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a b s t r a c t

Structural changes often occur in economics and finance due to changes in preferences,
technologies, institutional arrangements, policies, crises, etc. Improving forecast accuracy
of economic time series with structural changes is a long-standing problem. Model
averaging aims at providing an insurance against selecting a poor forecast model.
All existing model averaging approaches in the literature are designed with constant
(non-time-varying) combination weights. Little attention has been paid to time-varying
model averaging, which is more realistic in economics under structural changes. This
paper proposes a novel model averaging estimator which selects optimal time-varying
combination weights by minimizing a local jackknife criterion. It is shown that the
proposed time-varying jackknife model averaging (TVJMA) estimator is asymptotically
optimal in the sense of achieving the lowest possible local squared error loss in a class
of time-varying model averaging estimators. Under a set of regularity assumptions, the
TVJMA estimator is

√
Th-consistent. A simulation study and an empirical application

highlight the merits of the proposed TVJMA estimator relative to a variety of popular
estimators with constant model averaging weights and model selection.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Structural instability is a long-standing problem in time series econometrics (e.g., Stock and Watson (1996, 2002,
005), Rossi (2006) and Rossi and Sekhposyan (2011)). Macroeconomic and financial time series, especially over a long
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eriod, are likely to be affected by structural instability due to changes in preferences, technologies, policies, crises, etc. For
xample, Stock and Watson (1996) find substantial instability in 76 representative US monthly post-war macroeconomic
ime series. Rossi and Sekhposyan (2011) argue that due to structural breaks, most forecast models for output growth lost
heir predictive ability in the mid-1970s, and became essentially useless over the last two decades. In finance, Welch and
oyal (2008) confirm that the predictive regressions of excess stock returns perform poorly in out-of-sample forecast of
he U.S. equity premium, and Rapach and Zhou (2013) argue that model instability and uncertainty seriously impair the
orecasting ability of individual predictive regression models. In labor economics, Hansen (2001) finds ‘‘strong evidence
f a structural break in U.S. labor productivity between 1992 and 1996, and weaker evidence of a structural break in the
960s and the early 1980s’’. Thus, it is crucial to take into account such model instability and uncertainty in economic
orecasting.

An approach to reducing the adverse impact of model instability and uncertainty is model averaging, which com-
romises across the competing models and yields an insurance against selecting a poor model. There has existed a
elatively large literature on Bayesian model averaging; see Hoeting et al. (1999) for a comprehensive review. In recent
ears, frequentist model averaging has received growing attention in econometrics and statistics (e.g., Buckland et al.
1997), Yang (2001), Hjort and Claeskens (2003), Yuan and Yang (2005), Hansen (2007, 2008), Wan et al. (2010), Liu and
kui (2013), Liu (2015) and Chen et al. (2018)). Most of the works focus on model averaging weights determination, related
nference, and asymptotic optimality. Recently, Hansen and Racine (2012) have proposed a jackknife model averaging
JMA) which selects model averaging weights by minimizing a cross-validation criterion. The advantage of the JMA
stimator mainly lies in the asymptotic optimality theory established under heteroskedastic error settings. Zhang et al.
2013) broaden Hansen and Racine’s (2012) scope of asymptotic optimality of the JMA estimator to encompass models
ith a non-spherical error covariance structure and lagged dependent variables, thus allowing for dependent data and
ynamic regression models.
However, a potential problem with the aforementioned model averaging approaches is that, one predictive regression

odel may yield the best forecast in one period but can be dominated by other models in another period. This implies
hat optimal model averaging weights should change over time. There are various reasons for adopting this potentially
seful time-varying approach. First, a time series model may suffer from structural instability in economics and finance.
herefore, as Stock and Watson (2003) point out, a predictor useful in one period does not guarantee its forecasting
erformance in other periods. The empirical results in Stock and Watson (2007) suggest that a substantial fraction of
orecasting relations are unstable. Second, macroeconomic and financial series may follow different dynamics in different
ime periods. For example, they may have state-dependent dynamic structures. Third, because of possible collinearity
mong predictors, variable selection and model selection are inherently unstable (Stock and Watson, 2012). Thus, to
andle such instability, it may be better to use time-varying weights instead of constant weights in model averaging.
urthermore, since the underlying economic structure is likely to be affected by technological progress, preference
hanges, policy switches, crises, and so on, it is desirable to use time-varying parameter models to capture structural
hanges. To our knowledge, there has been no work on selecting optimal time-varying weights in model averaging where
ach model itself may also have time-varying parameters.
The present paper fills this gap by proposing a time-varying jackknife model averaging (TVJMA) estimator that

