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ABSTRACT
This chapter examines the asymptotic properties of the Stein-type shrinkage
combined (averaging) estimation of panel data models. We introduce a
combined estimation when the fixed effects (FE) estimator is inconsistent
due to endogeneity arising from the correlated common effects in the regres-
sion error and regressors. In this case, the FE estimator and the CCEP
estimator of Pesaran (2006) are combined. This can be viewed as the panel
data model version of the shrinkage to combine the OLS and 2SLS estima-
tors as the CCEP estimator is a 2SLS or control function estimator that
controls for the endogeneity arising from the correlated common effects. The
asymptotic theory, Monte Carlo simulation, and empirical applications are
presented. According to our calculation of the asymptotic risk, the Stein-like
shrinkage estimator is more efficient estimation than the CCEP estimator.
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1. INTRODUCTION
This chapter considers a Stein-like (1956) shrinkage estimation of panel data
models. The Stein shrinkage estimators have Bayesian interpretations which
leads to a model combination framework parallel to Bayesian model averaging
(BMA) of Jeffreys (1961), which is one of the most commonly used model com-
bination methods in statistical learning (see Hastie, Tibshirani, and Friedman
(2009), Section 8.8). It can be shown that BMA produces a Stein-type shrinkage
estimator (see Judge and Bock (1978), pp. 173�176).

In this important development of shrinkage estimation, Dale Poirier has been
one of the leading researchers for more than four decades. Among his numerous
contributions in Bayesian analysis in econometrics and statistics, he already
developed in early 1980s an idea similar to the concept of model averaging
(Hansen, 2007). The BMA assigns prior probabilities of the candidate models
being the true model, while there is little guidance in the literature on elicitation
of prior probabilities. An exception is the model occurrence framework devel-
oped by Poirier and Klepper (1981) and Poirier (1988), and applied in the study
by Koop and Poirier (1995). The model occurrence is related to model averaging
(e.g., Hansen, 2007) as its focus is on how the underlying model occurrence
probabilities of the competing models depend on characteristics of the environ-
ments in which the data subsets are generated. In the study by Poirier and
Klepper (1981), classical, Bayesian, and mixed estimation approaches are devel-
oped while the Bayesian approaches are shown to be especially attractive when-
ever the models are nested. Recent literature on BMA includes Draper (1995)
and Raftery, Madigan, and Hoeting (1997), and a survey by Hoeting, Madigan,
Raftery, and Volinsky (1999).

Although the model averaging has been one of the most active topics in the
recent literature, we have not seen much for panel data models. Recently, there
has been increased interest in the estimation of models with error cross-sectional
dependence in panel data models. A particular form that has become popular is
a common factor error structure with a fixed number of unobserved common
factors and individual-specific factor loadings. The most obvious implication of
error cross-sectional dependence is that the standard panel data estimators
are inefficient and estimated standard errors are biased and inconsistent. One
popular approach to this problem is the common correlated effects (CCEs)
method proposed by Pesaran (2006). The virtue of the CCE estimation is that it
can be easily computed by the least squares regression augmented using the
cross-sectional averages of the dependent and explanatory variables as proxies
for the factors.

In this paper we consider the common correlated effects pooled (CCEP) esti-
mator of Pesaran (2006) in comparison with the FE estimator. If there exists
CCE, the CCEP estimator is consistent and the FE model is inconsistent. On
the other hand, if there is no error cross-sectional dependence, both the CCEP
and FE estimators are consistent while the FE estimator is efficient. We consider
the combined estimator which is a weighted combination of the FE estimator
and the CCEP estimator. We study the asymptotic distribution of the combined
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estimator in a local asymptotic framework where some factor loadings in the
error term are in a local neighborhood of zero. We show that under certain con-
ditions, the combined (shrinkage) estimator has strictly smaller risk than the
CCEP estimator. The combined estimator also has smaller asymptotic risk com-
pared to the FE estimator unless the endogeneity is very weak. Our simulation
result shows that the combined estimator can reduce finite sample MSE relative
to the CCEP estimator for all degrees of endogeneity, as well as relative to FE
estimator for moderate to large degrees of endogeneity.

Specifically, we consider a panel data regression model of the general form

yit ¼ x0it β þ αi þ uit; ð1Þ

where i ¼ 1;…; n; t ¼ 1;…;T ; xit is q× 1, zit is 1× p; β is a q× 1 parameter of our
interest, m ⋅ð Þ is an unknown smooth function, αi is the individual effect, and uit
is the random error. We are interested in estimation of β for the case when the
error term uit is correlated with the regressors xit. The above model suffers from
endogeneity which results in the inconsistent estimation of β.

The solution to the inconsistent estimation depends on what causes the endo-
geneity: (i) when the individual effect αi is correlated with the regressors xit or
(ii) when the error term uit is correlated with the regressors xit. In both cases the
above model suffers from endogeneity which results in the inconsistent estima-
tion of β. The first case endogeneity arises when the individual heterogenous
effect αi is treated as the random error component and it is correlated with the
regressors. We are interested in estimation of β for the second case, where the
endogeneity arises when regressors that are omitted in the model are correlated
with the included regressors xit such that the regression error uit and the regres-
sors xit share common factors (common effects) and thus are correlated. In the
first case, the solution is to treat the individual heterogenous effect αi as fixed
effects (FE) rather than random effects. In the second case, it is to remove the
effect of the misspecification, i.e., either by adding them to the model or by con-
trolling for the omitted variables. As the omitted variables may be unobservable
or their data may not be available in hand, we consider the ‘control function
approach’ suggested by Pesaran (2006), which is essentially the 2SLS estimator
for the panel data models.

