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TO COMBINE FORECASTS OR TO COMBINE INFORMATION?

Huiyu Huang1 and Tae-Hwy Lee2

1PanAgora Asset Management, Boston, Massachusetts, USA
2Department of Economics, University of California, Riverside, California, USA

� When the objective is to forecast a variable of interest but with many explanatory variables
available, one could possibly improve the forecast by carefully integrating them. There are
generally two directions one could proceed: combination of forecasts (CF) or combination of
information (CI). CF combines forecasts generated from simple models each incorporating a part
of the whole information set, while CI brings the entire information set into one super model
to generate an ultimate forecast. Through linear regression analysis and simulation, we show
the relative merits of each, particularly the circumstances where forecast by CF can be superior
to forecast by CI, when CI model is correctly specified and when it is misspecified, and shed
some light on the success of equally weighted CF. In our empirical application on prediction
of monthly, quarterly, and annual equity premium, we compare the CF forecasts (with various
weighting schemes) to CI forecasts (with principal component approach mitigating the problem
of parameter proliferation). We find that CF with (close to) equal weights is generally the best
and dominates all CI schemes, while also performing substantially better than the historical
mean.

Keywords Equally weighted combination of forecasts; Equity premium; Factor models; Forecast
combination; Forecast combination puzzle; Information sets; Many predictors; Principal
components; Shrinkage.

JEL Classification C3; C5; G0.

1. INTRODUCTION

When one wants to predict an economic variable using the information
set of many explanatory variables that have been shown or conjectured
to be relevant, one can either use a super model which combines all the
available information sets or use the forecast combination methodology. It
is commonly acknowledged in the literature that the forecast generated by
all the information incorporated in one step (combination of information,

Address correspondence to Tae-Hwy Lee, Department of Economics, University of California,
Riverside, CA 92521-0427, USA; E-mail: taelee@ucr.edu
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Combining Forecasts or Combining Information? 535

or CI) is better than the combination of forecasts from individual models
each incorporating partial information (combination of forecasts, or CF).
For instance, Engle et al. (1984) have commented: “The best forecast is
obtained by combining information sets, not forecasts from information
sets. If both models are known, one should combine the information that
goes into the models, not the forecasts that come out of the models.”
Granger (1989), Diebold (1989), Diebold and Pauly (1990), and Hendry
and Clements (2004) have similar arguments. It seems that researchers in
this field lean more towards favoring the CI scheme.

However, as Diebold and Pauly (1990) further point out, “� � � it must
be recognized that in many forecasting situations, particularly in real
time, pooling of information sets is either impossible or prohibitively
costly.” Likewise, when models underlying the forecasts remain partially
or completely unknown (as is usually the case in practice, e.g., survey
forecasts), one would never be informed about the entire information
set. On the other hand, growing amount of literature have empirically
demonstrated the superior performance of forecast combination. For
recent work, see Stock and Watson (2004) and Giacomini and Komunjer
(2005).1

The frequently asked questions in the existing literature are: “To
combine or not to combine”2 and “how to combine.”3 In this paper, we
are interested in: “To combine forecasts or to combine information.” This
is an issue that has been addressed but not yet elaborated much (see
Chong and Hendry, 1986; Diebold, 1989; Newbold and Harvey, 2001;
Stock and Watson, 2004; Clements and Galvao, 2006 provide empirical
comparisons). Indeed, quite often the combination of forecasts is used
when the only things available are individual forecasts (for example the
case of professional forecasters) while the underlying information and the
model used for generating each individual forecast are unknown, thus
the focus of “how to combine.”

In this article we elaborate a different issue. Consider the situation
that the predictor sets are available but the question is how to use these
predictor sets. This forecasting situation is also prevalent in practice. For
example, the empirical application we consider in Section 5, predicting
excess stock market return using a couple of predictors with proven
forecast ability for return in the finance literature. With predictor sets now
available, combination of forecasts is no longer a method you end up with

1A similar issue is about forecast combination versus forecast encompassing, where the need
to combine forecasts arises when one individual forecast fails to encompass the other. See Diebold
(1989), Newbold and Harvey (2001), among others.

2See Palm and Zellner (1992) and Hibon and Evgeniou (2005).
3See, for example, Granger and Ramanathan (1984), Deutsch et al. (1994), Shen and Huang

(2006), and Hansen (2008). Clemen (1989) and Timmermann (2006) provide excellent surveys on
forecast combination and related issues.
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536 H. Huang and T.-H. Lee

due to lack of knowledge on the underlying information of individual
forecasts, but one you can choose to get better out-of-sample forecasting
performance than pooling all the predictors at once into a large model
(CI). The common belief that CI is better than CF might be based on the
in-sample analysis. On the contrary, from out-of-sample analysis, we often
find CF performs better than CI. Many articles typically account for the
out-of-sample success of CF over CI by pointing out various disadvantages
CI may possibly possess. For example, (a) in many forecasting situations,
particularly in real time, CI by pooling all information sets is either
impossible or too expensive (Diebold, 1989; Diebold and Pauly, 1990;
Timmermann, 2006); (b) in a data rich environment where there are many
relevant input variables available, the super CI model may suffer from
the well-known problem of curse of dimensionality (Timmermann, 2006);
and (c) under the presence of complicated dynamics and nonlinearity,
constructing a super model using CI may be likely misspecified (Hendry
and Clements, 2004).

In this article, through a linear regression framework, for out-of-sample
forecasting, under strict exogeneity of predictors, we show analytically that
CI can be beaten by CF even when the CI model coincides with the
data generation process (DGP) and when the CI model is misspecified.
Intuitively, CF can be more successful than CI in out-of-sample forecasting
largely due to: 1) the bias and variance trade-off between a small model
(each individual forecasting model in CF is usually small) and a large
model (CI model is usually large); and 2) in the stage of combining,
CF combines individual forecasts that contain both information of the
forecast target y and information of the predictors x , while CI combines
information of the predictors only without taking into consideration their
relationships with y. In this sense, CF may be viewed as a “supervised
learning” mechanism (see, for example, Bai and Ng, 2008). We also
shed some light on the (puzzling) success of the equally-weighted CF
forecasts. Monte Carlo study is presented to illustrate the analytical results.
Our analytical illustration provides some interpretation for simulation and
empirical findings. Moreover, the analytical findings assist us to shed some
light on the empirical success of equally weighted combination of forecasts
which is deemed as a “puzzle” in forecast combination literature (Stock
and Watson, 2004; Timmermann, 2006).

Finally, as an empirical application, we study the equity premium
prediction for which we compare various schemes of CF and CI.
Goyal and Welch (2008) explore the out-of-sample performance of
many stock market valuation ratios, interest rates and consumption-based
macroeconomic ratios toward predicting the equity premium. Here we
bring the CF method into predicting equity premium and compare with
CI. We implement CF with various weighting methods, including simple
average, regression based approach (see Granger and Ramanathan, 1984),
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Combining Forecasts or Combining Information? 537

and principal component forecast combination (see Stock and Watson,
2004). We find that CF with (close to) equal weights is generally the best
and dominates all CI schemes, while also performing substantially better
than the historical mean.

The article is organized as follows. Section 2 examines analytically
the out-of-sample relative merits of CF in comparison with CI. Section 2
considers two cases, which set up the two experimental designs of
Monte Carlo analysis in Section 4. In Section 3 we discuss the
“forecast combination puzzle”—the empirical success of equally weighted
combination of forecasts (which we call CF-Mean), and provide our
attempts on understanding the puzzle in several ways. Furthermore, we
discuss the weighting of CF in the shrinkage framework as in Diebold
and Pauly (1990) and compare with CI. Section 5 presents an empirical
application for equity premium prediction to compare the performance of
various CF and CI schemes. In Section 5, we use the principal component
(PC) models for CI and CF. Section 2 is about the theory of comparing
CF and CI, but not about comparing CF-PC and CI-PC. Nevertheless, we
include these two factor models (CF-PC, CI-PC) in the empirical section
(Section 5) because of the following two reasons. First, the empirical
section has a large number of predictors N = 12 and it would be unfair
for CI as it could easily be contaminated by the large parameter estimation
uncertainty. Hence, we consider a factor model for CI, namely CI-PC, for a
fair comparison by mitigating the parameter estimation error. We include
CI-PC in the empirical section, even if we do not include it in the analytical
discussion and Monte Carlo experiment where N = 2, 3 is small. Second,
more importantly, we note that CF-Mean is a single factor CF-PC model
with the factor loading shrunken to a constant (Remark 3, Section 5.2). As
we include CF-Mean, it may be natural to include the factor model without
the shrinkage (CF-PC). Noting that CF-Mean is a shrinkage version of the
CF-PC, we can also view the regression based CF (CF-RA) and its shrinkage
version (denoted CF-RA(�)) as a general shrinkage version of the CF-PC.
Section 6 concludes.

2. OUT-OF-SAMPLE FORECAST: CF CAN BE BETTER THAN CI

Suppose we forecast a scalar variable yt+1 using the information set
available up to time t , �t = �xs�ts=0, where xs is a 1 × k vector of weakly
stationary variables. Let xs = (x1s x2s) be a non-empty partition. The CF
forecasting scheme is based on two individual regression models

yt+1 = x1t�1 + �1,t+1, (1)

yt+1 = x2t�2 + �2,t+1� (2)
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538 H. Huang and T.-H. Lee

The CI takes a model4

yt+1 = x1t�1 + x2t�2 + et+1� (3)

Forecast Models: Denote the one-step out-of-sample CI and CF
forecasts as

ŷCIT+1 = xT �̂T = x1T �̂1,T + x2T �̂2,T ,
(4)

ŷCFT+1 = w1ŷ
(1)
T+1 + w2ŷ

(2)
T+1 = w1x1T �̂1,T + w2x2T �̂2,T ,

where ŷ(1)T+1 and ŷ(2)T+1 are forecasts generated by forecasting models (1) and
(2) respectively, and wi (i = 1, 2) denote the forecast combination weights.
All parameters are estimated using strictly past information (up to time T )
as indicated in subscript. Let êT+1 ≡ yT+1 − ŷCIT+1 denote the forecast error
by CI, �̂i ,T+1 ≡ yT+1 − ŷ(i)T+1 denote the forecast errors by the first (i = 1)
and the second (i = 2) individual forecast, and êCFT+1 ≡ yT+1 − ŷCFT+1 denote
the forecast error by CF.

DGPs: We consider two cases for the DGP: (i) when the DGP is the
same as the CI model (i.e., the CI model (3) is correctly specified for the
DGP) and (ii) when the DGP has the additional variable set x3 to generate
y (i.e., the CI model (3) is misspecified for the DGP as it omits x3).

We show that even in the first case when the CI model coincides with
the DGP, CF can be better than CI in a finite sample (see Section 2.1 and
Section 4 (Table 1) for the analysis and simulation results). When the CI
model is not correctly specified for the DGP and suffers from the omitted
variable problem, we show that CF can be better than CI even in a large
sample (T → ∞). Section 2.2 and Section 4 (Table 2) provide analytical
illustrations and simulation results, respectively.

2.1. When the CI Model is Correctly Specified

DGP1: Suppose that the DGP is the same as the CI model (3) which
generates y from x1 and x2

yt+1 = x1,t�1 + x2,t�2 + 	t+1, (5)

4Our CF and CI model set-ups (equations (1), (2) and (3)) are similar to Hendry and
Clements (2004) (their equations (5) to (7)). However, they compare CF with the best individual
forecast but here we compare CF with forecast by the CI model (the DGP in Hendry and
Clements, 2004). Also note that Harvey and Newbold (2005) investigate gains from combining the
forecasts from DGP and mis-specified models, and Clark and McCracken (2009) examine methods
of combining forecasts from nested models, while in contrast, we consider combining forecasts from
non-nested (mis-specified) individual forecasting models and compare with models incorporating
all available information directly (CI, which may be correctly specified).
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Combining Forecasts or Combining Information? 539

where 	t+1 ∼ IID(0, 
2
	) and xt = (x1,t x2,t) with each xi ,t being 1 × ki (i =

1, 2) is strictly exogenous.5 Let � = (�′
1 �′

2)
′� To simplify the algebra in

this section and the Monte Carlo simulation in Section 4, we assume the
conditional mean of xt is zero6

x ′
t =

(
x ′
1,t
x ′
2,t

)
∼ INk

[(
0
0

)
,
(
�11 �12

�21 �22

)]
� (6)

Models (CI and CF): Consider predicting yt one-step ahead using
information xt = (x1,t x2,t) up to time t . The forecasts by CI and
CF are respectively, ŷCIT+1 = x1,T �̂1,T + x2,T �̂2,T and ŷCFT+1 = w1ŷ

(1)
T+1 + w2ŷ

(2)
T+1 =

w1x1,T �̂1,T + w2x2,T �̂2,T , with wi (i = 1, 2) denoting the forecast combination
weights.