elects model averaging weights by minimizing a local cross-validation criterion. Our approach complements the existing
iterature on constant JMA weights and avoids the difficulty associated with whether structural changes exist. Specifically,
e assume that model parameters, as well as model averaging weights, are smooth unknown functions of time. This
pproach is consistent with the evidence of types of instability documented in economics, namely smooth structural
hanges (e.g., Rothman (1998), Grant (2002) and Chen and Hong (2012), Chen (2015)). Hansen (2001) points out that it
ight seem more reasonable to allow a structural change to take effect with a period of time rather than to be effective

mmediately. To allow the weights in model averaging to change over time, we employ the local smoothing idea to the
quared error loss, leading to a local constant model averaging estimator. Moreover, we follow the spirit of Robinson
1989) and use a local constant method to estimate the time-varying parameters in each candidate model. Furthermore,
e extend the candidate models from static regressions to dynamic regressions, which cover more applications in
conomics and finance.
In this paper, we show that the proposed TVJMA estimator is asymptotically optimal in the sense of achieving the

owest possible local squared error loss in a class of time-varying model averaging estimators, under three model settings
i.e., Sections 2, 3, and 4). The first two settings (i.e., Sections 2 and 3) admit a non-diagonal covariance structure for
egression errors, including heteroscedastic errors as in Hansen and Racine (2012), with exogenous regressors. As a result,
e include the non-time-varying JMA estimator in Hansen and Racine (2012) as a special case of our TVJMA estimator,
nder heteroscedastic errors in a nested set-up. Our theoretical analysis allows the model averaging weights to be
ontinuously changing over time, which avoids restricting the weights to a discrete set as in Hansen and Racine (2012). The
onditions required for optimality of our TVJMA estimator are neither stronger nor weaker than those required by Hansen
nd Racine (2012). The third model setting we consider involves lagged dependent variables with i.i.d. regression errors,
here we prove the asymptotic optimality of the TVJMA estimator by allowing the regressors to be locally stationary, in
he sense of Ing and Wei (2003) and Vogt (2012).

In a simulation study and an empirical application, we compare forecast performance of the TVJMA estimator with
everal other model averaging estimators, including the Mallow model averaging (MMA) of Hansen (2007), JMA, a
2
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moothed Akaike information criterion (SAIC) model averaging (Buckland et al., 1997), a smoothed Bayesian information
riterion (SBIC) model averaging, a nonparametric version of bias-corrected AIC model selection (Cai and Tiwari, 2000,
ICc), and a smoothed AICc (SAICc) model averaging. It is documented that for various structural changes, our TVJMA
stimator outperforms these competing estimators under strictly exogenous regressors with ARMA and GARCH-type
rrors. Additionally, for dynamic models, the TVJMA estimator remains to be superior to other estimators under
onsideration.
Compared with the existing model averaging literature, our proposed approach has a number of appealing features.

irst, we extend conventional constant weight model averaging to time-varying weight model averaging. In particular,
e propose a novel time-varying jackknife model averaging approach by exploring local information at each time point

nstead of over the whole sample period. The TVJMA weights selected by our method are allowed to change smoothly over
ime, which is consistent with evolutionary instability of economic relationships. Our result includes the constant JMA
stimator in Hansen and Racine (2012) as a special case. Second, we also allow parameters in each candidate model to
hange smoothly over time. A nonparametric approach is used to estimate the time-varying model parameters, avoiding
potentially misspecified functional form of time-varying parameters by any parametric approach (e.g., time-varying

mooth transition regression). Third, we allow regressors to be locally stationary (Dahlhaus, 1996, 1997; Vogt, 2012),
nd as a result, time-varying parameter dynamic regression models (e.g., time-varying parameter models with lagged
ependent variables) can be included as candidate models.
The remainder of this paper is organized as follows. Section 2 introduces the local jackknife criterion and develops the

symptotic optimality theory of the proposed TVJMA estimator for a general nonlinear model with heteroscedasticity. In
ection 3, we consider a special class of local constant TVJMA estimators for a time-varying parameter model. Section 4
evelops an asymptotic optimality theory of the TVJMA estimator for a time-varying parameter regression model with
agged dependent variables. Section 5 presents a simulation study under constant and time-varying parameter linear
egressions respectively. Section 6 examines the empirical forecast performance of the TVJMA estimator for S&P 500
tock returns. Section 7 concludes. Throughout, all convergences occur when the sample size T → ∞. All mathematical
roofs are given in an Online Supplementary Material.