In the mean time however, it is important to note that the solutions to restore
the consistency will be based on less efficient estimation. Therefore, there is a
trade-off between consistency (bias) and efficiency (variance). In the first case
of the endogeneity when the random component αi is correlated with xit; the
random effects (RE) estimator is inconsistent but more efficient and the FE esti-
mator is consistent but less efficient. In the second case when the error term uit is
correlated with xit due to omitted variables or unobservable variables, the FE
estimator (which is an OLS estimator) is inconsistent but relatively more effi-
cient and the CCE estimator of Pesaran (2006) (which is a 2SLS estimator) is
consistent but less efficient. The CCE estimator can be thought of as a control
function estimator as the correlation between uit and xit are modeled by a com-
mon factor specification in one step and then removed in another step, and
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therefore, it is a 2SLS estimator for the panel data model with the common
effects in uit and xit.

When uit and xit are correlated (strong endogeneity), the CCE estimator is
preferred to the FE estimator. When uit and xit are not correlated (no endogene-
ity), the FE estimator is preferred to the CCE estimator. Hence, a natural ques-
tion is which one to choose when the endogenous is weak. The answer is that we
combine the FE and CCE estimators when uit and xit are weakly correlated.
Hence, this chapter extends the study by Hansen (2017) for panel data models
with common correlated effects.

The rest of this chapter is organized as follows. To examine and compare the
alternative estimators of β and their combined estimator, Section 2 gives the
models and these estimators. Section 3 presents the asymptotic theory, with all
the proofs collected in Appendix (Section 7). Section 4 provides some Monte
Carlo simulation results to demonstrate the asymptotic results in finite sample.
An empirical application is given in Section 5. Finally, Section 6 concludes.

2. ESTIMATING PANEL DATA MODELS WITH COMMON
CORRELATED EFFECTS

Consider a panel data regression model

yit ¼ x0itβ þ αi þ uit; ð2Þ

where i ¼ 1;…; n; t ¼ 1;…;T ; xit is a vector of q explanatory variables, β is a
q× 1 unknown coefficients, αi denotes the individual-specific effects and is
assumed to be fixed. The disturbance term uit has a multifactor structure

uit ¼ γ0ift þ εit; ð3Þ

in which ft is an r× 1 vector of individual-invariant time-specific unobserved
common effects, γi is an r× 1 stochastic individual-specific factor loading vector,
and εit are the idiosyncratic errors assumed to be independent of xit. To model
the correlation between the regressors xit and the errors uit; the regressors may
contain the unobserved common factor

xit ¼ Γ0
ift þ vit; ð4Þ

where Γi is an r× q stochastic factor loading matrix, and vit is the q× 1 vector of
idiosyncratic components of xit and is independent of the common effects ft.

In vector notation,

yi ¼ Xiβ þ αiιT þ ui;

ui ¼ Fγi þ εi;

Xi ¼ FΓi þ vi;

ð5Þ
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where yi ¼ ðyi1;…; yiT Þ0 is T × 1; Xi ¼ ðx0i1;…; x0iT Þ0 is T × q; ui ¼ ðui1;…; uiT Þ0
is T × 1,ιT is the T × 1 vector of ones, F ¼ ðf 01;…; f 0T Þ0 is T × r; vi ¼ ðvi1;…; viT Þ0
is T × q.

We make the following assumptions on the common factors, their loadings
and the individual or unit specific errors.

Assumption 1. εit is independently and identically distributed (iid) across
both i and t with E εitð Þ ¼ 0, Var εitð Þ ¼ σ2 > 0 and E‖εit‖

4 <∞:

Assumption 2. vit is distributed independently across both i and t with
E vitð Þ ¼ 0, Var vitð Þ ¼ Σi positive definite and E‖vit‖

4 <∞:

Assumption 3. ft is covariance stationary with absolute summable autoco-
variances, such that E‖ft‖4 <∞:

Assumption 4. γi and Γi are iid across i and independent of εit and vit; ft for
all i and t with fixed means and finite variances. In particular,

γi ¼ γ þ ηi; ηi ∼ iid 0;Ωη

� �
; ð6Þ

where Ωη is an r× r symmetric nonnegative definite matrix, and ‖γ‖ <K ;
‖Γ‖ <K and ‖Ωη‖<K for some positive constant K <∞:

Assumption 5. εit, vit and ft are mutually independent.

First, let QT ≡ IT � ιT ðι0T ιT Þ�1i0T , which is a T ×T symmetric idempotent
matrix. Further, QT ιT ¼ 0; and so for ith unit, pre-multiplying Eq. (5) by QT

gives

QTyi ¼ QTXiβ þQTui: ð7Þ

The β̂FE can be expressed as

β̂FE ¼
Xn
i¼1

X 0
i QTXi

 !�1 Xn
i¼1

X 0
i QTyi

 !
; ð8Þ

and

avar β̂FE

� �
¼ Ψ��1R�Ψ��1; ð9Þ

where R� ¼ plim σ2 1
n

Pn
i¼1 X

0
i QTXi þ 1

n

Pn
i¼1 X

0
i QTFΩηF 0QTXi

� �
; and Ψ��1 ¼

plim 1
n

Pn
i¼1 X

0
i QTXi

� �
: If γi ≠ 0 so that the error term uit and xit have the

common correlated effects, the FE estimator is inconsistent. If γi ¼ 0, β̂FE is
consistent and has the following asymptotic distribution
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ffiffiffi
n

p
β̂FE � β
� �

→
d

N 0;ΣFEð Þ; ð10Þ

where ΣFE ¼ σ2 plim 1
n

Pn
i¼1 X

0
i QTXi

� ��1
; under the following additional

assumption:

Assumption 6. 1n
Pn

i¼1 X
0
i QTXi is bounded and nonsingular.