MSFE: Note that the unconditional MSFE by CI forecast is

MSFECI = E
{
E [ê2T+1 |�T ]} = E

{
VarT (yT+1) + [ET (êT+1)]2

}
= E(	2T+1) + E [(� − �̂T )

′x ′
T xT (� − �̂T )]

= 
2
	 + E [	′X (X ′X )−1x ′

T xT (X
′X )−1X ′	]

= 
2
	 + T −1
2

	E�tr [x ′
T xT (T

−1X ′X )−1]�, (7)

where VarT (·) and ET (·) denote the conditional variance and the
conditional expectation given information �T up to time T . Note
that, if xt ∼ INk(0, �), then E�tr [x ′

T xT (T
−1X ′X )−1]� � tr ���−1� = k,

the dimension of xt . Therefore, MSFECI � 
2
	 + T −1
2

	k = 
2
	 + O

(
k
T

)
�7

5We assume E [		′|X ] = 
2
	IT for both DGP1 and DGP2 that we use for the Monte Carlo

analysis in Section 4. Note that a dynamic model augmented with dynamic terms (such as lagged
dependent variables) may also be considered, for example, as used in Stock and Watson (SW:
2002a; 2002b; 2004; 2006; 2009) and Bai and Ng (BN: 2002; 2008; 2009):

yt+h = c + �′Wt + �′Xt + et+h ,

where Xt is a vector of predictors and Wt is a vector of predetermined variables such as lags of yt �
In our DGP1 and DGP2 in Sections 2 and 4, however, we consider a simple case when � = 0 as in
some articles of SW and BN, which can be thought of as a result of a residual regression (Frisch–
Waugh–Lowell theorem) after regressing y on W and regressing X on W to project out W first.
We attempt to consider the simplest possible designs for Monte Carlo experiment in Section 4,
which match with the discussion in Section 2. In Section 2 we assume strict exogeneity that rules
out lagged dependent variables, only to simplify the algebra for the two DGPs in Section 2. The
same DGPs are used in Section 4. However, all the results in this article can be extended to a
more complicated model, including lagged dependent variables and other predetermined variables,
without the strict exogeneity assumption.

6Monte Carlo analysis in Section 4 shows that dynamics in the conditional mean do not affect
our general conclusions in this section.

7This is also explained in Stock and Watson (2006) and Bai and Ng (2009) in different ways.
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540 H. Huang and T.-H. Lee

Similarly, the unconditional MSFE by CF forecast is

MSFECF = E
{
E [(êCFT+1)

2 |�T ]} = E
{
VarT (yT+1) + [ET (êCFT+1)]2

}
= 
2

	 + E
{[
ET (yT+1 − ŷCFT+1)

]2}
= 
2

	 + E

{[
xT� −

2∑
i=1

wixi ,T �̂i ,T

]2}

= 
2
	 + E

{[
xT� −

2∑
i=1

wixi ,T (X ′
i Xi)

−1X ′
i Y
]2}

� (8)

Comparison: Therefore, it follows that the CF forecast is better than
the CI forecast under the MSFE loss if the following condition holds:

T −1
2
	E�tr [x ′

T xT (T
−1X ′X )−1]�

> E
{[

(x1,T�1 − w1x1,T �̂1,T ) + (x2,T�2 − w2x2,T �̂2,T )
]2}

� (9)

Note that �̂T → �, a�s� as T → ∞ for the CI model. Note also that �̂T ≡
(�̂′

1,T �̂
′
2,T )

′ → �, a�s� as T → ∞ for the two individual forecasting models
if the two sets of predictors x1, x2 are orthogonal, but �̂T � � otherwise.
Therefore, as T → ∞, MSFECI ≤ MSFECF always follows.

For a finite T , however, even when the CI model (3) coincides
with DGP1, the squared conditional bias by ŷCIT+1 can be greater than
that by ŷCFT+1. This is mostly due to the parameter estimation error
in �̂T , which is often of a larger size (O

(
k
T

)
) compared to the

parameter estimation errors in individual models each use a smaller
set of regressors (O

(
k
2T

)
if k1 = k2 = k/2),8 thus leaving out room for

CF forecast to beat CI forecast in terms of MSFE. In general, this can
be understood through the bias and variance trade-off between large
and small models.9 To illustrate the finite sample potential gain of CF

8The number of parameters estimated in the CF method is actually larger than the number
of parameters in the CI method if the combining weights wi are to be estimated. In this section
we focus on the case when the weights are given (not estimated). In Section 3 we will discuss
the case when the weights are estimated, where we explain why the CF with equal weights can
outperform the CF with estimated weights and also note the benefits of shrinking the estimated
weights towards the equal weights.

9Harvey and Newbold (2005) have the similar finding: forecasts from the true (but estimated)
DGP do not encompass forecasts from competing mis-specified models in general, particularly when
T is small. By comparing the restricted and unrestricted models Clark and McCracken (2009) note
also the finite sample forecast accuracy trade-off resulted from parameter estimation noise in their
simulation and in empirical studies. Note that by contrasting CF with CI here we make a fair
comparison in terms of information content – both CI and CF in our framework use same amount
of information (x’s) but in different ways (CI direct and CF indirect).
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Combining Forecasts or Combining Information? 541

over CI more explicitly, we consider a simplified case where k1 = k2 =
1 (thus k = 2) and �2×2 = ( 1 �

� 1

)
(assuming xt ∼ INk(0,�)). Let w1 = w

and w2 = 1 − w. It can be shown that equation (9)’s LHS � 2T −1
2
	, while

its RHS � w2[T −1
2
	 + �22(1 − �2)] + (1 − w)2[T −1
2

	 + �21(1 − �2)] + 2w(1 −
w)[T −1�
2

	 − �1�2�(1 − �2)].10 Rearranging terms, equation (9) can then
be written into

T −1
2
	 >

(1 − �2)[w2�22 + (1 − w)2�21 − 2w(1 − w)�1�2�]
1 + 2w(1 − w)(1 − �)

, (10)

assuming 1 + 2w(1 − w)(1 − �) > 0. The above condition is more likely to
hold (so that CF outperforms CI in MSFE) when its LHS is large. This
would happen when either T is small or 
2

	 is big. Also note that with
everything else held constant, the RHS of equation (10) is getting close to
0 when � is approaching to 1, therefore, when xi ’s are highly collinear, CF
will have more chance to beat CI. In our Monte Carlo analysis in Section
4, we will consider such a simple parameter setting, for which the above
analytical conclusions will be confirmed by simulation findings.

2.2. When the CI Model is not Correctly Specified

Often in real time forecasting, DGP is unknown and the collection of
predictors used to forecast the variable of interest is perhaps just a subset
of all relevant ones. This situation frequently occurs when some of the
relevant predictors are simply unobservable. For instance, in forecasting
the output growth, total expenditures on R&D and brand building may
be very relevant predictors but are usually unavailable. They may thus
become omitted variables for predicting output growth. To account for
these more practical situations, we now examine the case when the CI
model is misspecified with some relevant variables omitted. In this case, we
demonstrate that CF forecast can be superior to CI forecast even in a large
sample. Intuitively, this is expected to happen likely because when the CI
model is also misspecified, the bias-variance trade-off between large and
small models becomes more evident, thus leading to possibly better chance
for CF forecast (generated from a set of small models) to outperform CI
forecast (generated from one large model).

DGP2: Suppose that the true DGP involves one more set of variables
x3,t than DGP1

yt+1 = x1,t�1 + x2,t�2 + x3,t�3 + 	t+1, (11)

10This can be seen from the derivations in the Appendix and let k1 = k2 = 1 and �3 = 0.
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542 H. Huang and T.-H. Lee

where 	t+1 ∼ IID(0, 
2
	) and xt = (x1,t x2,t x3,t) with each xi ,t being 1 × ki (i =

1, 2, 3) is strictly exogenous. To simplify the algebra again we assume the
conditional mean of xt is zero

x ′
t =

x ′
1,t
x ′
2,t
x ′
3,t

 ∼ INk

00
0

 ,

�11 �12 �13

�21 �22 �23

�31 �32 �33

 � (12)

Models (CI and CF): Suppose we use the same CI and CF models as
in the previous subsection, forecasting yT+1 using the CI model (3) and the
CF scheme given by (1) and (2) with the information set �(x1,s x2,s)�Ts=0. The
CI model in (3) is misspecified by omitting x3,t , the first individual model
in (1) omits x2,t and x3,t , and the second individual model in (2) omits
x1,t and x3,t . The forecasts by CI and CF are therefore respectively, ŷCIT+1 =
x1,T �̂1,T + x2,T �̂2,T and ŷCFT+1 = w1ŷ

(1)
T+1 + w2ŷ

(2)
T+1 = w1x1,T �̂1,T + w2x2,T �̂2,T , with

wi (i = 1, 2) denoting the forecast combination weights.
Let us consider the special case w1 + w2 = 1 and let w ≡ w1 hereafter.

The forecast error by CI is thus:

êT+1 = yT+1 − ŷCIT+1 = x1,T (�1 − �̂1,T ) + x2,T (�2 − �̂2,T ) + x3,T�3 + 	T+1� (13)

The forecast errors by the first and the second individual forecast are,
respectively:

�̂1,T+1 = yT+1 − ŷ(1)T+1 = x1,T (�1 − �̂1,T ) + x2,T�2 + x3,T�3 + 	T+1,
(14)

�̂2,T+1 = yT+1 − ŷ(2)T+1 = x1,T�1 + x2,T (�2 − �̂2,T ) + x3,T�3 + 	T+1�

Hence the forecast error by CF is:

êCFT+1 = yT+1 − ŷCFT+1 = w �̂1,T+1 + (1 − w)�̂2,T+1� (15)

Let zt = (x1,t x2,t), Var (zt) = �zz , Cov(zt , x3,t) = �z3, 3z,T = x3,T − zT�−1
zz �z3,

Var (3z,T ) = �3z = �33 − �3z�
−1
zz �z3, �23 = (�′

2 �′
3)

′, �13 = (�′
1 �′

3)
′, 23�1,T =

(x2,T − x1,T�−1
11 �12 x3,T − x1,T�−1

11 �13), 13�2,T = (x1,T − x2,T�−1
22 �21 x3,T −

x2,T�−1
22 �23), Var (23�1,T ) = �23�1 , and Var (13�2,T ) = �13�2 .

MSFE: See Appendix for derivation of MSFEs for the CI and CF
models.

Comparison: We now compare CI with CF. Assume that the DGP
consists of (11) and (12). From comparing MSFEs from (39) and (46) in
Appendix, the CF forecast is better than the CI forecast in MSFE if the
following condition holds:

�′
3�3z�3 + g CI

T > w2�′
23�23�1�23 + (1 − w)2�′

13�13�2�13

+ 2w(1 − w)�′
23E [′

23�1,T13�2,T ]�13 + g CF
T , (16)
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Combining Forecasts or Combining Information? 543

where g CI
T = T −1(k1 + k2)
2

	 and g CF
T = T −1(w2k1 + (1 − w)2k2)
2

	 + 2w(1 −
w)E [x1,T (�̂1,T − E(�̂1,T ))(�̂2,T − E(�̂2,T ))

′x ′
2,T ] are both O(T −1).

The condition (16) under which CF is better than CI can be simplified
when T goes to infinity. Note that it involves both small sample and large
sample effect. If we ignore O(T −1) terms or let T → ∞, (16) becomes

�′
3�3z�3 > w2�′

23�23�1�23 + (1 − w)2�′
13�13�2�13

+ 2w(1 − w)�′
23E [′

23�1,T13�2,T ]�13� (17)

The variance of the disturbance term in the DGP model (11) no longer
involves since it only appears in g CI

T and g CF
T , the two terms capturing small

sample effect. While this large-sample condition may still look complicated,
we note that all the terms in (17) are determined only by � and � in DGP2.

Remark: We also note that there is a chance that the CI forecast is
even worse than two individual forecasts. Note that

MSFECI = 
2
	 + T −1(k1 + k2)
2

	 + �′
3�3z�3,

and the MSFE’s by individual forecasts ŷ(1)T+1 and ŷ(2)T+1 are, respectively

MSFE (1) = 
2
	 + T −1k1
2

	 + �′
23�23�1�23,

MSFE (2) = 
2
	 + T −1k2
2

	 + �′
13�13�2�13�

Suppose MSFE (1) > MSFE (2), i.e., the second individual forecast is better,
then CI will be worse than the two individual forecasts if

T −1k2
2
	 + �′

3�3z�3 > �′
23�23�1�23� (18)

This is more likely to happen if the sample size T is not large, and/or 
2
	 is

large. The Monte Carlo analysis in Section 4 also confirms this result (see
Table 2).

3. UNDERSTANDING THE FORECAST COMBINATION PUZZLE

In the empirical forecasting literature numerous papers have found
that the equally-weighted forecast combination often outperforms the CF
using estimated optimal forecasts. Stock and Watson (2004) refer this
as a “forecast combination puzzle.” Before we help illustrate analytical
findings via Monte Carlo analysis in the next section, here we attempt to
understand the puzzling empirical success of the CF with equal weights
through some analysis. The Monte Carlo analysis in Section 4 confirms our
explanation of the forecast combination puzzle. The Monte Carlo analysis
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544 H. Huang and T.-H. Lee

also provides some insights on the possibility that CF with equal weights
can dominate CI even in a large sample.