. Model averaging estimator

We consider a general nonlinear data generating process (DGP)

Yt = µt + εt = ft (Xt ) + εt , t = 1, . . . , T , (1)

where Yt is a dependent variable, Xt = (X1t , X2t , . . .) is possibly countably infinite, εt is an unobservable disturbance with
E(εt |Xt ) = 0 almost surely (a.s.), ft (x) is an unknown smooth function of time t , and T is the sample size. Note that when
the functional form of ft (·) is known up to some finite dimensional parameters, e.g., ft (x) = xβt , the conditional mean of
Yt given Xt is parametrically specified, where parameter βt is possibly time-varying. A time-varying parameter regression
with ft (x) = xβt will be considered in Section 3. The conventional constant parameter linear models are included as
a special case if we assume that ft (·) = f (·) is linear. When the functional form of ft (·) is unknown, we can estimate
ft (·) using nonparametric methods, such as the Nadaraya–Watson estimator or the local linear estimator. For notational
simplicity, we let Y = (Y1, . . . , YT )′, µ = (µ1, . . . , µT )′ and X = (X′

1, . . . ,X
′

T )
′. Furthermore, we assume that E(ε|X) = 0

here ε = (ε1, . . . , εT )′ so that µ = E(Y|X). We denote var(ε|X) = Ω, where Ω is a positive definite symmetric matrix.
This setup allows a non-diagonal covariance structure for regression errors. Therefore, heteroscedastic and autocorrelated
errors are allowed.

2.1. Model framework and jackknife criterion

Consider a sequence of candidate models indexed by m = 1, . . . ,MT , which are allowed to be misspecified for
the underlying DGP. The number of models, MT , may depend on the sample size T . For different models, explanatory
variables may be different. Let {µ̂1, . . . , µ̂MT } be a set of nonparametric estimators of µ. Specifically, for the mth model,
the estimator of µ may be written as µ̂m

= PmY, where Pm is a T × T matrix, which depends on both Kt and X but not
on Y, Kt = diag{k1t , . . . , kTt}, kst = k( s−t

Th ), the kernel k(·) : [−1, 1] → R+ is a prespecified symmetric probability density,
and h ≡ h(T ) is a bandwidth which depends on the sample size T such that h → 0 and Th → ∞ as T → ∞. For instance,
Pm is defined in (18) when a local constant estimator is used, and so µ̂m is a local estimator for the conditional mean. For
each time t = 1, . . . , T , let w = (w1, . . . , wMT )′ be a weight vector which satisfies

HT =

{
w ∈ [0, 1]MT :

MT∑
m=1

wm
= 1

}
. (2)

Given w, an averaging estimator at any time point t for the conditional mean is

µ̂t (w) ≡

MT∑
wmµ̂m

t =

MT∑
wmetPmY = etP(w)Y, (3)
m=1 m=1

3
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here et is a 1 × T vector, in which the tth element is 1 and all others are zero, µ̂m
t = etPmY and P(w) =

∑MT
m=1 wmPm.

hen the model averaging estimator of µ can be fitted as µ̂(w) = (µ̂1(w), . . . , µ̂T (w))′.
Denote µ̃m

= (µ̃m
1 , . . . , µ̃m

T )
′ as the jackknife estimator of µ for the mth model, where µ̃m

t is the estimator µ̂m
t obtained

ith the tth observation (Yt ,Xt ) removed from the sample, the so-called ‘‘leave-one-out’’ estimator. Then, we obtain
m

= P̃mY, where P̃m has zeros on the diagonal and depends on Kt and X; see (19) for an example in a special setup. The
ackknife model averaging estimator of µt , which smooths across the MT jackknife estimators at time point t , is obtained
s

µ̃t (w) =

MT∑
m=1

wmµ̃m
t = et

MT∑
m=1

wmP̃mY = et P̃(w)Y, (4)

here P̃(w) =
∑MT

m=1 wmP̃m.
Set µ̃(w) = (µ̃1(w), . . . , µ̃T (w))′. We shall minimize the local cross-validation (CV) squared error criterion,

CVt,T (w) = (Y − µ̃(w))′Kt (Y − µ̃(w)). (5)

e obtain the optimal time-varying weight vector ŵt = argminw∈HT
CVt,T (w), which minimizes CVt,T (w). The TVJMA

stimator of µt for any given time point t is µ̂t (ŵt ).
The jackknife (or CV) criterion is widely used in selecting regression models (e.g., Allen (1974), Stone (1974)

nd Geisser (1975)), and the asymptotic optimality of model selection using the CV criterion is established by Li (1987)
or homoskedastic regression and by Andrews (1991) for heteroskedastic regression, respectively. In this paper, the CV
riterion defined above is locally weighted by Kt at each time point. This local CV criterion chooses the optimal weights by
enerating the smallest CV value over the local sample leaving out the observation (Xt , Yt ) at time t . Thus, the time-varying
eight vector ŵt is essentially a constant weight in the neighborhood of any fixed time point t , which combines different
odels to yield the lowest local squared error loss.
Note that there are two key differences between our TVJMA estimator and the JMA estimators proposed by Hansen