Next, let us consider the common correlated effects pooled (CCEP) estimator
of Pesaran (2006). The idea underlying the common correlated effects approach
is that the unobservable common factors ft can be well approximated by a linear
combination of the cross-section averages of the dependent variable and those
of the regressors. To illustrate this result, we write Eqs. (2) and (4) as

zit ¼
yit

xit

 !
¼ Bi þ C0

i ft þ eit; ð11Þ

where

eit ¼
β0vit þ εit

vit

 !
; ð12Þ

Bi ¼
αi

0

 !
;Ci ¼ γi Γi

� � 1 0

β Iq

 !
; ð13Þ

zit is qþ 1ð Þ× 1; Bi is 1× qþ 1ð Þ; 0 is a q× 1 vector of zeros, Ci is r× qþ 1ð Þ;
and Iq is an identity matrix of order q. The covariance matrix of eit is given by

E eite0it
� � ¼ Σe;i ¼

β0Σiβ þ σ2i β0Σi

Σiβ Σi

" #
: ð14Þ

Then, the cross-sectional average is

zt ¼ Bþ C
0
ft þ et; ð15Þ

where

zt ¼
1
n

Xn
i¼1

zit; B ¼ 1
n

Xn
i¼1

Bi; C ¼ 1
n

Xn
i¼1

Ci; et ¼
1
n

Xn
i¼1

eit: ð16Þ

Although not considered here, generally one can consider zt ¼ zwt ¼
Pn

i¼1 wizit;
where wi ¼ σ�2

i =
Pn

j¼1 σ
�2
j : If we assume
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RankðCÞ ¼ r≤ qþ 1; for all n; ð17Þ

it follows that

ft ¼ ðCC
0Þ�1C zt � B� et

� �
: ð18Þ

Therefore, ft can be approximated by a linear combination of zt1f g, if
et → q:m: 0 as n→∞ (cf. Lemma 1 in Pesaran, 2006). In such a case, we obtain

ft � ðCC0Þ�1Cðzt � BÞ →p 0 as n→∞; ð19Þ

where

C →
p

C ¼ ~Γ
1 0

β Ik

 !
as n→∞ ð20Þ

and ~Γ ¼ E γi
� �

E Γið Þ� � ¼ γΓð Þ.
From Eqs. (2) and (3), yit is generated as

yit ¼ x0itβ þ αi þ γ0ift þ εit: ð21Þ

Next, substitute ft ¼ ðCC0Þ�1C zt � B
� �

into (21),

yit ¼ x0itβ þ αi þ γ0iðCC0Þ�1C zt � B
� �þ εit

¼ x0itβ þ αi � γ0iðCC0Þ�1CB
� �þ γ0iðCC0Þ�1Czt þ εit

¼ x0itβ þ h
0
tci þ εit;

ð22Þ

where ci ¼ αi � γ0i CC
0ð Þ�1CB

� �
γ0i CC

0ð Þ�1C
h i0

is qþ 2ð Þ× 1 and ht ¼ 1z0t
� �0

is

qþ 2ð Þ× 1: This suggests using ht ¼ 1z0t
� �0

as an observable proxy for ft: In
vector notation,

yi ¼ Xiβ þHci þ Ei; ð23Þ

where H ¼ ιTZ
� �

is T × qþ 2ð Þ, Z ¼ z1;…; zTð Þ is T × qþ 1ð Þ. Let
M ¼ IT �H H

0
H

� ��1
H

0
: Since MH ¼ 0;

Myi ¼ MXiβ þMEi: ð24Þ

Now, we state the following assumptions:

Assumption 7. 1n
Pn

i¼1 X
0
iMXi is bounded and nonsingular.
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The CCE estimator can be obtained by performing OLS on the resulting
transformed model

β̂CCEP ¼ 1
n

Xn
i¼1

X 0
iMXi

 !�1
1
n

Xn
i¼1

X 0
iMyi

 !
: ð25Þ

Following Pesaran (2006), for fixed T and n→∞; the asymptotic for CCEP
estimator still holds. Under Assumptions 1�5, 7 and with the rank condition
(17) satisfied,

ffiffiffi
n

p
β̂CCEP � β
� �

→
d

N 0; ΣCCEPð Þ; ð26Þ

where ΣCCEP¼Ψ�1RΨ�1; R¼plim σ2 1n
Pn

i¼1X
0
iMf Xiþ1

n

Pn
i¼1X

0
iMf FΩηF 0MfXi

� �
;

Ψ�1¼plim 1
n

Pn
i¼1X

0
iMf Xi

� �
; Mf ¼I�F1ðF 0

1F1Þ�1F 0
1; and F1¼ ιTFð Þ:

With the common correlated effects, the FE estimator (which is an OLS)
does not produce consistent estimates of the coefficients β of interest. Pesaran
(2006) suggests the CCEP approach that yields consistent estimation in the pres-
ence of the correlated unobserved common effects. We now extend Hansen
(2017) to propose the following combined estimator of β, which is a weighted
combined FE and CCEP estimator with weights depending on Hausman (1978)
statistic:

β̂c ¼ wβ̂FE þ ð1� wÞβ̂CCEP; ð27Þ

where

w ¼
τ

Hn
if Hn ≥ τ

1 if Hn < τ

;

8><
>: ð28Þ

Hn ¼ nðβ̂CCEP � β̂FEÞ0 Var
ffiffiffi
n

p
β̂CCEP � β̂FE

� �� �h i�1
β̂CCEP � β̂FE

� �
; ð29Þ

where τ is a shrinkage parameter. The degree of shrinkage depends on τ=Hn:
When Hn < τ then β̂c ¼ β̂FE ; When Hn ≥ τ then β̂c is a weighted average of β̂FE
and β̂CCEP; with more weight on β̂CCEP when Hn is large.