While the weight w in CF has not yet been specified in the above
analysis, we now consider CF with specific weights, in particular, the equal
weights. Our aim of this section is to illustrate when and how CF with
certain weights can beat CI in out-of-sample forecasting, and shed some
light on the success of equally weighted CF.

Let MSFECI = E(ê2T+1) ≡ �2CI, and �2i ≡ E(�̂2i ,T+1) (i = 1, 2) denote
MSFE’s by the two individual forecasts. Define �12 ≡ E(�̂1,T+1�̂2,T+1). From
equation (15), the MSFE of the CF forecast is

MSFECF = w2�21 + (1 − w)2�22 + 2w(1 − w)�12 ≡ �2CF(w)� (19)

CF-Mean: Consider the equally weighted CF, denoted “CF-Mean”
(w = 1

2):

ŷCF-Mean
T+1 = 1

2
ŷ(1)T+1 + 1

2
ŷ(2)T+1, (20)

for which the MSFE is

MSFECF-Mean = E(yT+1 − ŷCF-Mean
T+1 )2 = 1

4
(�21 + �22 + 2�12) ≡ �2CF

(
1
2

)
� (21)

CF-Optimal: Consider the “CF-Optimal” forecast with weight

w∗ = argmin
w

�2CF(w) = �22 − �12

�21 + �22 − 2�12
, (22)

obtained by solving ��2CF(w)/�w = 0 (as in Bates and Granger, 1969 but
without assuming the individual forecasts are unbiased since we work
directly on MSFE instead of error variances). Note that if we rearrange
terms in (15), it becomes the Bates and Granger (1969) regression

�̂2,T+1 = w(�̂2,T+1 − �̂1,T+1) + êCFT+1, (23)

from which estimate of w∗ is obtained by the least squares.

We note that CF-Optimal always assigns a larger (smaller) weight to the
better (worse) individual forecast, since the optimal weight w∗ for the first

individual forecast is less than 1
2 if it is the worse one (w∗ = �22−�12

�21+�22−2�12
< 1

2 if

�21 > �22); and the weight is larger than 1
2 when it is the better one (w∗ > 1

2
if �21 < �22). Also note that w∗ = 1

2 if �21 = �22� One practical problem is that
w∗ is unobservable.
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Combining Forecasts or Combining Information? 545

We now explain how we may understand the puzzle in three ways,
attributing the success of CF-Mean to (i) the finite sample estimation error
of the forecast combining weights, (ii) the possible scenario when CF-Mean
is indeed near optimal, and (iii) weak predictors. The Monte Carlo and
empirical analysis in the subsequent sections confirm our arguments.

3.1. Understanding the Puzzle: When the Combining
Weights are Estimated

This optimal weight w∗ for CF needs to be estimated in practice, but
it provides guidance for our analysis regarding the virtue of equal-weights
in CF which empirically is often found to work better than many sophis-
ticatedly estimated weights (Stock and Watson, 2004; Timmermann, 2006).

In practice, w∗ may be estimated and the consistently estimated weight
ŵ may converge to w∗ in large sample. When the in-sample estimation
size T is large we use CF-Optimal (Bates and Granger, 1969; Granger and
Ramanathan, 1984). However, when the noise is large and T is small, the
estimated weight ŵ may be in some distance away from w∗, and the gap
between �2CF(ŵ) and �2CF(w

∗) may be wide enough such that it is possible to
have the following ranking

�2CF(w
∗) < �2CF

(
1
2

)
< �2CF(ŵ)� (24)

Therefore, when the noise is large and T is small, we may be better off by
using the CF-Mean instead of estimating the weights. Similarly, Smith and
Wallis (2009) address the forecast combination puzzle by attributing to the
effect of finite sample estimation error of the combining weights.

To explore more about weighting in CF, we further consider shrinkage
estimators for w. In case when the above ranking of (24) holds, we can
shrink the estimated weight ŵ towards the equal weight 1

2 to reduce the
MSFE. We have discussed three alternative CF weights: (a) w = ŵ , (b) w =
1
2 , and (c) w = w∗. It is likely that w∗ may be different from both ŵ and 1

2 .
The relative performance of CF with ŵ and CF-Mean depends on which of
ŵ and 1

2 is closer to w∗. Depending on the relative distance between ŵ and
w∗, between 1

2 and w∗, and between ŵ and 1
2 , the shrinkage of ŵ towards 1

2
may or may not work. The common practice of shrinking ŵ towards 1

2 may
improve the combined forecasts as long as shrinking ŵ towards 1

2 is also to
shrink ŵ towards w∗�

As we will see from the simulation results in Section 4, shrinkage
of ŵ towards 1

2 works quite well when the noise in the DGP is large
and when the in-sample size T is small. When the noise is not large or
T is large, CI is usually the best when it is correctly specified for the
DGP. However, when CI is not correctly specified for the DGP, CI can be
beaten by CF even in a large sample. The CF with ŵ, that is obtained
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546 H. Huang and T.-H. Lee

from the Regression Approach for weights as suggested by Granger and
Ramanathan (1984), denoted as CF-RA, and its shrinkage version towards
the equal weights, denoted as CF-RA(�) (the shrinkage parameter � will
be detailed in Section 4) generally works quite well. As Diebold and Pauly
(1990) point out, CF-RA with no shrinkage (with � = 0) and CF-Mean may
be considered as two polar cases of the shrinkage. Of course, we note that
more shrinkage to the equal weights is not necessarily better. However,
if the weights are estimated when the noise is large and T is small, the
sampling error (estimation error) may be very large to make the forecast
error variance very large as well. The shrinkage toward CF-Mean is to
reduce the variance at the cost of increasing the forecast bias. In general,
the MSFE (the sum of the forecast error variance and squared bias) may
be reduced by the shrinkage, which we will observe from the Monte Carlo
results in Section 4.

3.2. Understanding the Puzzle: When CF-Mean
is Close to CF-Optimal

However, we note that the above explanation for the success of CF-
Mean attributing to the finite sample estimation error (as in Smith and
Wallis, 2009 and as illustrated above) holds probably only when the
unobservable optimal combination weight w∗ is close to 1

2 such that CF-
Mean is approaching CF-Optimal hence dominating other sophisticated
combinations where estimation errors often involve. It is unlikely that CF-
Mean would outperform other CF with weights obtained by the regression
equivalent of w∗ when w∗ is very close to 1 (or 0). Such values of w∗

happen when the first (second) individual forecast is clearly better than or
encompasses the second (first) individual forecast such that combination
of the two has no gains. See Hendry and Clements (2004) for illustrations
of situations where combination forecast gains over individual ones.

Therefore, in order to shed more light on the empirical success
of simple average forecast combination, i.e., the CF-Mean, it is worth
investigating under what kind of DGP structures and parameterization one
could have w∗ � 1

2 so that CF-Optimal � CF-Mean. We consider again
DGP2 [equations (11) and (12)] discussed in Section 2.2 where the CI
model is misspecified. The DGP1 in Section 2.1 where the CI model is
correctly specified for the DGP is actually a special case of equation (11)
when we let �3 ≡ 0. First, we note again that w∗ = 1

2 if �
2
1 = �22. Second, from

the discussions in Section 2.2 we have

�21 ≡ MSFE (1) = 
2
	 + T −1k1
2

	 + (�′
2 �′

3

)
�23�1

(
�2
�3

)
,

(25)
�22 ≡ MSFE (2) = 
2

	 + T −1k2
2
	 + (�′

1 �′
3

)
�13�2

(
�1
�3

)
,
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Combining Forecasts or Combining Information? 547

where it is easy to show that

�23�1 =
(
�22 − �21�

−1
11 �12 �23 − �21�

−1
11 �13

�32 − �31�
−1
11 �12 �33 − �31�

−1
11 �13

)
,

and

�13�2 =
(
�11 − �12�

−1
22 �21 �13 − �12�

−1
22 �23

�31 − �32�
−1
22 �21 �33 − �32�

−1
22 �23

)
�

Therefore, to make �21 = �22 (so that w∗ = 1
2) one sufficient set of conditions

is �1 = �2 (implying k1 = k2) and �23�1 = �13�2 . The latter happens when
�11 = �22 and �13 = �23. Intuitively, when the two individual information
sets matter about the same in explaining the variable of interest, their
variations (signal strengths) are also about the same, and they correlate
with the omitted information set quite similarly, the resulting forecast
performances of the two individual forecasts are thus about equal.

In our Monte Carlo study in Section 4, we consider the three designs
of DGPs in Panels A, B, C of Table 2, such that the underlying optimal
combination weight w∗ is 1

2 . In these three designs of DGPs in Panels A,
B, C of Table 2, we set �1 = �2 = 0�3 (with k1 = k2 = 1) and �11 = �22 = 1
and �13 = �23 = 0�7 or −0�7.

In addition, we also consider one exceptional case where we let
�1 > �2 to make �21 < �22 so that w∗ > 1

2 to see how CF with different
weights perform in comparison with CI. In the design of DGP in Panel
D of Table 2, we set �1 = 3�2 = 0�6. Other cases such as �11 > �22 give
similar results (not reported). These four Monte Carlo cases will be
detailed in Section 4, where we confirm our understanding of the forecast
combination puzzle discussed in this section.

3.3. Understanding the Puzzle: When Predictors are Weak

Clark and McCracken (2009) argue that often in practical reality, the
predictive contents of some variables of interest is quite low and hard
to predict, especially for forecasting financial returns in the conditional
mean. Likewise, the different individual information sets used to predict
such variables in the (near) efficient financial markets are performing
quite similarly (all equally bad, perhaps). When all or most of predictors
are weak, a simple average combination of individual forecasts is often
desirable since in such a situation CF-Mean may be quite close to
CF-Optimal. We illustrate in Section 5 through an empirical study on
forecasting the equity premium. Asset prices are hard to predict and
oftentimes the predictors used to generate forecasts have quite limited
predictive power, making them “weak predictors.”
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548 H. Huang and T.-H. Lee

4. MONTE CARLO ANALYSIS

In this section we conduct Monte Carlo experiments in the context of
Section 2 to illustrate under what specific situations CF can be better than
CI in out-of-sample forecasting.

4.1. DGPs: Two Cases

We consider the same two cases that we considered in Section 2 –
when the CI model is correctly specified for the DGP (corresponding to
Section 2.1) and when it is not (corresponding to Section 2.2). We use the
following two DGPs:

DGP1: with xt = (x1,t x2,t), so that the CI model in (3) is correctly
specified:

yt+1 = x1,t�1 + x2,t�2 + 	t+1, 	t ∼ N (0, 
2
	),

(26)
xi ,t = �i xi ,t−1 + vi ,t , vt = (v1,t v2,t) ∼ N (0,�2×2),

DGP2: with xt = (x1,t x2,t x3,t), so that the CI model in (3) is not
correctly specified:

yt+1 = x1,t�1 + x2,t�2 + x3,t�3 + 	t+1, 	t ∼ N (0, 
2
	),

(27)
xi ,t = �i xi ,t−1 + vi ,t , vt = (v1,t v2,t v3,t) ∼ N (0,�3×3),

where all vi ,t ’s are independent of 	t . We consider different degrees
of signal to noise with seven different values of 
	 = 2j (j =
−2,−1, 0, 1, 2, 3, 4)�

The pseudo random samples for t = 1, � � � ,R + P + 1 are generated
and R observations are used for the in-sample parameter estimation (with
the fixed rolling window of size R) and the last P observations are used for
pseudo real time out-of-sample forecast evaluation.11 We experiment with
R = 100, 1000, P = 100� The number of Monte Carlo replications is 1000
for R = 100 and 100 for R = 1000.

Different specifications for covariance matrix � and coefficient vector
� are used as discussed in Sections 2 and 3. We consider two sets of the
different parameter values of � in Table 1, and four sets of different
parameter values of � and � in Table 2. In both Tables 1 and 2, all
�i ’s are set at zero as the results are similar for different values of �i .

11The notation of R and P is adopted from West (1996). As we use a rolling forecasting
scheme to estimate parameters using the R observations, the notation T that was used to denote
the sample size for the in-sample estimation in Sections 2 and 3 is now R in Sections 4 and 5.
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Combining Forecasts or Combining Information? 549

With �2×2 = ( 1 �
� 1

)
for DGP1, we have var(�̂R) = R−1
2

	�
−1, and var(�̂i ,R) =

R−1
2
	(1 − �2)−1 for i = 1, 2� In Table 1 we consider � = corr (x1, x2) = 0 and

0�8, measuring two different degrees of collinearity in the CI model.

