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ABSTRACT

We investigate predictive abilities of nonlinear models for stock returns

when density forecasts are evaluated and compared instead of the

conditional mean point forecasts. The aim of this paper is to show whether

the in-sample evidence of strong nonlinearity in mean may be exploited

for out-of-sample prediction and whether a nonlinear model may beat the

martingale model in out-of-sample prediction. We use the Kullback–

Leibler Information Criterion (KLIC) divergence measure to character-

ize the extent of misspecification of a forecast model. The reality check

test of White (2000) using the KLIC as a loss function is conducted to

compare the out-of-sample performance of competing conditional mean

models. In this framework, the KLIC measures not only model

specification error but also parameter estimation error, and thus we treat

both types of errors as loss. The conditional mean models we use for the

daily closing S&P 500 index returns include the martingale difference,
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ARMA, STAR, SETAR, artificial neural network, and polynomial

models. Our empirical findings suggest the out-of-sample predictive

abilities of nonlinear models for stock returns are asymmetric in the sense

that the right tails of the return series are predictable via many of the

nonlinear models, while we find no such evidence for the left tails or the

entire distribution.
1. INTRODUCTION

While there has been some evidence that financial returns may be
predictable (see, e.g., Lo & MacKinlay, 1988; Wright, 2000), it is generally
believed that financial returns are very close to a martingale difference
sequence (MDS). The evidence against MDS is usually stronger from in-
sample specification tests than from out-of-sample predictability tests using
standard evaluation criteria such as the mean squared forecast error
(MSFE) and mean absolute forecast error (MAFE).

In this paper, we investigate if this remains true when we evaluate
forecasting models in terms of density forecasts instead of the conditional
mean point forecasts using MSFE and MAFE. We examine if the evidence
and its significance of the nonlinear predictability of financial returns
depend on whether we use point forecast evaluation criteria (MSFE and
MAFE) or we use the probability density forecasts. As Clements and Smith
(2000, 2001) show, traditional measures such as MSFE may mask the
superiority of nonlinear models, whose predictive abilities may be more
evident through density forecast evaluation.

Motivated by the encouraging results of Clements and Smith (2000, 2001),
we compare the density forecasts of various linear and nonlinear models for
the conditional mean of the S&P 500 returns by using the method of Bao,
Lee, and Saltoglu (2004, BLS henceforth), where the Kullback and Leibler’s
(1951) Information Criterion (KLIC) divergence measure is used for
characterizing the extent of misspecification of a density forecast model.
In BLS’s framework, the KLIC captures not only model specification error
but also parameter estimation error. To compare the performance of density
forecast models in the tails of stock return distributions, we also follow BLS
by using the censored likelihood functions to compute the tail minimum
KLIC. The reality check test of White (2000) is then constructed using the
KLIC as a loss function. We find that, for the entire distribution and the left
tails, the S&P 500 daily closing returns are not predictable via various linear
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or nonlinear models and the MDS model performs best for out-of-sample
forecasting. However, from the right tail density forecast comparison of the
S&P 500 data, we find, surprisingly, that the MDS model is dominated by
many nonlinear models. This suggests that the out-of-sample predictive
abilities of nonlinear models for stock returns are asymmetric.

This paper proceeds as follows. In Section 2, we examine the nature of the
in-sample nonlinearity using the generalized spectral test of Hong (1999).
Section 3 presents various linear and nonlinear models we use for the out-
of-sample analysis. In Section 4, we compare these models for the S&P 500
return series employing the density forecast approach of BLS. Section 5
concludes. Throughout, we define yt ¼ 100ðlnPt � lnPt�1Þ; where Pt is the
S&P 500 index at time t.
2. IN-SAMPLE TEST FOR MARTINGALE

DIFFERENCE

We will first explore serial dependence (i.e., any departure from IID) in the
S&P 500 returns using Hong’s (1999) generalized spectrum. In particular, we
are interested in finding significant and predictable nonlinearity in the
conditional mean even when the returns are linearly unpredictable.

The basic idea is to transform a strictly stationary series yt to eiuyt and
consider the covariance function between the transformed variables eiuyt and
eivyt�jjj

sjðu; vÞ � covðeiuyt ; eivyt�jjj Þ (1)

where i �
ffiffiffiffiffiffiffi
�1

p
; u; v 2 ð�1;1Þ; and j ¼ 0;�1; . . . : Suppose that fytg

T
t¼1 has

a marginal characteristic function jðuÞ � Eðeiuyt Þ and a pairwise joint
characteristic function jjðu; vÞ � Eðeiðuytþvyt�jjjÞÞ: Straightforward algebra
yields sjðu; vÞ ¼ jjðu; vÞ � jðuÞjðvÞ: Because jjðu; vÞ ¼ jðuÞjðvÞ for all u, v

if and only if yt and yt�|j| are independent, sj (u, v) can capture any type of
pairwise serial dependence over various lags.

When supu;v2ð�1;1Þ

P1

j¼�1jsjðu; vÞjo1; the Fourier transform of sj (u, v)
exists

f ðo; u; vÞ �
1

2p

X1
j¼�1

sjðu; vÞe
�ijo; o 2 ½�p;p� (2)

Like sj (u, v), f(o, u, v) can capture all pairwise serial dependencies in {yt}
over various lags. Hong (1999) calls f(o, u, v) a ‘‘generalized spectral



YONG BAO AND TAE-HWY LEE44
density’’ of {yt}, and shows that f(o, u, v) can be consistently estimated by

f̂ nðo; u; vÞ �
1

2p

Xn�1

j¼1�n

ð1� jjj=nÞ1=2kðj=pÞŝjðu; vÞe
�ijo (3)

where ŝjðu; vÞ � ĵjðu; vÞ � ĵjðu; 0Þĵjð0; vÞ is the empirical generalized covar-
iance, ĵjðu; vÞ � ðn � jjjÞ�1Pn

t¼jjjþ1e
iðuytþvyt�jjjÞ is the empirical pairwise

characteristic function, p � pn a bandwidth or lag order, and k( � ) a kernel
function or ‘‘lag window’’. Commonly used kernels include the Bartlett,
Daniell, Parzen, and Quadratic–Spectral kernels.