3. ASYMPTOTICS
The variable xit is exogenous if γi ¼ 0. We use the local asymptotic approach.
For fixed T , γi is local to zero by setting

γi ¼ ~γiρ; ð30Þ
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ρ ¼ 1ffiffiffi
n

p δ; ð31Þ

where ~γi is an r× 1 constant, and ρ; δ are scalars. Thus the correlation between
xi and ui is local to zero. When δ ¼ 0; xit are exogenous. When δ≠ 0; xit
are endogenous. δ controls the degree of endogeneity. We make a further
assumption:

Assumption 8. Xi; i ¼ 1;…; n; are iid over i. E‖xit‖2þK <∞ for some K > 0:

E‖xit‖4 <∞: V1 ¼ σ2ε plim 1
n

Pn
i¼1 X

0
i QTXi

� ��1
and V2 ¼ plim Ψ�1RΨ�1

n

� ��1
;

where σ2ε ¼ E ε2it
� �

is the variance of the idiosyncratic error in Eq. (3).

Theorem 1. Under Assumptions 1�8,

ffiffiffi
n

p β̂FE � β

β̂CCEP � β

 !
→
d

hþ ξ; ð32Þ

where

h ¼ σ�2
ε V1Σδ

0

 !
; with Σ≡plim

1
n

Xn
i¼1

X 0
i QTF ~γi; ð33Þ

and

ξ∼Nð0;V Þ; with V ¼ V1 V 0
21

V21 V2

 !
: ð34Þ

Furthermore,

Hn →
d ðhþ ξÞ0Bðhþ ξÞ; ð35Þ

and

ffiffiffi
n

p
β̂c � β
� �

→
d ~Ψ ¼ G0

2ξ�
τ

ðhþ ξÞ0Bðhþ ξÞ

� �
1
G0 hþ ξð Þ; ð36Þ

where B ¼ G V1 þ V2 � V21 þ V 0
21

� �� ��1
G0; G1 ¼ ðI0Þ0;G2 ¼ ð0I Þ0; G ¼

G2 � G1 ¼ ð�II Þ0 and að Þ1 ¼ min 1;a½ �:
Theorem 1 gives expressions for the joint asymptotic distribution of the

FE and CCEP estimator, the Hausman statistic, and the combined estimator as
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a transformation of the normal random vector ξ and the noncentrality
parameter h under the local exogeneity assumption. As noted in Poirier (1995,
p. 284) the mean and covariance matrix of the Stein-like combined estimator
are complicated. See Judge and Bock (1978, pp. 172�173) for details. In our
case, the asymptotic distribution of β̂c is written as a random weighted average
of the asymptotic distribution of β̂FE and β̂CCEP, as shown in Eq. (36).

Remark 1. Theorem 1 extends Hansen (2017) for the panel data models and
generalizes his results by allowing V1 ≠V12 and B ¼ G V1 þ V2 � V12 � V21ð Þ�1G0

to be asymmetric. If β̂FE is fully efficient, then V1 ¼ V12 ¼ V21 and
B ¼ G V2 � V1ð Þ�1G0 as in the case of Hansen (2017). In general β̂FE may not be
fully efficient and so V1 ≠V12 and B ¼ G V1 þ V2 � V12 � V21ð Þ�1G0. In that case
the derivation of V12;V21 is required or they need to be estimated by the use of
bootstrap as we do in this paper in Sections 4 and 5.

Next, we compare β̂1; β̂2; β̂c in the asymptotic risk. The asymptotic risk of
any sequence of estimators βn of β can be defined as

R βn; β;W
� � ¼ lim

n→∞
E nðβn � βÞ0 W βn � β

� �	 
 ¼ R βn
� �

: ð37Þ

Define the largest eigenvalue of the matrix AþA0
2 and A�þA�0

2

λ1 ¼ λmax
Aþ A0

2

� �
; ð38Þ

λ�1 ¼ λmax
A� þ A�0

2

� �
; ð39Þ

where

A ¼ V1 þ V2 � V21 þ V 0
21

� �� �1
2W V2 � V21ð Þ V1 þ V2 � V21 þ V 0

21

� �� ��1
2; ð40Þ

A� ¼ V1 þ V2 � V21 þ V 0
21

� �� �1
2W V1 þ V2 � V21 þ V 0

21

� �� �1
2: ð41Þ

Let

d ¼ tr W V2 � V21ð Þð Þ
λ1

: ð42Þ

Theorem 2. Under Assumptions 1�8, if

d > 2; ð43Þ
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and

0 < τ≤
2λ1 d � 2ð Þ

λ�1
; ð44Þ

then R β̂c

� �
¼ tr WE ~Ψ ~Ψ0� �h i

;

R β̂CCEP

� �
¼ tr WV2ð Þ;

and

R β̂c

� �
<R β̂CCEP

� �
� τ 2λ1 d � 2ð Þ � λ�1τ

� �
σ�4δΣ0V1 V1 þ V2 � V21 þ V 0

21

� �	 
�1
V1Σδþ q

: ð45Þ

□

Equation (45) shows that the asymptotic risk of the combined estimator is
strictly less than that of the CCEP estimator, so long as τ satisfies the condition
(44). τ appears in the risk bound (45) as a quadratic expression, so there is an

optimal choice τ� ¼ λ1 d�2ð Þ
λ�1

which minimizes this bound. The assumption d > 2 is

the critical condition needed in order for the right-hand side of Eq. (44) to be
positive, which is necessary for the existence of τ satisfying Eq. (44).

Poirier (1995, p. 284) noted the fact that the asymptotic risk of the combined

estimator is strictly less than that of the CCEP estimator, R β̂c

� �
<R β̂CCEP

� �
,

does not imply that MSE β̂c

� �
<MSE β̂CCEP

� �
for each element of the estimator

of the q× 1 coefficients of β. Poirier (1995) also wrote:

While it may appear that [the James-Stein estimator] is some sort of mathematical trick pulled
out of the air, this is not the case. [It] can in fact be given a Bayesian interpretation.

Corollary 1. R β̂c

� �
� R β̂CCEP

� �
< 0; for d > 2 and 0< τ≤ 2λ1 d�2ð Þ

λ�1
: In the

case W ¼ V2 � V21ð Þ�1; 0< τ≤ 2 q�2
λ�1

� �
and q > 2 which is Stein’s (1956)

classic condition for shrinkage. □

See Poirier (1995, p. 283) for more discussion on Stein’s (1956) classic condi-
tion for shrinkage. The following two corollaries are obtained with
W ¼ V2 � V1ð Þ�1.