4.2. CF with Estimated Weights and Its Shrinkage
Toward CF-Mean

One of the CF methods we use is the Regression Approach (RA) for
combining forecasts as suggested by Granger and Ramanathan (1984),
denoted as CF-RA,

yt+1 = intercept + w1ŷ
(1)
t+1 + w2ŷ

(2)
t+1 + error, t = T0, � � � ,R , (28)

where the pseudo out-of-sample forecast is made for t = T0, � � � ,R with T0

the time when the first pseudo out-of-sample forecast is generated (we
choose it at the middle point of each rolling window). The three versions
of the CF-RA methods are considered as in Granger and Ramanathan
(1984), namely, (a) CF-RA1 for the unconstrained regression approach
forecast combination, (b) CF-RA2 for the constrained regression approach
forecast combination with zero intercept and the unit sum of the weights
w1 + w2 = 1, and (c) CF-RA3 for the constrained regression approach
forecast combination with zero intercept but without restricting the sum
of the weights.

To illustrate more the parameter estimation effect on combination
weights, we also consider CF with shrinkage weights based on CF-RA3.
Let CF-RA3(�) denote the shrinkage forecasts considered in Stock and
Watson (2004, p. 412) with the shrinkage parameter � controlling for
the amount of shrinkage on CF-RA3 towards the equal weighting (CF-
Mean). The shrinkage weight used is wi ,t = �ŵi ,t + (1 − �)/N (i = 1, 2) with
� = max�0, 1 − �N /(t − h − T0 − N )�, N = 2 (the number of individual
forecasts), and h = 1 (one step ahead forecast).12 For simplicity we
consider a spectrum of different values of �, that are chosen such that CF-
RA3(�) for the largest chosen value of � is closest to CF-Mean. We choose
ten different values of � with equal increment depending on the in-sample
size R as presented in Tables 1 and 2.

4.3. Monte Carlo Results

Table 1 presents the Monte Carlo results for DGP1, for which we
simulate two different cases with �2×2 being diagonal (Panel A, � = 0) and
with �2×2 being non-diagonal (Panel B, � = 0�8).

12Stock and Watson (2009) show the various forecasting methods (such as Bayesian methods,
Bagging, etc.) in the shrinkage representations.
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550 H. Huang and T.-H. Lee

Table 2 presents the Monte Carlo results for DGP2, for which the CI
model is not correctly specified as it omits x3t � We simulate four different
cases with different values for �3×3 and � where unless specified otherwise
we let �1 = �2, �11 = �22, and �13 = �23 to make optimal weight w∗ = 1

2 .

TABLE 1 Monte Carlo simulation (when CI model is the DGP). This set of tables presents the
performance of each forecasting schemes for predicting yt+1 out-of-sample where yt is by DGP:
yt+1 = xt� + 	t+1, 	t ∼ N (0, 
2

	); xit = �i xit−1 + �it , �t ∼ N (0,�), i = 1, 2. We report the out-of-sample
MSFE of each forecasting scheme, where bolded term indicates smaller-than-CI case and the
smallest number among them is highlighted

Panel A. No correlation: � = ( 1 0
0 1

)
;�i = 0; � = ( 0�50�5

)
MSFE ratio


	 = 0�25 
	 = 0�5 
	 = l 
	 = 2 
	 = 4 
	 = 8 
	 = 16

R = 100, P = 100
ŷ(1) 4.9798 1.9708 1.2403 1.0493 1.0050 0.9935 0.9900
ŷ(2) 4.9225 1.9879 1.2404 1.0507 1.0053 0.9937 0.9903
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.1256 1.0930 1.0870 1.0810 1.0584 1.0353 1.0314
CF-RA2 3.0124 1.5074 1.1322 1.0357 1.0138 1.0073 1.0055
CF-RA3 (� = 0) 1.1752 1.1004 1.0758 1.0563 1.0284 1.0095 1.0061
CF-RA3 (� = 1) 1.1705 1.0965 1.0719 1.0526 1.0253 1.0071 1.0038
CF-RA3 (� = 3) 1.1860 1.0938 1.0655 1.0458 1.0195 1.0026 0.9995
CF-RA3 (� = 5) 1.2279 1.0984 1.0611 1.0396 1.0143 0.9986 0.9956
CF-RA3 (� = 7) 1.2992 1.1101 1.0584 1.0341 1.0097 0.9951 0.9923
CF-RA3 (� = 9) 1.3984 1.1288 1.0578 1.0293 1.0055 0.9922 0.9895
CF-RA3 (� = 11) 1.5256 1.1545 1.0589 1.0251 1.0020 0.9898 0.9872
CF-RA3 (� = 13) 1.6806 1.1875 1.0620 1.0216 0.9990 0.9879 0.9854
CF-RA3 (� = 15) 1.8636 1.2272 1.0670 1.0188 0.9965 0.9866 0.9842
CF-RA3 (� = 17) 2.0744 1.2743 1.0739 1.0166 0.9946 0.9857 0.9834
CF-RA3 (� = 19) 2.3147 1.3288 1.0826 1.0152 0.9933 0.9854 0.9832

CF-Mean 2.9550 1.4763 1.1091 1.0142 0.9922 0.9866 0.9845

R = 1000, P = 100
ŷ(1) 5.0616 2.0509 1.2669 1.0573 1.0138 1.0051 1.0009
ŷ(2) 4.8499 1.9921 1.2334 1.0665 1.0107 1.0021 0.9998
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0111 1.0075 1.0076 1.0070 1.0072 1.0060 1.0071
CF-RA2 1.0111 1.0075 1.0076 1.0070 1.0072 1.0060 1.0071
CF-RA3 (� = 0) 1.0174 1.0067 1.0079 1.0071 1.0059 1.0037 1.0019
CF-RA3 (� = 1) 1.0174 1.0067 1.0079 1.0071 1.0059 1.0037 1.0019
CF-RA3 (� = 28) 1.0174 1.0067 1.0079 1.0071 1.0059 1.0037 1.0019
CF-RA3 (� = 55) 1.1185 1.0324 1.0141 1.0072 1.0040 1.0026 1.0008
CF-RA3 (� = 82) 1.2370 1.0632 1.0211 1.0083 1.0034 1.0022 1.0004
CF-RA3 (� = 109) 1.3997 1.1058 1.0309 1.0100 1.0030 1.0018 1.0001
CF-RA3 (� = 136) 1.6051 1.1603 1.0432 1.0124 1.0028 1.0015 0.9998
CF-RA3 (� = 163) 1.8578 1.2266 1.0582 1.0155 1.0028 1.0013 0.9996
CF-RA3 (� = 190) 2.1532 1.3052 1.0759 1.0192 1.0030 1.0011 0.9994
CF-RA3 (� = 217) 2.4929 1.3952 1.0962 1.0236 1.0034 1.0010 0.9993
CF-RA3 (� = 244) 2.8784 1.4974 1.1192 1.0287 1.0041 1.0010 0.9993
CF-Mean 2.9463 1.5156 1.1233 1.0296 1.0042 1.0010 0.9993

(continued)
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Combining Forecasts or Combining Information? 551

TABLE 1 Continued

Panel B. High correlation: � = ( 1 0�8
0�8 1

)
;�i = 0; � = ( 0�50�5

)
MSFE ratio


	 = 0�25 
	 = 0�5 
	 = 1 
	 = 2 
	 = 4 
	 = 8 
	 = 16

R = 100, P = 100
ŷ(1) 2.4295 1.3409 1.0808 1.0110 0.9948 0.9911 0.9896
ŷ(2) 2.3969 1.3545 1.0788 1.0132 0.9942 0.9913 0.9899
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0589 1.0568 1.0580 1.0571 1.0593 1.0406 1.0335
CF-RA2 1.1566 1.0455 1.0177 1.0108 1.0097 1.0085 1.0088
CF-RA3 (� = 0) 1.0403 1.0366 1.0356 1.0343 1.0296 1.0125 1.0070
CF-RA3 (� = 1) 1.0357 1.0331 1.0319 1.0307 1.0261 1.0099 1.0047
CF-RA3 (� = 3) 1.0310 1.0265 1.0251 1.0240 1.0195 1.0050 1.0004
CF-RA3 (� = 5) 1.0279 1.0214 1.0191 1.0179 1.0136 1.0007 0.9967
CF-RA3 (� = 7) 1.0279 1.0171 1.0138 1.0125 1.0083 0.9970 0.9934
CF-RA3 (� = 9) 1.0310 1.0140 1.0091 1.0076 1.0035 0.9939 0.9908
CF-RA3 (� = 11) 1.0372 1.0121 1.0052 1.0033 0.9994 0.9913 0.9886
CF-RA3 (� = 13) 1.0450 1.0109 1.0020 0.9997 0.9959 0.9893 0.9870
CF-RA3 (� = 15) 1.0558 1.0113 0.9996 0.9966 0.9931 0.9879 0.9860
CF-RA3 (� = 17) 1.0698 1.0125 0.9980 0.9942 0.9908 0.9870 0.9855

CF-RA3 (� = 19) 1.0868 1.0148 0.9970 0.9924 0.9891 0.9867 0.9855

CF-Mean 1.1333 1.0245 0.9974 0.9905 0.9876 0.9882 0.9875

R = 1000, P = 100
ŷ(1) 2.4803 1.3861 1.0842 1.0204 1.0029 1.0016 1.0006
ŷ(2) 2.3791 1.3458 1.0957 1.0206 1.0052 0.9983 0.9980
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0063 1.0051 1.0052 1.0056 1.0038 1.0052 1.0053
CF-RA2 1.1327 1.0399 1.0109 1.0027 1.0002 1.0000 1.0000
CF-RA3 (� = 0) 1.0047 1.0032 1.0038 1.0041 1.0031 1.0023 1.0005
CF-RA3 (� = 1) 1.0047 1.0032 1.0038 1.0041 1.0031 1.0023 1.0005
CF-RA3 (� = 28) 1.0063 1.0028 1.0031 1.0031 1.0023 1.0016 0.9999
CF-RA3 (� = 55) 1.0095 1.0032 1.0028 1.0022 1.0015 1.0009 0.9994
CF-RA3 (� = 82) 1.0174 1.0051 1.0027 1.0015 .0009 1.0003 0.9991
CF-RA3 (� = 109) 1.0284 1.0075 1.0028 1.0009 1.0003 0.9998 0.9988
CF-RA3 (� = 136) 1.0411 1.0111 1.0032 1.0005 0.9998 0.9994 0.9986
CF-RA3 (� = 163) 1.0585 1.0158 1.0039 1.0003 0.9994 0.9990 0.9985
CF-RA3 (� = 190) 1.0774 1.0213 1.0048 1.0002 0.9991 0.9988 0.9985
CF-RA3 (� = 217) 1.1011 1.0276 1.0060 1.0002 0.9989 0.9986 0.9986
CF-RA3 (� = 244) 1.1264 1.0351 1.0075 1.0004 0.9988 0.9984 0.9988
CF-Mean 1.1311 1.0367 1.0078 1.0005 0.9988 0.9984 0.9988

The four cases for Table 2 are presented in Panel A (where x1t and x2t
are highly positively correlated with the omitted variable x3t), in Panel B
(where x1t and x2t are highly negatively correlated with the omitted variable
x3t), in Panel C (where everything is the same as in Panel B except with
smaller �3), and in Panel D (where everything is the same as in Panel B
except �1 = 3�2 to make w∗ 	 1

2). See Section 3.2 for the discussion on this
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552 H. Huang and T.-H. Lee

parameterization in Panel D. In both Tables 1 and 2, all �i ’s are set at zero
as the results are similar for different values of �i reflecting dynamics in xit
(and thus not reported for space).