When {yt} is IID, f(o, u, v) becomes a ‘‘flat’’ generalized spectrum:

f 0ðo; u; vÞ �
1

2p
s0ðu; vÞ; o 2 ½�p; p�

Any deviation of f(o, u, v) from the flat spectrum f0 (o, u, v) is the evidence
of serial dependence. Thus, to detect serial dependence, we can compare
f̂ nðo; u; vÞ with the estimator

f̂ 0ðo; u; vÞ �
1

2p
ŝ0ðu; vÞ; o 2 ½�p; p�

To explore the nature of serial dependence, one can compare the derivative
estimators

f̂
ð0;m;lÞ

n ðo; u; vÞ � 1
2p

Pn�1

j¼1�n

ð1� jjj=nÞ1=2kðj=pÞŝðm;lÞ
j ðu; vÞe�ijo

f̂
ð0;m;lÞ

0 ðo; u; vÞ � 1
2p ŝ

ðm;lÞ
0 ðu; vÞ

where ŝðm;lÞ
j ðu; vÞ � @mþl ŝjðu; vÞ=@

mu@lv for m, lZ0. Just as the characteristic
function can be differentiated to generate various moments, generalized
spectral derivatives can capture various specific aspects of serial dependence,
thus providing information on possible types of serial dependence.

Hong (1999) proposes a class of tests based on the quadratic norm

Q f̂
ð0;m;lÞ

n ; f̂
ð0;m;lÞ

0

� �
�

Z Zp

�p

f̂
ð0;m;lÞ

n ðo; u; vÞ � f̂
ð0;m;lÞ

0 ðo; u; vÞ
��� ���2 dodW 1ðuÞdW 2ðvÞ

¼
2

p

Z Xn�1

j¼1

k2
ðj=pÞð1� j=nÞ ŝðm;lÞ

j ðu; vÞ
��� ���2 dW 1ðuÞdW 2ðvÞ

where the second equality follows by Parseval’s identity, and the unspecified
integrals are taken over the support of W1( � ) and W2( � ), which are positive
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and nondecreasing weighting functions that set weight about zero equally.
The generalized spectral test statistic M(m, l) is a standardized version of the
quadratic norm. Given (m, l), M(m, l) is asymptotically one-sided N(0,1)
under the null hypothesis of serial independence, and thus the upper-tailed
asymptotic critical values are 1.65 and 2.33 at the 5% and 1% levels,
respectively.

We may first choose ðm; lÞ ¼ ð0; 0Þ to check if there exists any type of serial
dependence. Once generic serial dependence is discovered using M(0,0), we
may use various combinations of (m, l) to check specific types of serial
dependence. For example, we can set ðm; lÞ ¼ ð1; 0Þ to check whether there
exists serial dependence in mean. This checks whether Eðytjyt�jÞ ¼ EðytÞ for
all j40, and so it is a suitable test for the MDS hypothesis. It can detect a
wide range of deviations from MDS. To explore whether there exists linear
dependence in mean, we can set ðm; lÞ ¼ ð1; 1Þ: If M(1,0) is significant but
M(1,1) is not, we can speculate that there may exist only nonlinear
dependence in mean. We can go further to choose ðm; lÞ ¼ ð1; lÞ for l ¼

2; 3; 4; testing if covðyt; y
l
t�jÞ ¼ 0 for all j40. These essentially check whether

there exist ARCH-in-mean, skewness-in-mean, and kurtosis-in-mean effects,
which may arise from the existence of time-varying risk premium,
asymmetry, and improper account of the concern over large losses,
respectively. Table 1 lists a variety of spectral derivative tests and the types
of dependence they can detect, together with the estimated M(m, l) statistics.1

We now use the generalized spectral test to explore serial dependence of
the daily S&P 500 closing return series, retrieved from finance.yahoo.com.
They are from January 3, 1990 to June 30, 2003 (T ¼ 3403).

The statistic M(m, l) involves the choice of a bandwidth p in its
computation, see Hong (1999, p. 1204). Hong proposes a data-driven
method to choose p. This method still involves the choice of a preliminary
bandwidth p̄: Simulations in Hong (1999) show that the choice of p̄ is less
important than that of p. We consider p̄ in the range 6–15 to examine the
robustness of M(m, l) with respect to the choice of p̄: We use the Daniell
kernel, which maximizes the asymptotic power of M(m, l) over a class of
kernels. We have also used the Bartlett, Parzen, and Quadratic–Spectral
kernels, whose results are similar to those based on the Daniell kernel and
are not reported in this paper.

Table 1 reports the values of M(m, l) for p̄ ¼ 6; 9; 12; 15: The results for
various values of p̄ are quite similar. M(m, l) has an asymptotic one-sided
N(0,1) distribution, so the asymptotic critical value at the 5% level is 1.65.
The M(0,0) statistic suggests that the random walk hypothesis is strongly
rejected. In contrast, the correlation test M(1,1) is insignificant, implying



Table 1. Generalized Spectral Tests.

Test Statistic Test Function Preliminary Bandwidth

M(m, l) sðm;lÞ
j ðu; vÞ p̄ ¼ 6 p̄ ¼ 9 p̄ ¼ 12 p̄ ¼ 15

IID M(0, 0) sj ¼ ðu; vÞ 51.02 58.23 63.75 67.85

MDS M(1, 0) covðyt; e
ivyt�j Þ 17.40 18.28 18.67 19.04

Correlation M(1, 1) cov(yt, yt�j) �0.10 0.44 0.63 0.68

ARCH-in-mean M(1, 2) covðyt; y
2
t�jÞ 56.24 55.83 55.36 54.84

Skewness-in-mean M(1, 3) covðyt; y
3
t�jÞ �0.11 �0.38 �0.50 �0.51

Kurtosis-in-mean M(1, 4) covðyt; y
4
t�jÞ 29.85 29.99 29.57 29.18

Nonlinear ARCH M(2, 0) covðy2t ; e
ivyt�j Þ 62.15 70.75 76.71 81.30

Leverage M(2, 1) covðy2
t ; yt�jÞ 9.25 8.57 8.52 8.57

Linear ARCH M(2, 2) covðy2
t ; y

2
t�jÞ 172.87 182.41 188.53 193.64

Conditional skewness M(3, 0) covðy3
t ; e

ivyt�j Þ 7.63 6.98 6.64 6.36

Conditional skewness M(3, 3) covðy3
t ; y

3
t�jÞ 27.82 26.66 26.69 26.83

Conditional kurtosis M(4, 0) covðy4
t ; e

ivyt�j Þ 17.16 18.17 19.12 20.10

Conditional kurtosis M(4, 4) covðy4
t ; y

4
t�jÞ 35.56 35.22 35.22 35.25

Note: All generalized spectral test statistics M(m, l) are asymptotically one-sided N(0, 1) and

thus upper-tailed asymptotic critical values are 1.65 and 2.33 at the 5% and 1% levels,

respectively. M(0, 0) is to check if there exists any type of serial dependence. M(1, 0) is to check

whether there exists serial dependence in mean. To explore whether there exists linear

dependence in mean, we can set ðm; lÞ ¼ ð1; 1Þ: If M(1, 0) is significant but M(1, 1) is not, we can

speculate that there may exist only nonlinear dependence in mean. We choose ðm; lÞ ¼ ð1; lÞ with
l ¼ 2; 3, 4, to test if Eðytjy

l
t�jÞ ¼ 0 for all j40. The PN model is to exploit the nonlinear

predictive evidence of polynomials found from M(1, l) with l ¼ 2; 3, 4.
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that {yt} is an uncorrelated white noise. This, however, does not necessarily
imply that {yt} is an MDS. Indeed, the martingale test M(1,0) strongly
rejects the martingale hypothesis as its statistic is above 17. This implies that
the S&P 500 returns, though serially uncorrelated, has a nonzero mean
conditional on its past history. Thus, suitable nonlinear time series models
may be able to predict the future returns. The polynomial (PN) model (to be
discussed in the next section) is to exploit the nonlinear predictive evidence
of the lth power of returns, as indicated by the M(1,l) statistics.