Corollary 2. R β̂FE

� �
¼ tr WV1ð Þ þ σ�4δ0Σ0V1WV1Σδ; R β̂FE

� �
≤R β̂CCEP

� �
when σ�4δ0Σ0V1WV1Σδ≤ q; and R β̂FE

� �
>R β̂CCEP

� �
otherwise. □

Corollary 3. R β̂c

� �
� R β̂FE

� �
< 0; for q< σ�4δ0Σ0V1WV1Σδ; d > 2, and

0< τ≤ 2λ1 d�2ð Þ
λ�1

. □
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Corollary 2 indicates that when endogeneity is weak (γi and hence δi is close
to zero) the FE estimator may perform better than the CCEP estimator.
Corollary 3 indicates that when endogeneity is strong, d > 2, 0 < τ≤ 2λ1 d�2ð Þ

λ�1
; the

combined estimator performs best among these three estimators.

4. MONTE CARLO
We now investigate the finite sample MSE of our combined estimator in the fol-
lowing simulation design,

yit ¼ αi þ β0xit þ γ0ift þ εit; ð46Þ

xit ¼ Γ0
ift þ vit; ð47Þ

where αi is drawn from N 0; 1ð Þ; εit ∼ iid N 0; 1ð Þ; vit ∼ iid N 0; 1ð Þ. The factor is
drawn from N 0;Irð Þ: We vary n∈ 50; 100f g, T ∈ 8; 16f g; q∈ 1; 2; 3f g, r∈ 1; 3f g and
β∈ 0; 1f g. The parameters of the unobserved common effects in the xit equation
are generated independently across replications as Γi ¼ Γi1 Γi2 Γi3ð Þ with Γi1 ∼
iid N 0:5; 0:5ð Þ; Γi2 ∼ iid N 0; 0:5ð Þ; and Γi3 ∼ iid N 0; 0:5ð Þ. Let γi ¼ ~γiρ where
~γi1 ∼ iid N 1; 0:1ð Þ; ~γi2 ∼ iid N 1; 0:1ð Þ; ~γi3 ∼ iid N 1; 0:1ð Þ: We consider ρ on a 40-
point grid on 0; 0:975½ �: ρ controls the degree of endogeneity.

We generated 5,000 samples on each calculated β̂CCEP; β̂FE ; β̂c; for the latter
we set τ ¼ 1=4 for q ¼ 1; τ ¼ 1 for q ¼ 2; and τ ¼ τ� otherwise. We also calcu-
lated the Hausman pre-test estimator:

β̂PT ¼ β̂FE1 Hn < cð Þ þ β̂CCEP1 Hn ≥ cð Þ;

where c is the 5% critical value from the χ2q distribution. We compare the estima-
tor by relative MSE

MSE β̂
� �

¼ Eðβ̂ � βÞ0ðβ̂ � βÞ; ð48Þ

which we normalize by MSE of the CCEP estimator. Thus, the values less than
one indicate improved precision relative to CCEP estimator, and values greater
than one indicate worse performance than the CCEP estimator.

We do a bootstrap pairs procedure that resample with replacement over i
and uses all observed time periods for a given individual. For data
yi;Xið Þ; i ¼ 1;…; n

� �
, this yields B pseduo-samples, and for each pseudo-sample,

we perform regression, yielding B estimates, b ¼ 1;…;B: The panel bootstrap
estimate of the variance matrix is then given by

V̂Boot β̂CCEP � β̂FE

� �
¼ 1

B� 1

XB
b¼1

θ̂b � θ̂
� �

θ̂b � θ̂
� �0

: ð49Þ
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b denotes the bth of B bootstrap replications, and θ̂ ¼ β̂CCEP � β̂FE ;
θ̂ ¼ B�1P

bθ̂b:
The dotted line (black) is the normalized MSE of the CCEP estimator, the

solid line (green) is the normalized MSE of the combined estimator, the longer
dashed line (red) is the normalized MSE of the FE estimator, and the shorter
dashed line (blue) is the normalized MSE of the pre-test estimator.

Figs. 3, 4, 7, and 8 plots the relative MSE of β̂CCEP; β̂FE ; β̂c; and β̂PT ,
respectively, with q ¼ 1; 2f g: These are the cases where the Eqs. (43) and (44)
are not satisfied, which are sufficient conditions for Theorem 2 to hold,

R β̂c

� �
<R β̂CCEP

� �
: Because these conditions are just sufficient but not neces-

sary, the theorem may or may not hold for these smaller values of q ¼ 1; 2.
Indeed, q ¼ 1 makes the results quite erratic, showing that Theorem 2 does not
hold for q ¼ 1; and somewhat less degree for q ¼ 2:

In each Figure, subfigure (a) plots the relative MSE for n ¼ 50; subfigure (b)
plot the relative MSE for n ¼ 100: Figs. 1, 2, 3, and 4 plot the relative MSE for
t ¼ 8; Figs. 5, 6, 7, and 8 plot the relative MSE for t ¼ 16: We see that the
region of dominance for the combined estimator over the FE and CCEP estima-
tors is greater for smaller n and smaller t.