TABLE 2 Monte Carlo simulation (when CI model is not the DGP). This set of tables presents
the performance of each forecasting schemes for predicting yt+1 out-of-sample where yt is by
DGP: yt+1 = xt� + 	t+1, 	t ∼ N (0, 
2

	); xit = �i xit−1 + �it , �t ∼ N (0,�), i = 1, 2, 3. Variable x3t is
omitted in each CF and CI schemes

Panel A. High positive correlations with the omitted variable: � =
(

1 0�6 0�7
0�6 1 0�7
0�7 0�7 1

)
;�i = 0; � =

(
0�3
0�3
0�6

)
MSFE ratio


	 = 0�25 
	 = 0�5 
	 = 1 
	 = 2 
	 = 4 
	 = 8 
	 = 16

R = 100, P = 100
ŷ(1) 1.9823 1.5051 1.1665 1.0406 1.0011 0.9932 0.9897
ŷ(2) 1.9761 1.5111 1.1656 1.0361 1.0024 0.9919 0.9909
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0625 1.0620 1.0628 1.0615 1.0620 1.0434 1.0326
CF-RA2 1.2166 1.1157 1.0444 1.0179 1.0105 1.0077 1.0068
CF-RA3 (� = 0) 1.0458 1.0428 1.0426 1.0396 1.0328 1.0154 1.0072
CF-RA3 (� = 1) 1.0420 1.0391 1.0387 1.0359 1.0292 1.0126 1.0048
CF-RA3 (� = 3) 1.0377 1.0333 1.0317 1.0290 1.0227 1.0075 1.0005
CF-RA3 (� = 5) 1.0367 1.0296 1.0260 1.0229 1.0167 1.0029 0.9967
CF-RA3 (� = 7) 1.0391 1.0279 1.0211 1.0174 1.0113 0.9989 0.9934
CF-RA3 (� = 9) 1.0448 1.0281 1.0174 1.0126 1.0064 0.9954 0.9907
CF-RA3 (� = 11) 1.0544 1.0306 1.0148 1.0084 1.0022 0.9925 0.9884
CF-RA3 (� = 13) 1.0673 1.0351 1.0133 1.0050 0.9985 0.9902 0.9867
CF-RA3 (� = 15) 1.0840 1.0418 1.0129 1.0022 0.9953 0.9884 0.9855
CF-RA3 (� = 17) 1.1035 1.0503 1.0134 1.0000 0.9928 0.9871 0.9849
CF-RA3 (� = 19) 1.1269 1.0610 1.0152 0.9986 0.9908 0.9864 0.9848

CF-Mean 1.1927 1.0928 1.0229 0.9978 0.9885 0.9868 0.9864

R = 1000, P = 100
ŷ(1) 2.0644 1.5331 1.1696 1.0452 1.0102 1.0024 0.9998
ŷ(2) 2.0045 1.5254 1.1763 1.0523 1.0118 1.0035 0.9986
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0045 1.0078 1.0043 1.0052 1.0050 1.0056 1.0016
CF-RA2 1.2092 1.1185 1.0305 1.0077 1.0027 1.0022 0.9990
CF-RA3 (� = 0) 1.0025 1.0045 1.0042 1.0025 1.0030 1.0038 0.9985
CF-RA3 (� = 1) 1.0025 1.0045 1.0041 1.0025 1.0030 1.0037 0.9985
CF-RA3 (� = 28) 1.0040 1.0060 1.0028 1.0018 1.0022 1.0029 0.9981
CF-RA3 (� = 55) 1.0106 1.0100 1.0025 1.0013 1.0016 1.0021 0.9979
CF-RA3 (� = 82) 1.0226 1.0166 1.0031 1.0012 1.0011 1.0015 0.9977
CF-RA3 (� = 109) 1.0392 1.0259 1.0047 1.0013 1.0007 1.0010 0.9976

CF-RA3 (� = 136) 1.0608 1.0379 1.0072 1.0019 1.0005 1.0005 0.9976
CF-RA3 (� = 163) 1.0880 1.0525 1.0107 1.0026 1.0004 1.0002 0.9976
CF-RA3 (� = 190) 1.1197 1.0698 1.0151 1.0037 1.0005 1.0000 0.9978
CF-RA3 (� = 217) 1.1564 1.0897 1.0205 1.0052 1.0006 0.9999 0.9980
CF-RA3 (� = 244) 1.1981 1.1123 1.0267 1.0069 1.0010 0.9999 0.9982
CF-Mean 1.2056 1.1163 1.0279 1.0072 1.0010 0.9999 0.9983

(continued)
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Combining Forecasts or Combining Information? 553

TABLE 2 Continued

Panel B. High negative correlations with the omitted variable: � =
( 1 0�6 −0�7

0�6 1 −0�7
−0�7 −0�7 1

)
;�i = 0; � =

(
0�3
0�3
0�6

)
MSFE ratio


	 = 0�25 
	 = 0�5 
	 = 1 
	 = 2 
	 = 4 
	 = 8 
	 = 16

R = 100, P = 100
ŷ(1) 0.9948 0.9915 0.9902 0.9906 0.9897 0.9900 0.9891
ŷ(2) 0.9943 0.9920 0.9899 0.9900 0.9896 0.9891 0.9901
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0510 1.0396 1.0328 1.0293 1.0288 1.0268 1.0281
CF-RA2 1.0081 1.0077 1.0071 1.0072 1.0069 1.0073 1.0069
CF-RA3 (� = 0) 1.0191 1.0142 1.0062 1.0045 1.0055 1.0040 1.0039
CF-RA3 (� = 1) 1.0162 1.0114 1.0038 1.0023 1.0032 1.0018 1.0017
CF-RA3 (� = 3) 1.0110 1.0065 0.9996 0.9982 0.9989 0.9978 0.9977
CF-RA3 (� = 5) 1.0062 1.0020 0.9957 0.9947 0.9952 0.9943 0.9942
CF-RA3 (� = 7) 1.0019 0.9980 0.9925 0.9917 0.9921 0.9913 0.9912
CF-RA3 (� = 9) 0.9981 0.9945 0.9899 0.9892 0.9895 0.9888 0.9887
CF-RA3 (� = 11) 0.9948 0.9918 0.9877 0.9873 0.9874 0.9869 0.9868
CF-RA3 (� = 13) 0.9924 0.9895 0.9860 0.9858 0.9858 0.9854 0.9853
CF-RA3 (� = 15) 0.9900 0.9878 0.9849 0.9849 0.9848 0.9845 0.9844
CF-RA3 (� = 17) 0.9885 0.9866 0.9843 0.9845 0.9843 0.9841 0.9840

CF-RA3 (� = 19) 0.9876 0.9861 0.9843 0.9847 0.9843 0.9842 0.9841

CF-Mean 0.9876 0.9868 0.9861 0.9869 0.9863 0.9862 0.9863

R = 1000, P = 100
ŷ(1) 1.0039 1.0012 1.0004 1.0002 0.9996 0.9993 0.9990
ŷ(2) 1.0024 1.0015 0.9982 1.0007 0.9992 0.9991 0.9987
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0048 1.0060 1.0056 1.0072 1.0028 1.0035 1.0029
CF-RA2 1.0019 1.0015 1.0012 1.0014 1.0012 1.0008 1.0002
CF-RA3 (� = 0) 1.0039 1.0040 1.0032 1.0037 0.9997 1.0017 1.0011
CF-RA3 (� = 1) 1.0039 1.0040 1.0031 1.0037 0.9997 1.0017 1.0011
CF-RA3 (� = 28) 1.0029 1.0032 1.0021 1.0029 0.9993 1.0011 1.0005
CF-RA3 (� = 55) 1.0019 1.0025 1.0013 1.0022 0.9990 1.0005 1.0000
CF-RA3 (� = 82) 1.0014 1.0017 1.0005 1.0016 0.9987 1.0000 0.9995
CF-RA3 (� = 109) 1.0010 1.0010 0.9999 1.0011 0.9986 0.9996 0.9991
CF-RA3 (� = 136) 1.0005 1.0005 0.9994 1.0007 0.9985 0.9993 0.9988
CF-RA3 (� = 163) 1.0000 1.0002 0.9989 1.0003 0.9985 0.9991 0.9986
CF-RA3 (� = 190) 0.9995 0.9998 0.9987 1.0001 0.9986 0.9989 0.9985
CF-RA3 (� = 217) 0.9995 0.9998 0.9984 0.9999 0.9988 0.9989 0.9985
CF-RA3 (� = 244) 0.9995 0.9995 0.9983 0.9999 0.9990 0.9989 0.9985
CF-Mean 0.9995 0.9995 0.9983 0.9998 0.9991 0.9989 0.9985

(continued)

First, we observe that results presented in Tables 1 and 2 share
some common features: MSFE increases with 
	 (the noise in the DGP),
but as 
	 grows, CF-RA3(�) and CF-Mean become better and better
and can beat the CI model (whether correctly specified or not). For
smaller R (=100), there are more chances for CF to outperform CI
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554 H. Huang and T.-H. Lee

TABLE 2 Continued

Panel C. High negative correlations with the omitted variable and relatively small �3:

� =
( 1 0�6 −0�7

0�6 1 −0�7
−0�7 −0�7 1

)
;�i = 0; � =

( 0�3
0�3
0�2

)
MSFE ratio


	 = 0�25 
	 = 0�5 
	 = 1 
	 = 2 
	 = 4 
	 = 8 
	 = 16

R = 100, P = 100
ŷ(1) 1.3639 1.0973 1.0180 0.9981 0.9911 0.9904 0.9891
ŷ(2) 1.3552 1.0988 1.0178 0.9961 0.9914 0.9895 0.9902
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0606 1.0611 1.0643 1.0558 1.0395 1.0291 1.0289
CF-RA2 1.0879 1.0300 1.0139 1.0091 1.0075 1.0075 1.0068
CF-RA3 (� = 0) 1.0421 1.0406 1.0396 1.0245 1.0129 1.0059 1.0043
CF-RA3 (� = 1) 1.0384 1.0369 1.0358 1.0214 1.0102 1.0036 1.0020
CF-RA3 (� = 3) 1.0322 1.0300 1.0286 1.0156 1.0053 0.9994 0.9980
CF-RA3 (� = 5) 1.0272 1.0241 1.0222 1.0103 1.0010 0.9957 0.9945
CF-RA3 (� = 7) 1.0248 1.0190 1.0162 1.0056 0.9972 0.9925 0.9915
CF-RA3 (� = 9) 1.0248 1.0146 1.0110 1.0014 0.9939 0.9899 0.9890
CF-RA3 (� = 11) 1.0248 1.0113 1.0064 0.9979 0.9912 0.9878 0.9870
CF-RA3 (� = 13) 1.0272 1.0088 1.0025 0.9949 0.9890 0.9862 0.9855
CF-RA3 (� = 15) 1.0309 1.0069 0.9991 0.9925 0.9874 0.9851 0.9846
CF-RA3 (� = 17) 1.0359 1.0059 0.9965 0.9907 0.9863 0.9845 0.9841

CF-RA3 (� = 19) 1.0433 1.0059 0.9944 0.9894 0.9857 0.9845 0.9842
CF-Mean 1.0656 1.0088 0.9921 0.9886 0.9865 0.9863 0.9863

R = 1000, P = 100
ŷ(1) 1.3648 1.1068 1.0346 1.0087 0.9997 0.9986 0.9998
ŷ(2) 1.3585 1.1072 1.0230 1.0092 1.0008 1.0003 0.9996
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0075 1.0063 1.0037 1.0072 1.0049 1.0025 1.0024
CF-RA2 1.0742 1.0240 1.0071 1.0045 1.0011 1.0006 1.0012
CF-RA3 (� = 0) 1.0063 1.0041 1.0024 1.0061 1.0028 0.9999 1.0005
CF-RA3 (� = 1) 1.0063 1.0041 1.0024 1.0060 1.0028 0.9999 1.0004
CF-RA3 (� = 28) 1.0063 1.0037 1.0018 1.0051 1.0020 0.9994 1.0000
CF-RA3 (� = 55) 1.0075 1.0037 1.0014 1.0043 1.0013 0.9990 0.9996
CF-RA3 (� = 82) 1.0113 1.0044 1.0012 1.0037 1.0007 0.9987 0.9992
CF-RA3 (� = 109) 1.0164 1.0059 1.0012 1.0031 1.0001 0.9985 0.9990
CF-RA3 (� = 136) 1.0239 1.0078 1.0014 1.0027 0.9997 0.9984 0.9989
CF-RA3 (� = 163) 1.0327 1.0103 1.0019 1.0024 0.9993 0.9983 0.9988
CF-RA3 (� = 190) 1.0428 1.0133 1.0026 1.0022 0.9990 0.9984 0.9989
CF-RA3 (� = 217) 1.0553 1.0166 1.0035 1.0022 0.9987 0.9985 0.9990
CF-RA3 (� = 244) 1.0692 1.0211 1.0045 1.0023 0.9986 0.9987 0.9992
CF-Mean 1.0717 1.0218 1.0047 1.0023 0.9985 0.9988 0.9993

(continued)

given higher parameter estimation uncertainty in a small sample. Besides,
the parameter estimation uncertainty makes the CF-RA2, which is argued
to return asymptotically the optimal combination (Bates and Granger,
1969), performs undesirably. The best shrinkage value varies according
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Combining Forecasts or Combining Information? 555

TABLE 2 Continued

Panel D. High negative correlations with the omitted variable and �1 = 3�2:

� =
( 1 0�6 −0�7

0�6 1 −0�7
−0�7 −0�7 1

)
;�i = 0; � =

(
0�6
0�2
0�6

)
MSFE ratio


	 = 0�25 
	 = 0�5 
	 = 1 
	 = 2 
	 = 4 
	 = 8 
	 = 16

R = 100, P = 100
ŷ(1) 1.0014 0.9960 0.9913 0.9906 0.9900 0.9900 0.9891
ŷ(1) 1.3459 1.1777 1.0529 1.0060 0.9943 0.9900 0.9904
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0501 1.0515 1.0515 .0459 1.0353 1.0279 1.0290
CF-RA2 1.0210 1.0169 1.0140 1.0112 1.0090 1.0079 1.0070
CF-RA3 (� = 0) 1.0243 1.0246 1.0232 1.0168 1.0103 1.0052 1.0043
CF-RA3 (� = 1) 1.0210 1.0214 1.0200 1.0141 1.0078 1.0029 1.0021
CF-RA3 (� = 3) 1.0167 1.0157 1.0142 1.0090 1.0032 0.9988 0.9981
CF-RA3 (� = 5) 1.0143 1.0117 1.0093 1.0046 0.9992 0.9952 0.9946
CF-RA3 (� = 7) 1.0143 1.0092 1.0053 1.0007 0.9957 0.9921 0.9915
CF-RA3 (� = 9) 1.0162 1.0082 1.0021 0.9975 0.9928 0.9896 0.9890
CF-RA3 (� = 11) 1.0205 1.0087 0.9999 0.9948 0.9904 0.9875 0.9871
CF-RA3 (� = 13) 1.0272 1.0105 0.9986 0.9928 0.9885 0.9860 0.9856
CF-RA3 (� = 15) 1.0363 1.0139 0.9980 0.9914 0.9873 0.9850 0.9847
CF-RA3 (� = 17) 1.0472 1.0189 0.9984 0.9905 0.9865 0.9845 0.9842

CF-RA3 (� = 19) 1.0606 1.0254 0.9997 0.9903 0.9863 0.9845 0.9843
CF-Mean 1.0983 1.0455 1.0058 0.9919 0.9878 0.9865 0.9864

R = 1000, P = 100
ŷ(1) 1.0101 1.0060 0.9992 0.9999 0.9988 0.9985 0.9995
ŷ(2) 1.3483 1.1861 1.0569 1.0214 1.0036 1.0010 0.9996
CI 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CF-RA1 1.0034 1.0042 1.0034 1.0063 1.0047 1.0023 1.0027
CF-RA2 1.0097 1.0062 1.0026 1.0021 1.0007 1.0012 1.0010
CF-RA3 (� = 0) 1.0019 1.0025 1.0024 1.0041 .0017 0.9995 1.0003
CF-RA3 (� = 1) 1.0019 1.0025 1.0023 1.0040 1.0017 0.9995 1.0003
CF-RA3 (� = 28) 1.0024 1.0027 1.0012 1.0031 1.0011 0.9991 0.9998
CF-RA3 (� = 55) 1.0053 1.0045 1.0008 1.0025 1.0005 0.9988 0.9994
CF-RA3 (� = 82) 1.0111 1.0075 1.0009 1.0022 1.0001 0.9986 0.9991
CF-RA3 (� = 109) 1.0193 1.0122 1.0016 1.0021 0.9998 0.9984 0.9988
CF-RA3 (� = 136) 1.0309 1.0182 1.0028 1.0024 0.9996 0.9984 0.9987

CF-RA3 (� = 163) 1.0449 1.0254 1.0047 1.0029 0.9996 0.9985 0.9987
CF-RA3 (� = 190) 1.0618 1.0344 1.0071 1.0037 0.9996 0.9986 0.9988
CF-RA3 (� = 217) 1.0812 1.0449 1.0101 1.0048 0.9997 0.9988 0.9989
CF-RA3 (� = 244) 1.1039 1.0566 1.0138 1.0061 1.0000 0.9991 0.9992
CF-Mean 1.1077 1.0586 1.0144 1.0064 1.0001 0.9992 0.9992

to different 
	 values, while generally a large amount of shrinkage (large
�) is found to be needed since the optimal combination strategy (except
for Table 2 Panel D case) is about equal weighting. As mentioned in
Section 3, shrinking too much to the equal weights is not necessarily
good. The Monte Carlo evidence confirms this by noting that for a fixed
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556 H. Huang and T.-H. Lee

value of 
	, CF-RA3(�) with some values of � is better than CF-Mean, and
shrinking too much beyond that � value sometimes make it deteriorate its
performance.13

Second, we notice that results in Tables 1 and 2 differ in several
ways. In Table 1 (when the CI model is correctly specified for the DGP),
for smaller R and when the correlation between x1,t and x2,t is high, CF
with shrinkage weights can beat CI even when disturbance in DGP (
	) is
relatively small. When R gets larger, however, the advantage of CF vanishes.
These Monte Carlo results are consistent with the analysis in Section 2.1,
where we show CF may beat CI only in a finite sample. In contrast, by
comparing the four panels in Table 2 (when the CI model is not correctly
specified for the DGP), we find that when x1,t and x2,t are highly negatively
correlated with the omitted variable x3,t and �3 is relatively large (Panel
B), the advantage of CF (for even small values of 
	) does not vanish as
R gets larger. Moreover, we observe that even the individual forecasts can
outperform CI in a large sample for large 
	 under this situation. The
negative correlation of x1,t and x2,t with the omitted variable x3,t , and the
large value of �3 play an important role for CF to outperform CI in a large
sample, which is conformable with the analysis in Section 2.2. In addition,
Panel D of Table 2 shows that when x1 contributes clearly more than x2 in
explaining the variable of interest y, the first individual forecast dominates
the second one (making the optimal combination weight w∗ close to 1
hence CF-Mean is clearly not working) when the noise in the DGP is not
large. However, when the noise in the DGP is overwhelmingly large (signal
to noise ratio is very low) such that the two individual forecasts are similarly
bad, a close to equal weight is still desirable.

5. EMPIRICAL STUDY: EQUITY PREMIUM PREDICTION

In this section we study the relative performance of CI versus CF in
predicting equity premium out-of-sample with many predictors including
various financial ratios and interest rates. For a practical forecasting
issue like this, we conjecture that CF scheme should be relatively more
advantageous than CI scheme. Possible reasons are, first, it is very unlikely

13Our sample size used in the Monte Carlo experiments are R = 100, 1000, that are quite
large for the small models with only 2 regressors (Table 1) and with 3 regressors (Table 2) in the
CI model, making CI work quite comparably with CF. Even R = 100 may not be small enough to
see the drastic difference (generally only about 2% improvement). The MSFE improvement by CF
over CI would be more likely for a small sample size� Hence, we conducted the simulation with
R = 20, for which CF models improve MSFE upon the performance of CI much more drastically by
8% ∼ 9%. For space, the results with R = 20 are not presented but included in the supplementary
appendix that is made available on our webpage. In fact, the effect of the estimation sample size
R can also be seen from the empirical results, e.g., comparing the three Panels in Table 3, with
different size of R � When R = 42 is small (Panel C), CF models drastically improve MSFE over CI
models.
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Combining Forecasts or Combining Information? 557

that the CI model (no matter how many predictors are used) will coincide
with the DGP for equity premium given the complicated nature of
financial markets and therefore it is likely misspecified. Second, we deem
that the conditions under which CF is better than CI as we illustrated in
Sections 2.2 and 3.2 may easily be satisfied in this empirical application.

We obtained the monthly, quarterly and annual data over
the period of 1927 to 2003 from the homepage of Amit Goyal
(http://www.bus.emory.edu/AGoyal/). Our data construction replicates
what Goyal and Welch (2008) did. The equity premium, y, is calculated
by the S&P 500 market return (difference in the logarithms of index
values in two consecutive periods) minus the risk free rate in that period.
Our explanatory variable set, x , contains 12 individual variables: dividend
price ratio, dividend yield, earnings price ratio, dividend payout ratio,
book-to-market ratio, T-bill rate, long term yield, long term return, term
spread, default yield spread, default return spread and lag of inflation,
as used in Goyal and Welch (2008). Goyal and Welch (2008) explore
the out-of-sample performance of these variables toward predicting the
equity premium and find that not a single one would have helped a
real-world investor outpredict the then-prevailing historical mean of the
equity premium while pooling all by simple OLS regression performs
even worse, and then conclude that “the equity premium has not been
predictable.” This supports our “weak predictors” argument discussed in
Section 3.3 for explaining the success of CF-Mean.

Campbell and Thompson (2008) argue that once sensible restrictions
are imposed on the signs of coefficients and return forecasts, forecasting
variables with significant forecasting power in-sample generally have a
better out-of-sample performance than a forecast based on the historical
mean. Lewellen (2004) studies in particular the predictive power of
financial ratios on forecasting aggregate stock returns through predictive
regressions. He finds evidence of predictability by certain ratios over
certain sample periods. In our empirical study, we bring the CF
methodology into predicting equity premium and compare with CI since
the analysis in Section 2 demonstrates that CF method indeed has its
merits in out-of-sample forecasting practice. In addition, we investigate this
issue of predictability by comparing various CF and CI schemes with the
historical mean benchmark over different data frequencies, sample splits
and forecast horizons.

5.1. CI Schemes

Two sets of CI schemes are considered. The first is the OLS using
directly xt (with dimension N = 12) as the regressor set while parameter
estimate is obtained using strictly past data. The forecast is constructed
as ŷT+h = (1 x ′

T )�̂T . Let us call this forecasting scheme: CI-Unrestricted,
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558 H. Huang and T.-H. Lee

namely the kitchen-sink model. The second set of CI schemes aims at the
problem associated with high dimension. It is quite possible to achieve
a remarkable improvement on prediction by reducing dimensionality if
one applies a factor model by extracting the Principal Components (PC)
(Stock and Watson 2002a,b, 2004). The procedure is as follows:

xt = �Ft + vt , (29)

yt+h = (1 F ′
t )� + ut+1, (30)

where � is N × r and Ft is r × 1� In equation (29), by applying the
classical principal component methodology, the latent common factors
F = (F1 F2 · · · FT )′ is solved by:

F̂ = X �̂/N (31)

where N is the size of xt , X = (x1 x2 · · · xT )′, and factor loading �̂ is set to√
N times the eigenvectors corresponding to the r largest eigenvalues of

X ′X (see, for example, Bai and Ng, 2002). Once �̂T is obtained from (30)
by regression of yt on (1 F̂ ′

t−1) (t = 1, 2, � � � ,T ), the forecast is constructed
as ŷCI-PCT+h = (1 F̂ ′

T )�̂T (let us denote this forecasting scheme as CI-PC).
If the true number of factors r is unknown, it can be estimated

by minimizing some information criteria. Bai and Ng (2002) focus on
estimation of the factor representation given by equation (29) and the
asymptotic inference for r when N and T go to infinity. Equation (30),
however, is more relevant for forecasting and thus it is our main interest.
Moreover, we note that the N in our empirical study is only 12. We use
AIC and BIC for which estimated number of factors k is selected by

min
1≤k≤kmax

ICk = ln(SSR(k)/T ) + g (T )k, (32)

where kmax is the hypothesized upper limit chosen by the user (we choose
kmax = 12), SSR(k) is the sum of squared residuals from the forecasting
model (30) using k estimated factors, and the penalty function g (T ) =
2/T for AIC and g (T ) = lnT /T for BIC.14 Additionally, we consider fixing
k a priori at a small value like 1, 2, 3.

14In model selection, it is well known that BIC is consistent in selecting the true model, and
AIC is minimax-rate optimal for estimating the regression function. Yang (2005) shows that for any
model selection criterion to be consistent, it must behave suboptimally for estimating the regression
function in terms of minimax rate of convergence. Bayesian model averaging cannot be minimax-
rate optimal for regression estimation. This explains that the model selected for in-sample fit and
estimation would be different than the model selected for out-of-sample forecasting.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 R

iv
er

si
de

 L
ib

ra
ri

es
] 

at
 2

3:
03

 0
3 

O
ct

ob
er

 2
01

2 



Combining Forecasts or Combining Information? 559

5.2. CF Schemes

We consider five sets of CF schemes where individual forecasts
are generated by using each element xit in xt : ŷ(i)T+h = (1 xiT )�̂i ,T

(i = 1, 2, � � � ,N ). The first CF scheme, CF-Mean, is computed as ŷCF-Mean
T+1 =

1
N

∑N
i=1 ŷ

(i)
T+1. Second, CF-Median is to compute the median of the set of

individual forecasts, which may be more robust in the presence of outlier
forecasts. These two simple weighting CF schemes require no estimation
in weight parameters.15

To explore more information in the data, thirdly, we estimate
the combination weights wi by regression approach (Granger and
Ramanathan, 1984):

yt+h = w0 +
N∑
i=1

wi ŷ
(i)
t+h + et+1, (33)

and form predictor CF-RA, ŷCF-RAT+h = ŵ0 +∑N
i=1 ŵi ŷ

(i)
T+h . Similarly as in

Section 4 (Monte Carlo analysis), we experiment the three different
versions of CF-RA. Fourth, we shrink CF-RA3 towards equally weighted CF
by choosing increasing values of shrinkage parameter �.