The test M(2,0) shows possibly nonlinear time-varying volatility, and the
linear ARCH test M(2,2) indicates very strong linear ARCH effects. We
also observe that the leverage effect (M(2,1)) is significant and there exist
significant conditional skewness as evidenced from M(3,0) and M(3,3), and
large conditional kurtosis as evidenced from M(4,0) and M(4,4).

It is important to explore the implications of these in-sample findings of
nonlinearity in the conditional mean. The fact that the S&P 500 return series
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is not an MDS implies it may be predictable in the conditional mean. In the
next section, we will use various linear and nonlinear time series models to
examine this issue.
3. CONDITIONAL MEAN MODELS

Let Ft�1 be the information set containing information about the process
{yt} up to and including time t�1. Since our interest is to investigate the
predictability of stock returns in the conditional mean mt ¼ EðytjFt�1Þ; we
assume that yt is conditionally normally distributed and the conditional
variance s2t ¼ Eð�2t jFt�1Þ follows a GARCH(1,1) process s2t ¼ oþ a�2t�1 þ

bs2t�1; where �t ¼ yt � mt: We consider the following nine models for mt in
three classes:
(i)
PNð2

NNð2

SETA

STAR
the MDS model

MDS yt ¼ �t
(ii)
 four linear autoregressive moving average (ARMA) models

Constant yt ¼ a0 þ �t

MAð1Þ yt ¼ a0 þ b1�t�1 þ �t

ARMAð1; 1Þ yt ¼ a0 þ a1yt�1 þ b1�t�1 þ �t

ARð2Þ yt ¼ a0 þ a1yt�1 þ a2yt�2 þ �t
(iii)
 four nonlinear models, namely, the polynomial (PN), neural network
(NN), self-exciting transition autoregressive (SETAR), and smooth
transition autoregressive (STAR) models,

; 4Þ yt ¼ a0 þ a1yt�1 þ a2yt�2 þ
P2
j¼1

P4
i¼2

aijy
i
t�j þ �t

; 5Þ yt ¼ a0 þ a1yt�1 þ a2yt�2 þ
P5
i¼1

diGðg0i þ
P2
j¼1

gjiyt�jÞ þ �t

R yt ¼ a0 þ a1yt�1 þ a2yt�2 þ ðb0 þ b1yt�1 þ b2yt�2Þ1ðyt�14cÞ þ �t

yt ¼ a0 þ a1yt�1 þ a2yt�2 þ ðb0 þ b1yt�1 þ b2yt�2ÞGðgðyt�1 � cÞÞ þ �t



YONG BAO AND TAE-HWY LEE48
e GðzÞ ¼ 1=ð1þ e�zÞ is a logistic function and 1( � ) denotes an indicator
wher
function that takes 1 if its argument is true and 0 otherwise. Note that the
four nonlinear models nest the AR(2) model.

All the above models have been used in the literature, with apparently
mixed results on the predictability of stock returns. Hong and Lee (2003) use
the AR, PN, and NN models. McMillan (2001) and Kanas (2003) find
evidence supporting the NN and STAR models, while Bradley and Jansen
(2004) find no evidence for the STAR model. We note that these authors use
the MSFE criterion for out-of-sample forecasting evaluation. Racine (2001)
finds no predictability evidence using the NN model. Anderson, Benzoni,
and Lund (2002) use the MA model for estimation.

The results from the generalized spectral test reported in Table 1 suggest
that EðytjFt�1Þ is time-varying in a nonlinear manner, because M(1,1) is
insignificant but M(1,0) is significant. Also, we note that the M(1,l) statistics
are significant with l ¼ 2; 4 but not with l ¼ 1; 3; indicating volatility and tail
observations may have some predictive power for the returns but not the
skewness of the return distribution. The PN model is to exploit this
nonlinear predictive evidence of the lth order power of the lagged returns.
4. OUT-OF-SAMPLE TEST FOR MARTINGALE

DIFFERENCE

We now examine if the in-sample evidence of nonlinear predictability of the
S&P 500 returns from the generalized spectral test in the previous section
may be carried over to the out-of-sample forecasting. While the in-sample
generalized spectral test does not involve parameter estimation of a
particular nonlinear model, the out-of-sample test requires the estimation
of model parameters since it is based on some particular choice of nonlinear
models. Despite the strong nonlinearity found in the conditional mean from
the in-sample tests, model uncertainty and parameter uncertainty usually
make the out-of-sample results much weaker than the in-sample nonlinear
evidence, see Meese and Rogoff (1983).

Given model uncertainty, econometricians tend to search for a proper
model over a large set of candidate models. This can easily cause the
problem of data snooping, see Lo and MacKinlay (1990). In order to take
care of the data snooping bias, we follow the method of White (2000) in our
comparison of multiple competing models. Moreover, we use the KLIC
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measure as our loss function in the comparison. As emphasized by BLS
(2004), the KLIC measure captures both the loss due to model specification
error and the loss due to parameter estimation error. It is important to note
that in comparing forecasting models we treat parameter estimation error as
a loss. Now, we briefly discuss the BLS test.2

4.1. The BLS Test

Suppose that {yt} has a true, unknown conditional density function f ðytÞ �

f ðytjFt�1Þ: Let cðyt; hÞ ¼ cðytjFt�1; h) be a one-step-ahead conditional
density forecast model with parameter vector h, where hAH is a finite-
dimensional vector of parameters in a compact parameter space H. If
cð�; h0Þ ¼ f ð�Þ for some h0AH, then the one-step-ahead density forecast is
correctly specified and hence optimal, as it dominates all other density
forecasts for any loss function (e.g., Diebold, Gunther, & Tay, 1998;
Granger & Pesaran, 2000a, b). As our purpose is to compare the out-
of-sample predictive abilities among competing density forecast models, we
consider two subsamples yt

� �R

t¼1
and yt

� �T

t¼Rþ1
: we use the first sample to

estimate the unknown parameter vector h and the second sample to compare
the out-of-sample density forecasts.