Next consider the case of three endogenous regressors, q ¼ 3. This is the case
where Theorem 2 shows that the weighted asymptotic MSE of the combined
estimator is uniformly smaller than that of the CCEP estimator. From Figs. 1,
2, 5, and 6, we see that the MSE of the combined estimator is uniformly smaller
than that of the CCEP estimator for all factor loading values. For small ρ; the
FE estimator has lower MSE than the combined estimator, but the ranking is
reversed for moderate values of ρ: The FE estimator is very sensitive, which has
quite low MSE for very small ρ, but very large MSE for large ρ. The combined
and the pre-test estimators have much smaller MSE than CCEP for small values
of ρ; but the ranking is reversed for large values of ρ: The MSE of the pre-test
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Fig. 1. Relative MSE of CCEP, FE, Pre-test, and Combined Estimators,
n ¼ 50; 100f g; T ¼ 8; q ¼ 3; r ¼ 1.
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estimator is generally similar to the FE estimator for small ρ: For intermediate
values of ρ; the MSE of the pre-test estimator is typically larger than the com-
bined estimator. Following Pesaran (2006), γi and Γi are randomly generated as
described earlier, while we have also tried with constant γi and Γi which give
slightly better but essentially the same results (not reported).

Figs. 2 and 6 are the cases where r ¼ 3. The general nature of the plot is the
same, except that the gains is not as strong as in the case of r ¼ 1: We see that
the gains from the combined estimator are strong for small ρ; with the MSE
converging to that of CCEP as ρ increases toward one. This is consistent with
Theorem 2, which shows that the improvement are asymptotically local to
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Fig. 2. Relative MSE of CCEP, FE, Pre-test, and Combined Estimators,
n ¼ 50; 100f g; T ¼ 8, q ¼ 3, r ¼ 3.
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Fig. 3. Relative MSE of CCEP, FE, Pre-test, and Combined Estimators,
n ¼ 50; 100f g; T ¼ 8, q ¼ 1, r ¼ 1.
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ρ ¼ 0: The FE estimator has lower MSE than the combined estimator, but the
MSE of the FE estimator increases dramatically after intermediate values of ρ:
Still the combined estimator has uniformly smaller MSE than CCEP. In sum-
mary, the simulation results provide strong finite sample confirmation of
Theorem 2 and its corollaries 1, 2, and 3.

Remark 1. It is interesting that the relative performance of using CCEP ver-
sus IFE depends on the true value of β is zero or not. We have experimented in
simulation with β∈ 0; 1f g: A few figures to compare the results for β∈ 0; 1f g are
reported in Figs. 9 and 10. The figures with β ¼ 1 were almost exactly the same
as those with β ¼ 0:
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Fig. 4. Relative MSE of CCEP, FE, Pre-test, and Combined Estimators,
n ¼ 50; 100f g; T ¼ 8, q ¼ 2, r ¼ 1.
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(a) n = 50, T = 16, q = 3, r = 1
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Fig. 5. Relative MSE of CCEP, FE, Pre-test and Combined Estimators,
n ¼ 50; 100f g; T ¼ 16, q ¼ 3, r ¼ 1.
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Remark 2. We have also tried 2τ� as this choice still satisfies the classic
James-Stein condition in Eq. (44). could make the MSE of the combined estima-
tor somewhat closer to the MSE of FE when the degree of endogeneity is small.
The results are reported in Figs. 11 and 12.

5. APPLICATION
Holly, Pesaran, and Yamagata (2010), hereafter HPY, provide an empirical
analysis of changes in real house prices in United States. using state-level data.
They use a panel of 49 states over the period of 1975�2003 to show that
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(a) n = 50, T = 16, q = 3, r = 3
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Fig. 6. Relative MSE of CCEP, FE, Pre-test, and Combined Estimators,
n ¼ 50; 100f g; T ¼ 16, q ¼ 3, r ¼ 3.
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Fig. 7. Relative MSE of CCEP, FE, Pre-test and Combined Estimators,
n ¼ 50; 100f g; T ¼ 16, q ¼ 1, r ¼ 1.
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state-level real housing prices are driven by economic fundamentals, such as real
per capita disposable income, as well as by common shocks, such as changes in
interest rates, oil prices, and technological change. Baltagi and Li (2014) repli-
cate their results using a panel of 381 metropolitan statistical areas observed
over the period 1975�2011. Their replication shows that HPY results are fairly
robust. Our empirical analysis relies upon a panel of 49 states over the period
1975�2011 to examine the performance of the combined estimator. Consider
the following panel data model for US states

pi;t ¼ β0 þ β1yi;t þ β2gi;t�1 þ β3ci;t�1 þ αi þ uit; ð50Þ
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Fig. 8. Relative MSE of CCEP, FE, Pre-test, and Combined Estimators,
n ¼ 50; 100f g; T ¼ 16, q ¼ 2, r ¼ 1.
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where i ¼ 1;…; 49; t ¼ 1;…; 17; pi;t is the logarithm of the real price of housing in
the ith State during year t, and yi;t is the logarithm of the real per capita per-
sonal disposable income. The net cost of borrowing defined by ci;t�1 ¼ rit � Δpit,
where rit represents the long-term real interest rate and gi;t represents the popula-
tion growth rate. The state-specific effects can be treated as the endowment of
climate, location, and culture. A more detailed description can be found in
HPY. We would expect a rise in ci;t to be associated with a fall in the price
income ratio, and hence a negative coefficient for ci;t�1. The effect of population
growth on real house prices is expected to be positive.

Table 1 suggests that the income elasticity of real house prices for the com-
bined estimator is 1.2151, and the estimate of the coefficients on the rate of
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Fig. 11. Relative MSE of CCEP, FE, and Combined Estimators, n ¼ 100, T ¼ 8,
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change of population and the net cost of borrowing are 1.6120 and �0.2047,
respectively, for the combined estimator. We find a significant positive effect for
population growth and a significant negative effect associated with net cost of
borrowing, which are in agreement with the results of HPY. The other two rows
report the FE and CCEP estimates. The estimates of the combined estimator lie
quite close to that of the CCEP estimator. We bootstrap the data 5000 times by
resampling across individuals and keep the time series structure for each individ-
ual unchanged. The bootstrap MSE and the standard errors for the above esti-
mates, then, can be calculated based on the estimates of the coefficients for each
bootstrap data. The MSE for FE, CCEP, and combined estimators are 3.4250,
2.4288, and 2.1425, respectively. Among these three estimators, the combined
estimator has the smallest MSE. The Hausman statistic is 24.9018. Thus, the
exogeneity assumption is rejected at the one percent level of significance, which
also indicates that the CCEP estimator is more reliable.
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Fig. 12. Relative MSE of CCEP, FE, and Combined Estimators, n ¼ 100, T ¼ 8,
q ¼ 3, r ¼ 3; τ; 2τf g.