Finally, we extract the principal components from the set of individual
forecasts and form predictor that may be called as CF-PC (combination
of forecasts using the weighted principal components): see Chan et al.
(1999).16 Let ŷt+h := (ŷ(1)t+h , ŷ

(2)
t+h , � � � , ŷ

(N )
t+h )

′� Now, consider a factor model of
ŷt+h (in the same way that a factor model of xt in equation (29) for CI-PC

15Starting from Granger and Ramanathan (1984), based on earlier works such as Bates and
Granger (1969) and Newbold and Granger (1974), various feasible optimal combination weights
have been suggested, which are static, dynamic, time-varying, or Bayesian: see Diebold and Lopez
(1996). Chan et al. (1999) and Stock and Watson (2004) utilize the principal component approach
to exploit the factor structure of a panel of forecasts to improve upon Granger and Ramanathan
(1984) combination regressions. They show this principal component forecast combination is more
successful when there are large number of individual forecasts to be combined. The procedure
is to first extract a small set of principal components from a (large) set of forecasts and then
estimate the (static) combination weights for the principal components. Deutsch et al. (1994)
extend Granger and Ramanathan (1984) by allowing dynamics in the weights which are derived
from switching regression models or from smooth transition regression models. Li and Tkacz
(2004) introduce a flexible non-parametric technique for selecting weights in a forecast combination
regression. Empirically, Stock and Watson (2004) consider various CF weighting schemes and find
the superiority of simple weighting schemes over sophisticated ones (such as time-varying parameter
combining regressions) for output growth prediction in a seven-country economic data set.

16Also see Stock and Watson (2004), where it is called Principal Component Forecast
Combination. In Aguiar-Conraria (2003), a similar method is proposed: Principal Components
Combination (PCC), where the Principal Components Regression (PCR) is combined with the
Forecast Combination approach by using each explanatory variable to obtain a forecast for the
dependent variable, and then combining the several forecasts using the PCR method. This idea, as
noted in the article, follows the spirit of Partial Least Squares in the Chemometrics literature thus
is distinguished from what proposed in Chan et al. (1999).
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560 H. Huang and T.-H. Lee

is considered):17

ŷt+h = �Ft+h + vt+h � (34)

In equation (34), by applying the classical principal component
methodology, the latent common factors F = (F1+h F2+h · · · FT+h)

′ is
solved by:

F̂ = Ŷ �̂/N (35)

where Ŷ = (ŷ1+h ŷ2+h · · · ŷT+h)
′, and factor loading �̂ is set to

√
N times

the eigenvectors corresponding to the r largest eigenvalues of Ŷ ′Ŷ . If the
true number of factors r is unknown, it can be estimated by minimizing
some information criteria such as those of Bai and Ng (2002), AIC, or
BIC, to get the estimated number of factors k. Let F̂t+h := (F̂ (1)

t+h , � � � , F̂
(k)
t+h)

′

denote the first k principal components of ŷt+h = (ŷ(1)t+h , � � � , ŷ
(N )
t+h )

′ for t =
T0, � � � ,T .18 Then the forecasting equation is

yt+h = (1 F̂ ′
t+h)� + ut+h

= �0 +
k∑

i=1

�i F̂
(i)
t+h + ut+h �

Once �̂T is obtained by regression of yt+h on (1 F̂ ′
t+h) (t = T0, � � � ,T ), the

CF-PC forecast is then constructed as ŷCF-PCT+h = (1 F̂ ′
T )�̂T = �̂0T +∑k

i=1 �̂iT F̂
(i)
t+h

(let us denote this forecasting scheme as CF-PC).

Remark 1. Chan et al. (1999) choose k = 1 since the factor analytic
structure for the set of individual forecasts they adopt permits one
single factor—the conditional mean of the variable to be forecast. Our
specifications for individual forecasts in CF, however, differ from those
in Chan et al. (1999) in that individual forecasting models considered
here use different and non-overlapping information sets, not a common
total information set (which makes individual forecasts differ solely from
specification error and estimation error) as assumed in Chan et al. (1999).
Therefore, we consider k = 1, 2, 3. In addition to that, k is also chosen by
the information criteria AIC or BIC, as discussed in Section 5.1.

17We use the same notation F , v,u, �,� in this sub-section for CF-PC as in the previous
subsection on CI-PC, only to make it easy to read. These are different in the two models and
should be understood in the context of each model.

18In computing the out-of-sample equity premium forecasts by rolling window scheme with
window size R , we set T = R and choose T0, the time when the first pseudo out-of-sample forecast
is generated, at the middle point of the rolling window.
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Combining Forecasts or Combining Information? 561

Remark 2. The biggest difference between CF-PC and CI-PC lies in the
set of variables we use to extract the principal components (PC). In CI-
PC, PC’s are computed from x’s directly, without accounting for their
relationship with the forecast target variable y. This problem with CI-PC
leads Bai and Ng (2008) to consider first selecting a subset of predictors
(“targeted predictors”) of x’s that are informative in forecasting y, then
using the subset to extract factors. In contrast, since CF-PC is one type of
CF where we combine forecasts not the information sets directly, PC’s in
CF-PC are computed from the set of individual forecasts ŷ’s that contain
both information on x’s and on all past values of y. This actually provides
us further intuitions on why CF may be more successful than CI, along the
line of “supervised learning.”

If k = N , there is no difference, i.e., CI-PC and CF-PC are the same.
When k < N , the principal components of the forecasts from CF and
the principal components of predictors in CI will differ from each other,
because the linear combinations maximizing covariances of forecasts (for
which the supervision operates for the relationship between y and x) and
the linear combinations maximizing the covariances of predictors (for
which there is no supervision) will be different.

Remark 3. CF-PC is the weighted combined forecasts. To see this, write
the N × k matrix of estimated loadings of the k factors as

�̂ =
 �̂11 · · · �̂1k

���
���

�̂N 1 · · · �̂Nk

 � (36)

Then the first k estimated CF-PC factors are

F̂ = (F̂1+h F̂2+h · · · F̂T+h)
′ = Ŷ �̂/N ,

or its t th column is

F̂t+h = �̂′ŷt+h/N

=
(

1
N

∑N
i=1 �̂i1ŷ

(i)
t+h · · · 1

N

∑N
i=1 �̂ik ŷ

(i)
t+h

)′

= (F̂ (1)
t+h , � � � , F̂

(k)
t+h)

′�

Note that by construction, CF-PC factors (F̂ (1)
t+h , � � � , F̂

(k)
t+h) are the weighted

combined forecasts, with the weights given by columns of �̂�

In particular, with �̂i1 = 1 (for all i = 1, � � � ,N ), we note that F̂ (1)
t+h =

1
N

∑N
i=1 �̂i1ŷ

(i)
t+h = 1

N

∑N
i=1 ŷ

(i)
t+h is the CF-Mean. CF-Mean is a particular form
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562 H. Huang and T.-H. Lee

of CF-PC with k = 1, obtained by shrinking �̂i1 to a fixed constant.
Therefore, CF-Mean is a single factor CF-PC model with the factor loading
shrunken to a constant. Noting that CF-Mean is a shrinkage version of the
CF-PC, we can also view the regression based CF (CF-RA) and its shrinkage
version CF-RA(�) as a general shrinkage version of the CF-PC.

It is important to recall that the consistent estimation of �̂ requires
a large N (Bai, 2003; Stock and Watson, 2002b). When N is not large
enough, CF-Mean (without estimating �̂i1) can dominate CF-PC models
(with estimating �̂ij , j = 1, � � � , k), as we will see the empirical results below
with N = 12�19

5.3. Empirical Results

Table 3 presents the out-of-sample performance of each forecasting
scheme for equity premium prediction across different forecast horizons h,
different frequencies (monthly, quarterly, and annual in Panels A, B, and
C) and different in-sample/out-of-sample splits R and P . Data range from
1927 to 2003 in monthly, quarterly and annual frequencies. All models
are estimated using OLS over rolling windows of size R . To compare each
model with the benchmark Historical Mean (HM) we report its MSFE ratio
with respect to HM.20

First, similarities are found among Panels A, B, and C. While not
reported for space, although there are a few cases some individual forecasts
return relatively small MSFE ratio, the performance of individual forecasts
is fairly unstable and each similarly bad. In contrast, we clearly observe
the genuinely stable and superior performance of CF-Mean and CF with
shrinkage weights (particularly with a large amount of shrinkage imposed
so that the weights are close to equal weights), compared to almost all
CI schemes across different frequencies, especially for shorter forecast
horizons and for the forecast periods with earlier starting date. CF-
Median also appears to perform quite well. This confirms the discussion in
Section 3 (particularly Subsection 3.3) where we shed light on the reasons
for the success of simple average combination of forecasts, and is fairly
consistent with this understanding of the puzzle in the presence of “weak
predictors” for the equity premium prediction.

19If N is very large and �̂
p−→ �, CF-PC may work better than CF-Mean. Otherwise, the

parameter estimation of the factor loading can contaminate CF-PC and make it worse than CF-
Mean, which is in line with our understanding of the forecast combination puzzle discussed in

Section 3.1. The consistent estimation of �̂
p−→ � amounts to the consistent estimation of the

forecast combination weight w in Section 3.1 and Smith and Wallis (2009).
20The MSFE ratios are computed with respect to the CI benchmark for Monte Carlo analysis

(Section 4, Tables 1, 2), while they are computed with respect to the historical-mean benchmark
for empirical analysis as in Campbell and Thompson (2008). We present the tables only with the
MSFE ratios. However, we make the MSFE values available from our webpage.
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Combining Forecasts or Combining Information? 563

Second, MSFE ratios of the good models that outperform HM are
smaller in Panel B (quarterly prediction) and Panel C (annual prediction)
than in Panels A1 and A2 (monthly predictions). This indicates that with
these good models we can beat HM more easily for quarterly and annual
series than for monthly series.

Third, CF-PC with a fixed number of factors (1 or 2) frequently
outperforms HM as well, and by contrast, the CI schemes rarely beat HM
by a considerable margin. Generally BIC performs better than AIC by
selecting a smaller k (the estimated number of factors) but worse than
using a small fixed k (=1, 2, 3).

Fourth, within each panel, we find that generally it is hard to improve
upon HM for more recent out-of-sample periods (forecasts beginning in
1980) and for longer forecast horizons, since the MSFE ratios tend to be
larger under these situations. It seems that the equity premium becomes
less predictable in recent years than older years.

Fifth, we note that the in-sample size R is smaller for the forecast
period starting from the earlier year. In accordance with the conditions

TABLE 3 Equity premium prediction

Panel A1. Monthly prediction, forecasts begin 1969m1 (R = 504 and p = 420)

MSFE ratio

h = 1 h = 3 h = 6 h = 12

Historical mean 1.0000 1.0000 1.0000 1.0000

CF-Mean 0.9820 0.9860 0.9890 0.9891
CF-Median 0.9887 0.9915 0.9913 0.9904
CF-RA1 1.0585 1.0660 1.0325 1.1548
CF-RA2 1.0975 1.0847 1.0538 1.1225
CF-RA3 (� = 0) 1.0795 1.0581 1.0310 1.1240
CF-RA3 (� = 1) 1.0670 1.0487 1.0250 1.1116
CF-RA3 (� = 3) 1.0443 1.0317 1.0141 1.0889
CF-RA3 (� = 5) 1.0248 1.0172 1.0049 1.0684
CF-RA3 (� = 7) 1.0086 1.0052 0.9974 1.0503
CF-RA3 (� = 9) 0.9956 0.9956 0.9916 1.0346
CF-RA3 (� = 11) 0.9859 0.9884 0.9875 1.0213
CF-RA3 (� = 13) 0.9794 0.9837 0.9851 1.0103

CF-RA3 (� = 15) 0.9762 Mean/SD 0.9815 Mean/SD 0.9844 Mean/SD 1.0017 Mean/SD
CF-PC (AIC) 1.0429 9.13/3.26 1.0697 8.62/3.45 1.0363 4.74/4.23 1.0158 1.90/2.45
CF-PC (BIC) 0.9828 1.30/1.06 0.9962 1.14/0.49 1.0029 1.18/0.42 0.9993 1.06/0.24
CF-PC (k = 1) 0.9858 0.9903 0.9989 1.0049
CF-PC (k = 2) 0.9801 0.9953 1.0000 0.9995
CF-PC (k = 3) 0.9912 1.0076 1.0090 1.0065
CI-Unrestricted 1.0103 1.0661 1.0400 1.0712
CI-PC (AIC) 1.0142 8.70/2.18 1.0537 7.47/2.49 1.0655 6.22/2.82 1.0147 2.35/0.84
CI-PC (BIC) 1.0523 3.29/1.85 1.0655 2.48/1.39 1.0478 1.92/0.99 1.0071 1.38/0.63
CI-PC (k = 1) 0.9998 1.0009 0.9996 0.9934
CI-PC (k = 2) 1.0060 1.0151 1.0134 0.9944
CI-PC (k = 3) 1.0673 1.0805 1.0612 1.0115

(continued)
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564 H. Huang and T.-H. Lee

TABLE 3 Continued

Panel A2. Monthly prediction, forecasts begin 1980m1 (R = 636 and P = 288)