In practice, it is rarely the case that we can find an optimal model as all
the models can be possibly misspecified. Our task is then to investigate
which model can approximate the true model most closely. We have to first
define a metric to measure the distance of a given model to the truth and
then compare different models in terms of this distance. The adequacy of a
postulated distribution may be appropriately measured by the KLIC
divergence measure between f ð�Þ and cð�Þ: Iðf : c; hÞ ¼
E ln f ðytÞ � lncðyt; hÞ
� �

; where the expectation is with respect to the true
distribution. Following Vuong (1989), we define the distance between a
model and the true density as the minimum of the KLIC

Iðf : c; h�Þ ¼ E lnf ðytÞ � lncðyt; h
�
Þ

� �
(4)

and h* is the pseudo-true value of h, the parameter value that gives the
minimum Iðf : c; hÞ for all h 2 Y (e.g., White, 1982). The smaller this
distance, the closer the model cð�; hÞ is to the true density. Thus, we can use
this measure to compare the relative distance of a battery of competing
models to the true model f tð�Þ: However, Iðf : c; h�Þ is generally unknown,
since we cannot observe f ð�Þ and thereby we can not evaluate the expectation
in (4). Under some regularity conditions, it can nevertheless be shown that
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E ln f ðytÞ � lncðyt; h
�
Þ

� �
can be consistently estimated by

Îðf : cÞ ¼
1

n

XT

t¼Rþ1

ln f ðytÞ � lncðyt; ĥt�1Þ

h i
(5)

where n ¼ T�R and ĥt�1 is consistently estimated from a rolling sample
yt�1; . . . ; yt�R

� �
of size R. But we still do not know f ð�Þ: For this, we utilize

the equivalence relationship between ln½f ðytÞ=cðyt; ĥt�1Þ� and the log-
likelihood ratio of the inverse normal transform of the probability integral
transform (PIT) of the actual realizations of the process with respect to the
models’ density forecast. This equivalence relationship enables us to
consistently estimate Iðf : c; h�Þ and hence to conduct the out-of-sample
comparison of possibly misspecified models in terms of their distance to the
true model.

The (out-of-sample) PIT of the realization of the process with respect to
the model’s density forecast is defined as

ut ¼

Zyt

�1

cðy; ĥt�1Þdy; t ¼ R þ 1; . . . ;T (6)

It is well known that if cðyt; ĥt�1Þ coincides with the true density f(yt) for all
t, then the sequence utf gT

t¼Rþ1 is IID and uniform on the interval [0, 1]
(U[0,1] henceforth). This provides a powerful approach to evaluating the
quality of a density forecast model. Our task, however, is not to evaluate a
single model, but to compare a battery of competing models. Our purpose of
utilizing the PITs is to exploit the following equivalence between
ln½f ðytÞ=cðyt; ĥt�1Þ� and the log likelihood ratio of the transformed PIT
and hence to construct the distance measure. The inverse normal transform
of the PIT is

xt ¼ F�1ðutÞ (7)

where Fð�Þ is the cumulative distribution function (CDF) of the standard
normal distribution. If the sequence utf gT

t¼Rþ1 is IID U[0, 1] then xtf gT
t¼Rþ1 is

IID standard normal N(0, 1) (IID N(0, 1) henceforth). More importantly,
Berkowitz (2001, Proposition 2, p. 467) shows that

ln f ðytÞ=cðyt; ĥt�1Þ

h i
¼ ln pðxtÞ=fðxtÞ

� �
(8)

where pð�Þ is the density of xt and fð�Þ the standard normal density.
Therefore, the distance of a density forecast model to the unknown true
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model can be equivalently estimated by the departure of xtf gT
t¼Rþ1 from IID

N(0, 1),

~Iðf : cÞ ¼
1

n

XT

t¼Rþ1

ln pðxtÞ � lnfðxtÞ½ � (9)

We transform the departure of cð�; hÞ from f ð�Þ to the departure of pð�Þ

from IID N(0, 1). To specify the departure from IID N(0, 1), we want pð�Þ to
be as flexible as possible to reflect the true distribution of xtf gT

t¼Rþ1 and at
the same time it can be IID N(0, 1) if the density forecast model coincides
with the true model. We follow Berkowitz (2001) by specifying xtf gT

t¼Rþ1 as
an AR(L) process

xt ¼ q0X t�1 þ sZt (10)

where X t�1 ¼ ð1;xt�1; . . . ;xt�LÞ
0; q is an (L+1)� 1 vector of parameters,

and Zt IID distributed. We specify a flexible distribution for Zt, say, p(Zt; c)
where c is a vector of distribution parameters such that when c ¼ c� for some
c* in the parameter space, p(Zt; c*) is IID N(0, 1). A test for IID N(0, 1) of
fxtg

T
t¼Rþ1 per se can be constructed by testing elements of the parameter

vector b ¼ ðq0; s; c0Þ0; say, q ¼ 0, s ¼ 1; and c ¼ c�: We assume the semi-
nonparametric (SNP) density of order K of Gallant and Nychka (1987) for Zt

pðZt; cÞ ¼

PK
k¼0ckZ

k
t

� �
fðZtÞRþ1

�1

PK
k¼0ckuk

� �2

fðuÞdu

, (11)

where c0 ¼ 1 and c ¼ ðc0; . . . ; cK Þ
0: Setting ck ¼ 0 ðk ¼ 1; . . . ;KÞ gives

pðZtÞ ¼ fðZtÞ: Given (10) and (11), the density of xt is

pðxt; bÞ ¼
p ðxt � q0X t�1Þ=s; c
� �

s
,

which degenerates into IID N(0,1) by setting b ¼ b� ¼ ð00; 1; 00Þ0: Then ~Iðj :
cÞ as defined in (9) can be estimated by

~Iðf : c; bÞ ¼
1

n

XT

t¼Rþ1

ln
p ðxt � q0X t�1Þ=s; c
� �

s
� lnfðxtÞ

	 

.