Table 1. Economics of Real House Prices: Correlated Common Effects.

β̂1 β̂2 β̂3

FE 0.5804 1.3286 �0.5088

(0.3013) (1.8132) (0.1546)

CCEP 1.2705 1.6367 �0.1781

(0.2990) (1.5217) (0.1541)

Combined 1.2151 1.6120 �0.2047

(0.2986) (1.4237) (0.1530)

Notes: 49 US States (1975�2011). Reported are parameter estimates with the standard errors in
parentheses.
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6. CONCLUSIONS
This chapter extends the study by Hansen (2017) for the combined (model aver-
aging) estimation of the parametric panel data model with weak endogeneity
(i.e., local to exogeneity) from common correlated effects. We introduce a com-
bined estimation of the FE and CCEP estimators for the panel data models
when the FE estimator suffers from inconsistency due to endogeneity arising
from the correlated common effects. This can be viewed as the panel data model
version of the shrinkage estimator combining the 2SLS estimator (CCEP) and
the OLS estimator (FE) because the CCEP estimator is a control function esti-
mator to remove the endogeneity from the correlated common effects.

The use of the combined estimation allows applied researchers to implement
efficient estimation under the presence of weak endogeneity. The combined esti-
mation would work even when there is no endogeneity or when there is strong
endogeneity, without having to select a consistent estimator or an efficient esti-
mator since the weights in the combined estimator will then be 1 or 0. Hence,
the combined estimator is an omnibus estimator across all degrees of endogene-
ity, particularly useful when it is not clear which estimator to choose when endo-
geneity is weak.
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APPENDIX
Proof of Theorem 1. Here, we derive only the asymptotic distribution of the FE
estimator for the parametric panel data model with common correlated effects
as specified in Eqs. (3) and (4). The asymptotic distribution of the CCEP estima-
tor for this model is shown in the study by Pesaran (2006). For the joint asymp-
totic distribution of the FE and the CCEP estimators, the asymptoric covariance
V12 is complicated and thus we will use bootstrap to estimate V12.

To derive the asymptotic distribution of the FE estimator, we use the nota-
tion h1 ¼ G1h and ξ1 ¼ G1ξ with G1 ¼ ðI0Þ0. Now, write the FE estimator as

β̂FE ¼
Xn
i¼1

X 0
i QTXi

 !�1 Xn
i¼1

X 0
i QTyi

 !
;

β̂FE � β ¼
Xn
i¼1

X 0
i QTXi

 !�1 Xn
i¼1

X 0
i QTui

 !
:

Given that ui ¼ Fγi þ εi;

β̂FE � β ¼
Xn
i¼1

X 0
i QTXi

 !�1 Xn
i¼1

X 0
i QTFγi þ X 0

i QTεi
� � !

:

Since γi ¼ 1ffiffi
n

p ~γiδ; we have

β̂FE � β ¼
Xn
i¼1

X 0
i QTXi

 !�1 Xn
i¼1

X 0
i QTF

~γiδffiffiffi
n

p þ X 0
i QTεiÞ

0
@
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0
@
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p
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� �

¼ 1
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X 0
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0
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1
A�1

1
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X 0
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þ 1
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0
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�1
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p
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X 0
i QTεi

0
@

1
A →

d
h1 þ ξ1;

where

h1 ¼ plim
1
n

Xn
i¼1

X 0
i QTXi

 !�1

plim
1
n

Xn
i¼1

X 0
i QTF ~γiδ

 !
¼ σ�2

ε V1Σδ;

with
P

≡ plim 1
n

Pn
i¼1 X

0
i QTF ~γi; and
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ξ1 ∼ plim
1
n

Xn
i¼1

X 0
i QTXi

 !�1

Z;

with

Z ¼ 1ffiffiffi
n

p
Xn
i¼1

X 0
i QTεi ∼N 0;σ2ε plim

1
n

Xn
i¼1

X 0
i QTXi

 ! !
:

Hence,

ξ1 ∼N 0;σ2ε plim
1
n

Xn
i¼1

X 0
i QTXi

 !�1
0
@

1
A ¼ N 0;V1ð Þ;

and

ffiffiffi
n

p
β̂FE � β
� �

→
d

N h1;V1ð Þ;

where

V1 ¼ σ2ε plim
1
n

Xn
i¼1

X 0
i QTXi

 !�1

;

as defined in Assumption 8 with σ2ε ¼ E ε2it
� �

is the variance of the idiosyncratic
error in Eq. (3).

Proof of Theorem 2:

Noting that
ffiffiffi
n

p
β̂CCEP � β
� �

→ dG0
2ξ∼N 0;V2ð Þ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
then

R β̂CCEP

� �
¼ E ξ0G0

2WG0
2ξ

� � ¼ tr WV2ð Þ:

Define Ψ� as a random variable without positive part trimming

Ψ� ¼ G0
2ξ�

τ

ðhþ ξÞ0Bðhþ ξÞ

� �
G0 hþ ξð Þ:

Then using the fact that the pointwise quadric risk of Ψ is strictly smaller
than that of Ψ�

R β̂c

� �
¼ E Ψ0WΨð Þ <E Ψ�0WΨ�� �

;
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we can calculate that

E Ψ�0WΨ�� � ¼ R β̂CCEP

� �
þ τ2E

ðhþ ξÞ0GWG0ðhþ ξÞ
ðhþ ξÞ0Bðhþ ξÞ� �2

 !