MSFE ratio

h = 1 h = 3 h = 6 h = 12

Historical mean 1.0000 1.0000 1.0000 1.0000

CF-Mean 0.9938 0.9980 0.9981 0.9995
CF-Median 0.9993 1.0023 0.9986 1.0026
CF-RA1 1.0606 1.0361 1.0873 1.0649
CF-RA2 1.0590 1.0637 1.0811 1.0946
CF-RA3 (� = 0) 1.0821 1.0605 1.1108 1.0690
CF-RA3 (� = 1) 1.0741 1.0547 1.1008 1.0642
CF-RA3 (� = 4) 1.0523 1.0389 1.0734 1.0509
CF-RA3 (� = 7) 1.0338 1.0256 1.0501 1.0391
CF-RA3 (� = 10) 1.0187 1.0147 1.0310 1.0288
CF-RA3 (� = 13) 1.0069 1.0063 1.0161 1.0200
CF-RA3 (� = 16) 0.9985 1.0005 1.0053 1.0128
CF-RA3 (� = 19) 0.9935 0.9970 0.9986 1.0071

CF-RA3 (� = 22) 0.9917 Mean/SD 0.9961 Mean/SD 0.9961 Mean/SD 1.0029 Mean/SD
CF-PC (AIC) 1.0741 10.33/3.27 1.0251 8.74/3.98 1.0815 9.33/3.95 1.0198 4.26/4.55
CF-PC (BIC) 0.9937 1.30/0.77 1.0063 1.02/0.14 1.0104 1.02/0.13 1.0161 1/0

CF-PC (k = 1) 0.9896 1.0038 1.0089 1.0161
CF-PC (k = 2) 0.9918 1.0091 1.0154 1.0148
CF-PC (k = 3) 0.9960 1.0086 1.0150 1.0200
CI-Unrestricted 1.0592 1.1344 1.0525 1.0495
CI-PC (AIC) 1.0522 8.63/1.87 1.1274 7.68/2.12 1.0607 6.95/2.53 1.0197 2.68/1.14
CI-PC (BIC) 1.0639 3.02/1.72 1.0578 2.35/1.31 1.0199 1.64/1.08 1.0376 1.56/0.72
CI-PC (k = 1) 1.0131 1.0150 1.0200 1.0194
CI-PC (k = 2) 1.0175 1.0251 1.0274 1.0315
CI-PC (k = 3) 1.0617 1.0623 1.0575 1.0376

(continued)

under which CF can be superior to CI as discussed in Section 2, the smaller
in-sample size may partly account for the success of CF-Mean over the
forecast period starting from the earlier year in line of the argument about
parameter estimation uncertainty.

In summary, Table 3 shows that CF-Mean, or CF-RA3 using estimated
weights shrunken towards equal weights, are simple but powerful methods
to predict the equity premium out-of-sample in comparison with the
CI schemes, and to beat the HM benchmark. This may be due to the
estimation uncertainty of the factor loadings as discussed in Remark 3 of
Section 5.2. When N is not large enough, CF-Mean (without estimating
�̂i1) can dominate CF-PC models (with estimating �̂ij , j = 1, � � � , k) due to
the similar reason discussed in Section 3.1.

6. CONCLUSIONS

In this article, we show the relative merits of combination of forecasts
(CF) compared to combination of information (CI). In the literature, it is
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Combining Forecasts or Combining Information? 565

TABLE 3 Continued

Panel B. Quarterly prediction

MSFE ratio

Forecasts begin 1969q1
(R = 168 and P = 140)

Forecasts begin 1980q1
(R = 212 and P = 96)

h = 1 h = 4 h = 1 h = 4

Historical mean 1.0000 1.0000 1.0000 1.0000

CF-Mean 0.9589 0.9768 0.9899 1.0071
CF-Median 0.9689 0.9831 0.9992 1.0172
CF-RA1 1.2436 1.7457 1.3127 1.2568
CF-RA2 1.3942 1.6537 1.3120 1.3482
CF-RA3 (� = 0) 1.2981 1.6728 1.4901 1.2819
CF-RA3 (� = 0�25) 1.2660 1.6185 1.4554 1.2656
CF-RA3 (� = 0�5) 1.2354 1.5665 1.4219 1.2499
CF-RA3 (� = 1) 1.1791 Mean/SD 1.4690 Mean/SD 1.3586 Mean/SD 1.2198 Mean/SD
CF-PC (AIC) 1.3136 7.08/4.40 1.3484 3.31/3.98 1.2224 8.69/4.05 1.0959 4.17/4.87
CF-PC (BIC) 1.0512 1.27/0.66 1.0451 1.06/0.23 1.0136 1.25/0.78 1.0499 1.01/0.10
CF-PC (k = 1) 1.0036 1.0286 0.9987 1.0501
CF-PC (k = 2) 0.9993 1.0287 1.0176 1.0306
CF-PC (k = 3) 1.0214 1.0464 1.0216 1.0467
CI-Unrestricted 1.0835 1.2182 1.3046 1.2026
CI-PC (AIC) 1.1488 7.66/2.21 1.1104 2.56/1.35 1.2942 8.73/2.10 1.0708 2.97/1.84
CI-PC (BIC) 1.2094 2.36/0.95 1.0409 1.35/0.78 1.1799 2.67/1.60 1.2350 2.01/1.49
CI-PC (k = 1) 0.9991 0.9932 1.0414 1.0543
CI-PC (k = 2) 1.0207 1.0091 1.0846 1.1257
CI-PC (k = 3) 1.2214 1.0875 1.2112 1.1467

(continued)

commonly believed that CI is optimal. This belief is valid for in-sample fit
but when it comes to out-of-sample forecasting, CI is no longer undefeated.
In Section 2, through stylized linear forecasting regressions we illustrate
analytically the circumstances when the forecast by CF can be superior to
the forecast by CI, when CI model is correctly specified and when it is
misspecified. We also shed some light on how CF with (close to) equal
weights may work by noting that, apart from the parameter estimation
uncertainty argument (Smith and Wallis, 2009), in practical situations the
information sets we selected that are used to predict the variable of interest
are often with about equally low predictive content therefore a simple
average combination is often close to optimal (discussed in Section 3). Our
Monte Carlo analysis in Section 4 provides some insights on the possibility
that CF with shrinkage or CF with equal weights can dominate CI even in
a large sample.

In accordance with the analytical findings, our empirical application
on the equity premium prediction confirms the advantage of CF in
real time forecasting. We compare CF with various weighting methods,
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566 H. Huang and T.-H. Lee

TABLE 3 Continued

Panel C. Annual prediction

MSFE ratio

Forecasts begin 1969
(R = 42 and p = 35)

Forecasts begin 1980
(R = 53 and p = 24)

h = 1 h = 1

Historical mean 1.0000 1.0000
CF-Mean 0.9096 0.9828
CF-Median 0.9390 1.0188
CF-RA1 5.1820 6.4651
CF-RA2 4.0819 3.2646
CF-RA3 (� = 0) 4.3141 5.0635
CF-RA3 (� = 0�25) 2.2625 3.3712
CF-RA3 (� = 0�5) 1.1408 2.1293
CF-RA3 (� = 1) 0.9096 Mean/SD 0.9965 Mean/SD
CF-PC (AIC) 4.6260 10.14/2.59 5.8805 10.08/3.39
CF-PC (BIC) 3.6133 5.29/4.62 2.2426 4.46/4.70
CF-PC (k = 1) 1.0034 1.1012
CF-PC (k = 2) 0.9376 1.1211
CF-PC (k = 3) 1.0507 1.3079
CI-Unrestricted 1.9013 1.9979
CI-PC (AIC) 1.9067 5.34/3.33 1.9196 6.33/3.16
CI-PC (BIC) 1.5243 3.03/1.87 1.5385 1.88/1.33
CI-PC (k = 1) 1.0340 1.2502
CI-PC (k = 2) 1.0596 1.3183
CI-PC (k = 3) 1.3754 1.3814

Note: Data range 1927m1 to 2003m12; “kmax,” the maximum hypothesized number of factors, is
set at 12; “h” is the forecast horizon; We report MSFE ratio which is the MSFE of each method
over that of the Historical Mean model; “k” is the number of factors included in the principal
component approaches; “Mean/SD” is the mean and standard deviation of the estimated number
of factors over the out-of-sample. The case when Historical Mean benchmark is outperformed is
indicated bold, and the smallest number among them is highlighted.

including simple average, regression based approach with principal
component method (CF-PC), to CI models with principal component
approach (CI-PC). We find that CF with (close to) equal weights dominates
about all CI schemes, and also performs substantially better than the
historical mean benchmark model. These empirical results highlight
the merits of CF that we analyzed in Sections 2 and 3, and they
are also consistent with much of literature about CF, for instance, the
empirical findings by Stock and Watson (2004) where CF with various
weighting schemes (including CF-PC) is found favorable when compared
to CI-PC.
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Combining Forecasts or Combining Information? 567

APPENDIX: DERIVATION OF MSFEs FOR SECTION 2.2

Define �12 ≡ (�′
1 �′

2)
′ and ��̂ ≡ �̂T − E(�̂T ). Note that

E(�̂T ) = E
[(∑

z ′
t zt
)−1∑

z ′
t yt+1

]
= �12 + E

[(∑
z ′
t zt
)−1∑

z ′
t x3t

]
�3

= �12 + �−1
zz �z3�3, (37)

and Var (�̂T ) = T −1
2
	�

−1
zz , so ��̂ = �̂T − �12 − �−1

zz �z3�3. Thus, the
conditional bias by the CI forecast is

E(êT+1 |�T ) = x1T (�1 − �̂1,T ) + x2,T (�2 − �̂2,T ) + x3,T�3

= zT (�12 − �̂T ) + x3,T�3 = zT (−�−1
zz �z3�3 − ��̂) + x3,T�3

= −zT��̂ + 3z,T�3, (38)

where �T denotes the total information up to time T . It follows that

MSFECI = E [VarT (yT+1)] + E [(E(êT+1 |�T ))
2]

= 
2
	 + E [(−zT��̂ + 3z,T�3)(−zT��̂ + 3z,T�3)

′]
= 
2

	 + E [zTVar (�̂T )z ′
T ] + �′

3E [′
3z,T3z,T ]�3

= 
2
	 + T −1
2

	E [zT�−1
zz z

′
T ] + �′

3�3z�3

= 
2
	 + T −1
2

	tr ��
−1
zz E [z ′

T zT ]� + �′
3�3z�3

= 
2
	 + T −1
2

	(k1 + k2) + �′
3�3z�3� (39)

Similarly, for the two individual forecasts, define ��̂i ≡ �̂i ,T − E(�̂i ,T )
(i = 1, 2). Given that

E(�̂1,T ) = E
[(∑

x ′
1,t x1,t

)−1∑
x ′
1,t yt+1

]
= �1 + E

[(∑
x ′
1,t x1,t

)−1∑
x ′
1,t(x2,t�2 + x3,t�3)

]
= �1 + �−1

11 (�12�2 + �13�3), (40)

and

E(�̂2,T ) = �2 + �−1
22 (�21�1 + �23�3), (41)
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568 H. Huang and T.-H. Lee

the conditional biases by individual forecasts are:

E(�̂1,T+1 |�T ) = x1,T (�1 − �̂1,T ) + x2,T�2 + x3,T�3 = −x1,T��̂1 + 23�1,T�23,
(42)

E(�̂2,T+1 |�T ) = x1,T�1 + x2,T (�2 − �̂2,T ) + x3,T�3 = −x2,T��̂2 + 13�2,T�13�

Hence, similar to the derivation for MSFECI, it is easy to show that

MSFE (1) = 
2
	 + E [(−x1,T��̂1 + 23�1,T�23)(−x1,T��̂1 + 23�1,T�23)

′]
= 
2

	 + T −1
2
	E [x1,T�−1

11 x
′
1,T ] + �′

23�23�1�23

= 
2
	 + T −1
2

	k1 + �′
23�23�1�23, (43)

and

MSFE (2) = 
2
	 + T −1
2

	k2 + �′
13�13�2�13, (44)

by noting that Var (�̂i ,T ) = T −1
2
	�

−1
ii (i = 1, 2).

Using equation (15), the conditional bias by the CF forecast is

E(êCFT+1 |�T ) = wE(�̂1,T+1 |�T ) + (1 − w)E(�̂2,T+1 |�T )� (45)

It follows that

MSFECF = 
2
	 + E [(E(êCFT+1 |�T ))

2]
= 
2

	 + E [w2(E(�̂1,T+1 |�T ))
2 + (1 − w)2(E(�̂2,T+1 |�T ))

2

+2w(1 − w)E(�̂1,T+1 |�T )E(�̂2,T+1 |�T )]
= 
2

	 + w2[T −1
2
	k1 + �′

23�23�1�23] + (1 − w)2[T −1
2
	k2 + �′

13�13�2�13]
+ 2w(1 − w)E [x1T��̂1�′

�̂2
x ′
2T + �′

23
′
23�1,T13�2,T�13]

= 
2
	 + g CF

T + w2�′
23�23�1�23 + (1 − w)2�′

13�13�2�13

+2w(1 − w)�′
23E [′

23�1,T13�2,T ]�13, (46)

where g CF
T = T −1(w2k1 + (1 − w)2k2)
2

	 + 2w(1 − w)E [x1T��̂1�′
�̂2
x ′
2T ].
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