The likelihood ratio test statistic of the adequacy of the density forecast
model cð�; hÞ in Berkowitz (2001) is simply the above formula with pð�Þ ¼

fð�Þ: As b is unknown, we estimate ~Iðj : cÞ by

~Iðf : c; b̂nÞ ¼
1

n

XT

t¼Rþ1

ln
p ðxt � q̂0nX t�1Þ=ŝn; ĉn

� �
ŝn

� lnfðxtÞ

	 

, (12)
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where b̂n ¼ ðq̂
0

n; ŝn; c0nÞ
0 is the maximum likelihood estimator that maximizes

n�1
PT

t¼Rþ1 ln pðxt; bÞ:

To check the performance of a density forecast model in certain regions of
the distribution, we can easily modify our distance measure tailored for the
tail parts only. For the lower (left) tail, we define the censored random
variable

xt
t ¼

xt if xtot

F�1ðaÞ � t if xt � t:

(
(13)

For example, t ¼ �1:645 for a ¼ 0:05; the left 5% tail. As before, we
consider an AR model (10) with Zt distributed as in (11). Then the censored
random variable xt

t has the distribution function

ptðxt
t ; bÞ ¼

p ðxt � q0X t�1Þ=s
� �

s

	 
1ðxtotÞ

1� P
t� q0X t�1

s
; c

� �	 
1ðxt�tÞ

, (14)

in which Pð�; cÞ is the CDF of the SNP density function and is calculated in
the way as discussed in BLS. Given ptðxt

t ; bÞ; the (left) tail minimum KLIC
divergence measure can be estimated analogously

~I
t
ðf : c; b̂

t
nÞ ¼

1

n

XT

t¼Rþ1

ln ptðxt
t ; b̂

t
nÞ � lnft

ðxt
t Þ

h i
, (15)

where ft
ðxt

t Þ ¼ 1� FðtÞ½ �
1ðxt�tÞ fðxtÞ½ �

1ðxtotÞ and b̂
t
n maximizes

n�1
PT

t¼Rþ1 ln ptðxt
t ; bÞ:

For the upper (right) tail we define the censored random variable

xt
t ¼

F�1ðaÞ � t if xt 	 t

xt if xt4t

(
(16)

For example, t ¼ 1:645 for a ¼ 0:95; the right 5% tail. Then the censored
random variable xt

t has the distribution function

ptðxt
t ; bÞ ¼ 1� P

t� q0X t�1

s
; c

� �	 
1ðxt	tÞ p ðxt � q0X t�1Þ=s
� �

s

	 
1ðxt4tÞ

, (17)

and the (right) tail minimum KLIC divergence measure can be estimated by
(15) with ptðxt

t ; bÞ given by (17).
Therefore, given (6) and (7), we are able to estimate the minimum distance

measure (4) by (12) (or its tail counterpart by (15)), which is proposed by
BLS as a loss function to compare the out-of-sample predictive abilities of a
set of l+1 competing models, each of which can be possibly misspecified. To
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establish the notation with model indexed by k ðk ¼ 0; 1; . . . ; lÞ; let the
density forecast model k be denoted by ck(yt; hk). Model comparison
between a single model (model k) and the benchmark model (model 0) can
be conveniently formulated as hypothesis testing of some suitable moment
conditions. Consider constructing the loss differential

dk ¼ dkðc0;ckÞ ¼ ln f ðytÞ � lnc0ðyt; h
�
0Þ

� �
� ln f ðytÞ � lnckðyt; h

�
kÞ

� �
(18)

where 1 	 k 	 l: Note that EðdkÞ ¼ Iðf : c0; h
�
0Þ � Iðf : ck; h

�
kÞ is the

difference in the minimum KLIC of models 0 and k. When we compare
multiple l models against a benchmark jointly, the null hypothesis of interest
is that the best model is no better than the benchmark

H0 : max
1	k	l

EðdkÞ 	 0 (19)

To implement this test, we follow White (2000) to bootstrap the following
test statistic

V̄ n � max
1	k	l

ffiffiffi
n

p
d̄k;n � EðdkÞ
� �

(20)

where d̄k;n ¼ ~Iðf : c0; b̂0;nÞ � ~Iðf : ck; b̂k;nÞ; and ~Iðf : c0; b̂0;nÞ and ~Iðf :
ck; b̂k;nÞ are estimated by (12) for models 0 and k, with the normal-inversed
PIT xtf gT

t¼Rþ1 constructed using ĥ0;t�1 and ĥk;t�1 estimated by a rolling-
sample scheme, respectively. A merit of using the KLIC-based loss function
for comparing forecasting models is that d̄k;n incorporates both model
specification error and parameter estimation error (note that xt is
constructed using ĥ rather than h�) as argued by BLS (2004).

To obtain the p-value for V̄ n White (2000) suggests using the stationary
bootstrap of Politis and Romano (1994). This bootstrap p-value for testing
H0 is called the ‘‘reality check p-value’’ for data snooping. As discussed in
Hansen (2001), White’s reality check p-value may be considered as an upper
bound of the true p-value, since it sets EðdkÞ ¼ 0: Hansen (2001) considers a
modified reality check test, which removes the ‘‘bad’’ models from the
comparison and thereby improves the size and the power of the test. The
reality check to compare the performance of density forecast models in the
tails can be implemented analogously.

4.2. Results of the BLS Test

We split the sample used in Section 2 into two parts (roughly into two
halves): one for in-sample estimation of size R ¼ 1703 and another for out-
of-sample density forecast of size n ¼ 1700: We use a rolling-sample scheme.
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That is, the first density forecast is based on observations 1 through R

(January 3, 1990–September 24, 1996), the second density forecast is based
on observations 2 through R+1 (January 4, 1990–September 25, 1996), and
so on.

The results are presented in Tables 2–4, with each table computing the
statistics with different ways of selecting L and K. We present the reality
check results with the whole density (100% with a ¼ 1:00), three left tails
(10%, 5%, 1% with a ¼ 0:10; 0.05, 0.01), and three right tails (10%, 5%,
1% with a ¼ 0:90; 0.95, 0.99). With the AR(L)–SNP(K) model as specified
in (10) and (11), we need to choose L and K. In Table 2, we fix L ¼ 3 and
K ¼ 5: We minimize the Akaike information criteria (AIC) in Table 3, and
the Schwarz information criteria (SIC) in Table 4, for the selection of L and
K from the sets of {0, 1, 2, 3} for L and {0, 1,y, 8} for K.

The out-of-sample average KLIC loss (denoted as ‘‘Loss’’ in tables) as
well as the reality check p-value of White (2000) (denoted as ‘‘p1’’) and the
modified reality check p-value of Hansen (2001) (denoted as ‘‘p2’’) are
presented in these tables. In comparing the models using the reality check
tests, we regard each model as a benchmark model and it is compared with
the remaining eight models. We set the number of bootstraps for the reality
check to be 1,000 and the mean block length to be 4 for the stationary
bootstrap of Politis and Romano (1994). The estimated out-of-sample
KLIC (12) and its censored versions as defined from (15) with different
values of t (each corresponding to different a) are reported in Tables 2–4.
Note that in these tables a small value of the out-of-sample average loss and
a large reality check p-value indicate that the corresponding model is a good
density forecast model, as we fail to reject the null hypothesis that the other
remaining eight models is no better than that model.