� 2τE
ðhþ ξÞ0GWG0

2ξ

ðhþ ξÞ0Bðhþ ξÞ

� �
:

By Stein’s Lemma: If Z∼Nð0;V Þ is q× 1, K is q× q; and η xð Þ:Rq →Rq is
absolutely continuous, then

E ηðZ þ hÞ0KZ� � ¼ Etr
∂

∂x
ηðZ þ hÞ0KV

� �
;

η xð Þ ¼ x= x0Bxð Þ; and

∂

∂x
η xð Þ ¼ 1

x0Bx
I � 2

x0Bxð Þ2 Bxx
0:

Therefore,

E
ðhþ ξÞ0GWG0

2ξ

ðhþ ξÞ0Bðhþ ξÞ

0
@

1
A ¼ Etr

GWG0
2V

ðhþ ξÞ0Bðhþ ξÞ �
2GWG0

2V

ðhþ ξÞ0Bðhþ ξÞ� �2 Bðhþ ξÞðhþ ξÞ0
0
B@

1
CA

¼ E
tr GWG0

2V
� �

ðhþ ξÞ0Bðhþ ξÞ

0
@

1
A� 2Etr

GWG0
2V

ðhþ ξÞ0Bðhþ ξÞ� �2 Bðhþ ξÞðhþ ξÞ0
0
B@

1
CA:

Since

GWG0
2V ¼ WG0

2VG ¼ W V2 � V21ð Þ;

and

GWG0
2VB ¼ GWG0

2VG V1 þ V2 � V21 þ V 0
21

� �� ��1
G0

¼ GW V2 � V21ð Þ V1 þ V2 � V21 þ V 0
21

� �� ��1
G0;

set W V2 � V21ð Þ V1 þ V2 � V21 þ V 0
21

� �� ��1 ¼ C; then

Etr
GWG0

2V

hþ ξð Þ0Bðhþ ξÞ� �2 Bðhþ ξÞðhþ ξÞ0
 !

¼ Etr
ðhþ ξÞ0GCG0ðhþ ξÞ

hþ ξð Þ0Bðhþ ξÞ� �2
 !

:
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Thus,

E Ψ�0WΨ�� � ¼ R β̂CCEP

� �
þ τ2E

ðhþ ξÞ0GWG0ðhþ ξÞ
ððhþ ξÞ0Bðhþ ξÞÞ2

0
@

1
A

þ4τEtr
ðhþ ξÞ0GCG0ðhþ ξÞ
ðhþ ξÞ0Bðhþ ξÞ� �2

0
B@

1
CA� 2τEtr

W V2 � V21ð Þð Þ
ðhþ ξÞ0Bðhþ ξÞ

0
@

1
A:

ðA:1Þ

Define B1 ¼ V1 þV2 � V21 þV 0
21

� �� ��1
2G0 and A ¼ V1 þV2 � V21 þV 0

21

� �� �1
2

C V1 þV2 � V21 þV 0
21

� �� �1
2

Note that GWG0
2VB ¼ GCG0 ¼ B0

1AB1; B0
1B1 ¼ B: Using the inequality

b0ab≤ b0bð Þλmax að Þ for symmetric a, and let

λmax að Þ ¼ λmax
Aþ A0

2

� �
¼ λ1:

Then,

tr Bðhþ ξÞðhþ ξÞ0GWG0
2V

� � ¼ ðhþ ξÞ0B0
1 Aþ A0ð ÞB1ðhþ ξÞ

2

≤ ðhþ ξÞ0Bðhþ ξÞλ1:
ðA:2Þ

Define A� ¼ V1 þ V2 � V21 þ V 0
21

� �� �1
2W V1 þ V2 � V21 þ V 0

21

� �� �1
2: Note

that GWG0 ¼ B0
1A

�B1; B0
1 ¼ B; and let

λmax að Þ ¼ λmax
A� þ A�0

2

� �
¼ λ�1;

we have

tr ðhþ ξÞ0GWG0ðhþ ξÞ� � ¼ ðhþ ξÞ0B0
1 A� þ A�0� �

B1ðhþ ξÞ
2

≤ ðhþ ξÞ0Bðhþ ξÞλ�1:
ðA:3Þ

Plug Eqs. (A.2) and (A.3) into Eq. (A.1) and use Jensen’s inequality, then we
have

273Stein-like Shrinkage Estimation of Panel Data Models



E Ψ�0WΨ�� �
≤R β̂CCEP

� �
þ τ2E

λ�1
ðhþ ξÞ0Bðhþ ξÞ

0
@

1
Aþ 4τE

λ1
ðhþ ξÞ0Bðhþ ξÞ

0
@

1
A

�2τEtr
W V2 � V12ð Þð Þ
ðhþ ξÞ0Bðhþ ξÞ

0
@

1
A

¼ R β̂CCEP

� �
� E

τ 2 trW V2 � V21ð Þ � 2λ1ð Þ � λ�1τ
� �

ðhþ ξÞ0Bðhþ ξÞ

0
@

1
A

≤R β̂CCEP

� �
� τ 2 trW V2 � V21ð Þ � 2λ1ð Þ � λ�1τ
� �

E ðhþ ξÞ0Bðhþ ξÞ� � :

ðA:4Þ

Since trðBV Þ ¼ tr G V1 þ V2 � V21 þ V 0
21

� �� ��1
G0V

� �
¼ q: We have

E hþ ξð Þ0Bðhþ ξÞ� � ¼ h0Bhþ tr BVð Þ
¼ σ�4

1 δ0Σ0V1 V1 þ V2 � V21 þ V 0
21

� �� ��1
V1Σδþ q:

Substitute into Eq. (A.4), then we have

R β̂c

� �
≤R β̂CCEP

� �
� τ 2λ1 d � 2ð Þ � λ�1τ

� �
σ�4δΣ0V1 V1 þ V2 � V21 þ V 0

21

� �	 
�1
V1Σδþ q

:
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