $B_{3}=$ $O_{p}\left(N^{-1}\right)$ and $(b) E\left(B_{3}\right)=O\left(N^{-1}\right)$.

Given Lemmas 3-5, and from Eq. (13), the bias of quantile estimators $\widehat{\beta}$ is

$$
\begin{align*}
E\left(\widehat{\beta}-\beta_{0}\right)= & E\left(-Q \Psi_{N}\right)+E\left(Q H_{1} Q \Psi_{N}\right) \\
& +E\left(-\frac{1}{2} Q \overline{H_{2}}\left(a_{-1 / 2} \otimes a_{-1 / 2}\right)\right)+o\left(N^{-1}\right) \tag{15}\\
= & E\left(B_{1}\right)+E\left(B_{21}\right)+E\left(B_{3}\right)+o\left(N^{-1}\right) \\
\equiv & B(\widehat{\beta})+o\left(N^{-1}\right),
\end{align*}
$$

where $B(\widehat{\beta})$ is the "second-order bias" of quantile estimators $\widehat{\beta}$ up to $O\left(N^{-1}\right)$. We now summarize the above as a theorem:

Theorem 1. Suppose Assumptions A, B, C hold. In the quantile regression model, suppose x_{i} and u_{i} are i.i.d., the second-order bias of the quantile estimators $\widehat{\beta}$ up to $O\left(N^{-1}\right)$ is

$$
\begin{align*}
B(\widehat{\beta})= & \frac{1}{N} Q\left[\left(\frac{1}{2}-\alpha\right) E\left(x_{i} x_{i}^{\prime} Q x_{i}\right) f_{u}(0)\right. \\
& \left.-\frac{\alpha(1-\alpha)}{2} E\left[\left(x_{i} x_{i}^{\prime}\right) \otimes x_{i}^{\prime}\right] f_{u}^{(1)}(0)(Q \otimes Q) E\left(x_{i} \otimes x_{i}\right)\right] \tag{16}
\end{align*}
$$

Remark: One important point is whether an expansion of the bias may be useful for inference. The classical first-order asymptotic result for regression quantiles in (7) shows that the bias tends to zero. The results described in Theorem 1 for the secondorder bias may be used together with the second-order asymptotic variance for the second-order asymptotic inference. We will report the second-order mean-squared errors (MSE) comparable with the second-order bias, so that we can conduct the second-order asymptotic inference. The fact that the bias tends to be larger in the tails will make the second-order asymptotic inference more useful and it would be interesting to compare with the first-order results in (7). We thank a referee for pointing this out.

4. Monte Carlo simulation

We present simulation results for the second-order bias that was derived in Section 3. In the quantile regression model $y_{i}=$ $x_{i}^{\prime} \beta+u_{i}$, the error term u_{i} satisfies $E\left[\alpha-\mathbf{1}\left(y_{i}<x_{i}^{\prime} \beta\right) \mid x_{i}\right]=0$. The α conditional quantile of u_{i} given x_{i} is zero. The error term u_{i} is normally distributed with the CDF $F(\cdot)$ with standard deviation σ_{u}, then the mean equals to $-\Phi^{-1}(\alpha) \sigma_{u}$, with $\Phi(\cdot)$ denoting the standard normal CDF. Therefore, we generate the error term u_{i} following normal distribution $N\left(-\Phi^{-1}(\alpha) \sigma_{u}, \sigma_{u}^{2}\right)$. We generate x_{i} from an exponential distribution with its density being $\exp (-x)$. Finally, y_{i} is generated from $y_{i}=x_{i}^{\prime} \beta+u_{i}$. In this setup, $k=1$, $\beta=0, \sigma_{u}=0.5, N=100$. We use the Matlab package by Roger Koenker to estimate the model. We repeat this 10,000 times.

For each level of α, the first column in Table 1 presents the Monte Carlo average values of $\widehat{\beta}$ from 10,000 simulations. The second column presents the second-order bias $B(\widehat{\beta})$ derived in Theorem 1. The third column presents the second-order bias-corrected quantile estimators $\widetilde{\beta}=\widehat{\beta}-B(\widehat{\beta})$. The Monte Carlo results are summarized as follows: (i) $\widetilde{\beta}$ is numerically closer to the true value $\beta=0$ than $\widehat{\beta}$, as the bias in $\widehat{\beta}$ has been substantially corrected; (ii) the magnitude of bias is larger at lower and upper quantiles;

Table 1
Second-order bias correction with x generated from the exponential distribution.

α	$\hat{\beta}$	$B(\hat{\beta})$	$\tilde{\beta}$
0.01	0.0210	0.0163	0.0047
0.05	0.0060	0.0052	0.0009
0.10	0.0032	0.0031	0.0002
0.20	0.0023	0.0016	0.0007
0.30	0.0017	0.0009	0.0008
0.40	0.0010	0.0004	0.0006
0.50	-0.0002	0.0000	-0.0002
0.60	0.0006	-0.0004	0.0010
0.70	-0.0002	-0.0009	0.0007
0.80	-0.0021	-0.0016	-0.0005
0.90	-0.0040	-0.0031	-0.0009
0.95	-0.0063	-0.0052	-0.0011
0.99	-0.0220	-0.0163	-0.0057

(iii) the bias is zero at the median for symmetric errors; and (iv) there are upward bias at lower quantiles and downward bias at upper quantiles. The benefit of the second-order bias correction is substantial especially towards the tails.