As our purpose is to test for the MDS property of the S&P 500 returns in
terms of out-of-sample forecasts, we examine the performance of the MDS
model as the benchmark (Model 0 with k ¼ 0) in comparison with the
remaining eight models indexed by k ¼ 1;y, l (l ¼ 8). The eight competing
models are Constant, MA, ARMA, AR, PN, NN, SETAR, and STAR.

Table 2 shows the BLS test results computed using L ¼ 3 and K ¼ 5:
First, comparing the entire return density forecasts with a ¼ 100%; the
KLIC loss value for the MDS model is ~Iðf : c0; b̂0;nÞ ¼ 0:0132; that is the
smallest loss, much smaller than those of the other eight models. The large
reality check p-values for the MDS model as the benchmark (p1 ¼ 0:982 and
p2 ¼ 0:852) indicate that none of the other eight models are better than the
MDS model, confirming the efficient market hypothesis that the S&P 500
returns may not be predictable using linear or nonlinear models.



Table 2. Reality Check Results Based on AR(3)-SNP(5).

Tail Model Left Tail Right Tail

Loss p1 p2 L K Loss p1 p2 L K

MDS 0.0132 0.982 0.852 3 5

Constant 0.0233 0.370 0.370 3 5

MA 0.0237 0.357 0.357 3 5

ARMA 0.0238 0.357 0.357 3 5

100% AR 0.0171 0.547 0.486 3 5

PN 0.0346 0.071 0.071 3 5

NN 0.0239 0.355 0.355 3 5

SETAR 0.0243 0.354 0.354 3 5

STAR 0.0238 0.354 0.354 3 5

MDS 0.0419 1.000 0.730 3 5 0.0409 0.000 0.000 3 5

Constant 0.0467 0.000 0.000 3 5 0.0359 0.415 0.394 3 5

MA 0.0472 0.000 0.000 3 5 0.0352 0.794 0.686 3 5

ARMA 0.0468 0.000 0.000 3 5 0.0359 0.442 0.397 3 5

10% AR 0.0469 0.000 0.000 3 5 0.0363 0.309 0.298 3 5

PN 0.0466 0.000 0.000 3 5 0.0348 0.627 0.615 3 5

NN 0.0469 0.000 0.000 3 5 0.0365 0.269 0.261 3 5

SETAR 0.0476 0.000 0.000 3 5 0.0360 0.396 0.372 3 5

STAR 0.0470 0.000 0.000 3 5 0.0366 0.243 0.238 3 5

MDS 0.0199 1.000 0.671 3 5 0.0229 0.000 0.000 3 5

Constant 0.0218 0.002 0.002 3 5 0.0205 0.040 0.040 3 5

MA 0.0217 0.003 0.003 3 5 0.0206 0.039 0.039 3 5

ARMA 0.0217 0.003 0.003 3 5 0.0206 0.040 0.040 3 5

5% AR 0.0211 0.023 0.000 3 5 0.0208 0.031 0.031 3 5

PN 0.0226 0.000 0.000 3 5 0.0170 0.981 0.518 2 5

NN 0.0211 0.026 0.000 3 5 0.0210 0.022 0.022 3 5

SETAR 0.0211 0.040 0.004 3 5 0.0213 0.019 0.019 3 5

STAR 0.0213 0.017 0.000 3 5 0.0208 0.029 0.029 3 5

MDS 0.0068 1.000 0.992 3 5 0.0073 0.042 0.042 3 5

Constant 0.0074 0.148 0.148 3 5 0.0068 0.172 0.172 3 5

MA 0.0074 0.163 0.163 3 5 0.0068 0.167 0.167 3 5

ARMA 0.0074 0.178 0.178 3 5 0.0068 0.160 0.160 3 5

1% AR 0.0075 0.132 0.132 3 5 0.0068 0.151 0.151 3 5

PN 0.0074 0.240 0.240 3 5 0.0058 0.932 0.914 3 5

NN 0.0075 0.128 0.128 3 5 0.0068 0.150 0.150 3 5

SETAR 0.0076 0.064 0.064 3 5 0.0068 0.135 0.135 3 5

STAR 0.0074 0.181 0.181 3 5 0.0068 0.169 0.169 3 5

Note: ‘‘Loss’’ refers to is the out-of-sample averaged loss based on the KLIC measure; ‘‘p1’’ and

‘‘p2’’ are the reality check p-values of White’s (2000) and Hansen’s (2001) tests, respectively,

where each model is regarded as a benchmark model and is compared with the remaining eight

models. We use an AR(3)–SNP(5) model for the transformed PIT {xt}. We retrieve the S&P 500

returns series from finance.yahoo.com. The sample observations are from January 3, 1990 to

June 30, 2003 (T ¼ 3303), the in-sample observations are from January 3, 1990 to September

24, 1996 (R ¼ 1703), and the out-of-sample observations are from September 25, 1996 to June

30, 2003 (n ¼ 1700).
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Table 3. Reality Check Results Based on Minimum AIC.

Tail Model Left Tail Right Tail

Loss p1 p2 L K Loss p1 p2 L K

MDS 0.0247 0.719 0.719 3 8

Constant 0.0231 0.938 0.933 3 3

MA 0.0266 0.534 0.534 3 7

ARMA 0.0236 0.874 0.862 3 3

100% AR 0.0266 0.533 0.533 3 7

PN 0.0374 0.238 0.238 1 8

NN 0.0238 0.853 0.845 3 3

SETAR 0.0266 0.539 0.539 3 7

STAR 0.0268 0.532 0.532 3 8

MDS 0.0583 1.000 0.767 3 8 0.0658 0.050 0.050 3 8

Constant 0.0652 0.064 0.064 2 8 0.0593 0.717 0.675 3 8

MA 0.0651 0.070 0.070 3 8 0.0582 0.960 0.947 3 8

ARMA 0.0647 0.078 0.078 3 8 0.0588 0.839 0.813 3 8

10% AR 0.0649 0.075 0.075 3 8 0.0594 0.701 0.655 3 8

PN 0.0650 0.076 0.076 2 8 0.0628 0.239 0.239 3 8

NN 0.0649 0.075 0.075 3 8 0.0597 0.619 0.571 3 8

SETAR 0.0653 0.068 0.068 3 8 0.0584 0.845 0.808 3 8

STAR 0.0653 0.063 0.063 3 8 0.0591 0.775 0.737 3 8

MDS 0.0315 1.000 0.973 2 8 0.0390 0.333 0.092 3 8

Constant 0.0334 0.628 0.473 2 7 0.0359 0.852 0.665 3 8

MA 0.0339 0.468 0.320 2 8 0.0359 0.917 0.840 3 8

ARMA 0.0340 0.425 0.266 3 8 0.0359 0.926 0.865 3 8

5% AR 0.0336 0.495 0.340 3 8 0.0360 0.929 0.885 3 8

PN 0.0356 0.256 0.129 3 8 0.0515 0.006 0.006 2 7

NN 0.0337 0.487 0.327 3 8 0.0362 0.841 0.741 3 8

SETAR 0.0334 0.529 0.386 3 8 0.0357 0.913 0.753 3 8

STAR 0.0705 0.000 0.000 1 8 0.0359 0.908 0.826 3 8

MDS 0.0098 0.973 0.939 3 7 0.0122 0.008 0.008 3 8

Constant 0.0113 0.321 0.111 2 7 0.0113 0.042 0.042 3 8

MA 0.0114 0.322 0.131 2 7 0.0116 0.018 0.018 3 8

ARMA 0.0114 0.330 0.137 2 7 0.0118 0.019 0.019 3 8

1% AR 0.0116 0.279 0.108 2 7 0.0118 0.020 0.020 3 8

PN 0.0116 0.292 0.109 2 7 0.0092 0.989 0.564 3 7

NN 0.0116 0.279 0.107 2 7 0.0118 0.020 0.020 3 8

SETAR 0.0113 0.314 0.109 2 7 0.0112 0.060 0.060 3 7

STAR 0.0229 0.000 0.000 2 8 0.0117 0.022 0.022 3 8

Note: ‘‘Loss’’ refers to is the out-of-sample averaged loss based on the KLIC measure; ‘‘p1’’ and

‘‘p2’’ are the reality check p-values of White’s (2000) and Hansen’s (2001) tests, respectively,

where each model is regarded as a benchmark model and is compared with the remaining eight

models; ‘‘L’’ and ‘‘K’’ are the AR and SNP orders, respectively, chosen by the minimum AIC

criterion in the AR(L)–SNP(K) models, L ¼ 0 ,y, 3, K ¼ 0 ,y, 8 for the transformed PIT {xt}.

We retrieve the S&P 500 returns series from finance.yahoo.com. The sample observations are

from January 3, 1990 to June 30, 2003 (T ¼ 3303), the in-sample observations are from January

3, 1990 to September 24, 1996 (R ¼ 1703), and the out-of-sample observations are from

September 25, 1996 to June 30, 2003 (n ¼ 1700).
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Table 4. Reality Check Results Based on Minimum SIC.

Tail Model Left Tail Right Tail

Loss p1 p2 L K Loss p1 p2 L K

MDS 0.0196 0.950 0.950 1 3

Constant 0.0211 0.628 0.628 1 3

MA 0.0216 0.562 0.562 1 3

ARMA 0.0215 0.570 0.570 1 3

100% AR 0.0215 0.580 0.580 1 3

PN 0.0342 0.157 0.157 2 4

NN 0.0214 0.599 0.599 1 3

SETAR 0.0221 0.538 0.538 1 3

STAR 0.0213 0.596 0.596 1 3

MDS 0.0583 1.000 0.767 3 8 0.0658 0.050 0.050 3 8

Constant 0.0652 0.064 0.064 2 8 0.0593 0.717 0.675 3 8

MA 0.0651 0.070 0.070 3 8 0.0582 0.960 0.947 3 8

ARMA 0.0647 0.078 0.078 3 8 0.0588 0.839 0.813 3 8

10% AR 0.0649 0.075 0.075 3 8 0.0594 0.701 0.655 3 8

PN 0.0650 0.076 0.076 2 8 0.0628 0.239 0.239 3 8

NN 0.0649 0.075 0.075 3 8 0.0597 0.619 0.571 3 8

SETAR 0.0653 0.068 0.068 3 8 0.0584 0.845 0.808 3 8

STAR 0.0653 0.063 0.063 3 8 0.0591 0.775 0.737 3 8

MDS 0.0306 0.991 0.871 2 7 0.0390 0.333 0.092 3 8

Constant 0.0334 0.384 0.213 2 7 0.0359 0.852 0.665 3 8

MA 0.0328 0.416 0.241 3 7 0.0359 0.917 0.840 3 8

ARMA 0.0328 0.411 0.238 3 7 0.0359 0.926 0.865 3 8

5% AR 0.0324 0.495 0.318 3 7 0.0360 0.929 0.885 3 8

PN 0.0343 0.250 0.098 3 7 0.0515 0.006 0.006 2 7

NN 0.0325 0.489 0.311 3 7 0.0362 0.841 0.741 3 8

SETAR 0.0323 0.522 0.357 3 7 0.0357 0.913 0.753 3 8

STAR 0.0705 0.000 0.000 1 8 0.0359 0.908 0.826 3 8

MDS 0.0000 1.000 0.544 3 1 0.0016 0.077 0.077 3 2

Constant 0.0043 0.000 0.000 3 3 0.0014 0.090 0.090 3 2

MA 0.0044 0.000 0.000 3 3 0.0000 1.000 0.999 3 1

ARMA 0.0044 0.000 0.000 3 3 0.0000 1.000 0.999 3 1

1% AR 0.0045 0.000 0.000 3 3 0.0000 1.000 0.997 3 1

PN 0.0044 0.000 0.000 3 3 0.0014 0.109 0.109 3 2

NN 0.0045 0.000 0.000 3 3 0.0000 0.852 0.718 3 1

SETAR 0.0045 0.000 0.000 3 3 0.0015 0.095 0.095 3 2

STAR 0.0229 0.000 0.000 2 8 0.0000 0.910 0.757 3 1

Note: ‘‘Loss’’ refers to is the out-of-sample averaged loss based on the KLIC measure; ‘‘p1’’ and

‘‘p2’’ are the reality checks p-values of White’s (2000) and Hansen’s (2001) tests, respectively,

where each model is regarded as a benchmark model and is compared with the remaining eight

models; ‘‘L’’ and ‘‘K’’ are the AR and SNP orders, respectively, chosen by the minimum SIC

criterion in the AR(L)–SNP(K) models, L ¼ 0 ,y, 3, K ¼ 0 ,y, 8, for the transformed PIT

{xt}. We retrieve the S&P 500 returns series from finance.yahoo.com. The sample observations

are from January 3, 1990 to June 30, 2003 (T ¼ 3303), the in-sample observations are from

January 3, 1990 to September 24, 1996 (R ¼ 1703), and the out-of-sample observations are from

September 25, 1996 to June 30, 2003 (n ¼ 1700).
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Next, comparing the left tails with a ¼ 10%; 5%, 1%, we find the results
are similar to those for the entire distribution. That is, the MDS model has
the smallest KLIC loss values for these left tails, much smaller than those of
the other eight models. The reality check p-values for the MDS model as the
benchmark are all very close to one, indicating that none of the eight models
are better than the MDS, confirming the efficient market hypothesis in the
left tails of the S&P 500 returns.