Notes: For each level of α, the first column presents the quantile estimators $\hat{\beta}$. The second column presents the second-order bias $B(\hat{\beta})$ derived in Theorem 1 . The third column presents the secondorder bias corrected quantile estimators $\tilde{\beta}=\hat{\beta}-B(\hat{\beta})$.

5. Conclusions

This paper derives the second-order bias of conditional quantile estimators, which enables an improved bias correction and thus improved quantile estimation. We show that the second-order bias are much larger towards the tails of the conditional density than near the median, and therefore the benefit of the second-order bias correction is greater when we are interested in the deeper tail quantiles.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.econlet.2018.09.022.

References

Angist, J., Chernozhukov, V., Fernandez-Val, I., 2006. Quantile regression under misspecification with an application to the US wage structure. Econometrica 74, 539-563.
Bahadur, R.R., 1966. A note on quantiles in large samples. Ann. Math. Stat. 37, 577581.

Bao, Y., Ullah, A., 2007. The second-order bias and mean squared error of estimators in time-series models. J. Econometrics 140, 650-669.
Chernozhukov, V., Fernandez-Val, I., Galichon, A., 2007. Rearranging Estimator of the Value-At-Risk and Other Measures. MIT.
Daniels, H.E., 1961. The asymptotic efficiency of a maximum likelihood estimator. In: Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability, Vol. 4. University of California Press, Berkeley.
Elliott, G., Komunjer, I., Timmermann, A., 2005. Estimation and testing of forecast rationality under flexible loss. Rev. Econom. Stud. 72 (4), 1107-1125.
Gelfand, I.M., Shilov, G.E., 1964. Generalized Functions, Vol. 1. Academic Press, New York.
Horowitz, J.L., 1998. Bootstrap methods for median regression models. 66, 13271351.

Jureckova, J., Sen, P.K., 1996. Robust Statistical Procedures: Asymptotics and Interrelations. Wiley, New York.
Kiefer, J., 1967. On Bahadur representation of sample quantiles. Ann. Math. Stat. 38, 1323-1342.
Koenker, R., 2005. Quantile Regression. Cambridge University Press.
Koenker, R., Bassett, G., 1978. Regression quantiles. Econometrica 46, 33-50.
Komunjer, I., 2005. Quasi-maximum likelihood estimation for conditional quantiles. J. Econometrics 128, 137-164.

Newey, W.K., McFadden, D.L., 1994. Large sample estimation and hypothesis testing. In: Engle, R.F., McFadden, D.L. (Eds.), Handbook of Econometrics, Vol. 4. Elsevier Science, Amsterdam, pp. 2113-2247.

Phillips, P.C.B., 1991. A shortcut to LAD estimator asymptotics. Econometric Theory 7, 450-463.
Portnoy, S., 2012. Nearly root-n approximation for regression quantile processes. Ann. Statist. 40 (3), 1714-1736.

Rilstone, P., Srivastava, V.K., Ullah, A., 1996. The second-order bias and mean squared error of nonlinear estimators. J. Econometrics 75, 369-395.
Ullah, A., 2004. Finite Sample Econometrics. Oxford University Press, United Kingdom.
van der Vaart, A.W., 1998. Asymptotic Statistics. Cambridge University Press, New York.

[^0]: We thank an anonymous referee for many useful comments and suggestions.

 * Corresponding author.

 E-mail addresses: tae.lee@ucr.edu (T.-H. Lee), aman.ullah@ucr.edu (A. Ullah), he.wang001@email.ucr.edu (H. Wang).
 1 We refer to the higher-order asymptotic properties as the finite sample properties. The finite sample properties in this paper is not the exact moment or distributional properties. See Ullah (2004).

[^1]: 2 Komunjer (2005, page 147) states, "The non-differentiability problem has prompted several authors to develop asymptotic normality results under a weaker set of assumptions, generally requiring that $\nabla_{\theta} L_{T}(\theta)$ exist with probability one. Examples include: Daniels (1961), Newey and McFadden (1994). In this paper, we focus on conditional quantile models that are continuously differentiable on Θ (A0), so that the \log-likelihood function $L_{T}(\theta)$ is continuously differentiable a.s. $-P_{0}$ on Θ."

[^2]: 3 Phillips (1991, p. 451) states, "If the criterion function has nonregularities like discontinuities in its derivatives, these may be accommodated directly by the use of generalized functions, provided the discontinuities are smoothed out asymptotically."
 4 We thank a referee for this point and the reference.
 5 In mean regression, Bao and Ullah (2007) show that the RSU results continue to hold for non-i.i.d cases. The same may be the case in quantile regression, which we leave it to our future work.