Interestingly and somewhat surprisingly, when we look at the right tails
with a ¼ 90%; 95%, 99% (i.e., the right 10%, 5%, and 1% tails,
respectively), the results are exactly the opposite to those for the left tails.
That is, the KLIC loss values for the MDS model for all of these three right
tails are the largest, larger than those of the other eight competing models.
The reality check p-values with the MDS model as the benchmark are zero or
very close to zero, indicating that some of the other eight models are
significantly better than the MDS model, hence rejecting the efficient market
hypothesis in the right tails of the S&P 500 return density. This implies that
the S&P 500 returns may be more predictable when the market goes up than
when it goes down, during the sample period from January 3, 1990 to June
30, 2003. To our knowledge, this empirical finding is new to the literature,
obtained as a benefit of using the BLS method that permits evaluation and
comparison of the density forecasts on a particular area of the return density.

As the right tail results imply, the S&P 500 returns in the right tails are
predictable via some of the eight linear and nonlinear competing models
considered in this paper. To see the nature of the nonlinearity in mean, we
compare the KLIC loss values of these models. It can be seen that the PN
model has the smallest loss values for all the three right tails. The reality
check p-values show that the PN model (as a benchmark) is not dominated
by any of the remaining models for the three 10%, 5%, and 1% right tails.
The other three nonlinear models (NN, SETAR, and STAR) are often
worse than the linear models in terms of out-of-sample density forecasts. We
note that, while PN is the best model for the right tails, it is the worst model
for forecasting the entire density (a ¼ 100%).

Summing up, the significant in-sample evidence from the generalized
spectral statistics M(1, 2) and M(1, 4) reported in Table 1 suggests that the
squared lagged return and the fourth order power of the lagged returns (i.e.
the conditional kurtosis representing the influence of the tail observations)
have a predictive power for the returns. The out-of-sample evidence adds
that this predictability of the squared lagged return and the fourth order
power of the lagged returns is asymmetric, i.e., significant only when the
market goes up.
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Table 3 shows the BLS test results computed with L and K chosen by the
AIC. The results of Table 3 are similar to those of Table 2. Comparing the
entire distribution with a ¼ 100%; the large reality check p-values for the
MDS model as the benchmark (p1 ¼ 0:719 and p2 ¼ 0:719) indicate that
none of the other eight models are better than the MDS model (although the
KLIC loss value for the MDS model is not the smallest). This confirms the
market efficiency hypothesis that the S&P500 returns may not be predictable
using linear or nonlinear models. The results for the left tails with a ¼ 10%;
5%, 1% are also comparable to those in Table 2. That is, the KLIC loss
values for the MDS model for these left tails are the smallest. The reality
check p-values with the MDS model as the benchmark are all close to one
(p1 ¼ 1:000; 1.000, 0.973 and p2 ¼ 0:767; 0.973, 0.939), indicating that none
of the other eight models are better than the MDS model, again confirming
the market efficiency hypothesis in the left tails of the S&P 500 returns. The
right tail results are different from those for the left tails, as in Table 2. The
MDS model for the right tails is generally worse than the other eight models.
The reality check p-values of Hansen (2001) for the MDS model as the
benchmark are very small (p2 ¼ 0:050; 0.092 and 0.008) for the three right
tails, indicating that some of the eight models are significantly better than
the MDS model. This shows that the S&P 500 returns may be more
predictable when the market goes up than when it goes down – the nonlinear
predictability is asymmetric.

Table 4 shows the BLS test results computed with L and K chosen by the
SIC. The results are very similar to those of Tables 2 and 3. Comparing the
entire distribution with a ¼ 100%; the KLIC loss value for the benchmark
MDS model is the smallest with the large reality check p-values (p1 ¼ 0:950
and p2 ¼ 0:950). The results for the left tails with a ¼ 10%; 5%, 1% are
consistent with those in Tables 2 and 3. That is, the KLIC loss values for the
MDS model for these left tails are the smallest. The reality check p-values
with the MDS as the benchmark are all close to one (p1 ¼ 1:000; 0.991,
1.000 and p2 ¼ 0:767; 0.871, 0.544), indicating that none of the other eight
models are better than the MDS model, again confirming the market
efficiency hypothesis in the left tails. The story for the right tails is different
from that for the left tails, as in Tables 2 and 3. The MDS model for the
right tails is generally worse than the other eight models. The reality check
p-values of Hansen (2001) for the MDS model as the benchmark are very
small (p2 ¼ 0:050; 0.092, and 0.077) for the three right tails, indicating that
some of the linear and nonlinear models are significantly better than the
MDS model. This shows that the S&P 500 returns may be more predictable
when the market goes up than when it goes down.
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5. CONCLUSIONS

In this paper, we examine nonlinearity in the conditional mean of the daily
closing S&P 500 returns. We first examine the nature of the nonlinearity
using the in-sample test of Hong (1999), where it is found that there are
strong nonlinear predictable components in the S&P 500 returns. We then
explore the out-of-sample nonlinear predictive ability of various linear and
nonlinear models. The evidence for out-of-sample nonlinear predictability is
quite weak in the literature, and it is generally accepted that stock returns
follow a martingale. While most papers in the literature use MSFE, MAFE,
or some economic measures (e.g., wealth or returns) to evaluate nonlinear
models, we use the density forecast approach in this paper.

We find that for the entire distribution the S&P 500 daily closing returns
are not predictable, and various nonlinear models we examine are no better
than the MDS model. For the left tails, the returns are not predictable. The
MDS model is the best in the density forecast comparison. For the right
tails, however, the S&P 500 daily closing returns are found to be predictable
by using some linear and nonlinear models. Hence, the out-of-sample
nonlinear predictability of the S&P 1500 daily closing returns is asymmetric.
These findings are robust to the choice of L and K in computation of the
BLS statistics.

We note that the asymmetry in the nonlinear predictability which we have
found is with regards to the two tails of the return distribution. Our results
may not imply that the bull market is more predictable than the bear market
because stock prices can fall (left tail) or rise (right tail) under both market
conditions. Nonlinear models that incorporate the asymmetric tail behavior
as well as the bull and bear market regimes would be an interesting model to
examine, which we leave for future research.

NOTES
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