nd Racine (2012) and Zhang et al. (2013). One major difference is that we allow the model averaging weights to change
ith time smoothly. In contrast, Hansen and Racine (2012) and Zhang et al. (2013) restrict the weights to be constant

n a discrete set or a continuous set. We extend constant wights to time-varying weights, which can accommodate
ime-varying predictive power of candidate models. Another difference is that the models in Hansen and Racine (2012)
nd Zhang et al. (2013) are linear regressions, while in the present paper, ft (·) can be nonlinear, and parameters in
ach candidate model are allowed to be unknown smooth functions of time. Theoretically, we establish the asymptotic
ptimality of the TVJMA estimator based on a set of smoothly time-varying parameter models. Simulation studies show
hat the proposed TVJMA estimator outperforms the existing model averaging methods in the presence of smooth
tructural changes as well as recurrent breaks.

.2. Asymptotic optimality

To establish the asymptotic optimality of the TVJMA estimator, we consider the following local squared error loss and
ssociated risk criterion:

Lt,T (w) = (µ̂(w) − µ)′Kt (µ̂(w) − µ), (6)

nd

Rt,T (w) = E(Lt,T (w)|X) = µ′A′(w)KtA(w)µ + tr(P′(w)KtP(w)Ω), (7)

where µ̂(w) =
∑MT

m=1 wmµ̂m is the weighted average of the forecasts of MT models, and A(w) = IT − P(w).
Denote Ã(w) = IT − P̃(w). Let L̃t,T (w) and R̃t,T (w) be the local jackknife squared error loss and risk, which are obtained

by replacing µ̂(w) by µ̃(w), A(w) by Ã(w), and P(w) by P̃(w), respectively. Specifically,

L̃t,T (w) = (µ̃(w) − µ)′Kt (µ̃(w) − µ) (8)

and

R̃t,T (w) = µ′Ã′(w)Kt Ã(w)µ + tr(̃P′(w)Kt P̃(w)Ω). (9)

Let

ξt,T = inf
w∈HT

Rt,T (w) (10)

and

Ω̃ = Ω − diag(Ω11, . . . , ΩTT ), (11)
where Ωtt is the tth diagonal element of Ω, and ζ (A) denotes the maximum singular value of a matrix A.

4
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Extending the results of Hansen and Racine (2012) and Zhang et al. (2013), we prove that for any given time point t ,
the TVJMA estimator satisfies the following optimality (OPT) property

(OPT ) :
Lt,T (ŵt )

infw∈HT Lt,T (w)
p

→ 1, as T → ∞.

This suggests that the local average squared error of the TVJMA estimator is asymptotically equivalent to the local average
squared error of the infeasible best possible averaging estimator. This optimality property is the same as that in Zhang
et al. (2013), except that we now allow the weights to change smoothly over time.

To guarantee that the TVJMA estimator satisfies the OPT property under a DGP that allows smooth-changing parameters
and a non-diagonal error covariance structure, we impose a set of regularity conditions:

Assumption 1. {εt} is a sequence of innovations such that ε = (ε1, . . . , εT )′ satisfies ε|X ∼ N(0,Ω), where Ω is a T × T
symmetric positive-definite matrix.

Assumption 2. The maximum singular value of Ω satisfies ζ (Ω) ≤ C < ∞, where C is a constant.

Assumption 3. For 1 ≤ m ≤ MT , the maximum singular value of Pm satisfies limT→∞ max1≤m≤MT ζ (Pm) < ∞ a.s.

ssumption 4. For 1 ≤ m ≤ MT , the maximum singular value of P̃m is finite when the sample size T → ∞,
.e., limT→∞ max1≤m≤MT ζ (̃Pm) < ∞ a.s.

Assumption 5. For any given time point t , the local risk R̃t,T (w), i.e., the conditional expectation of the local jackknife
squared error criterion given X, satisfies supw∈HT

|̃Rt,T (w)/Rt,T (w) − 1| → 0 a.s. as T → ∞.

ssumption 6. For any given time point t , MT ξ
−2G
t,T

∑MT
m=1 R

G
t,T (w

0
m) → 0 a.s., for some constant G ≥ 1, where w0

m is an
T × 1 weight vector with the mth element taking the value of unity and other elements zeros.

ssumption 6′. For any given time point t , ξ−2
t,T

∑MT
m=1 Rt,T (w0

m) → 0 a.s., where w0
m is an MT × 1 weight vector with the

th element taking the value of unity and other elements zeros.

ssumption 7. For any given time point t , supw∈HT
|tr(Kt P̃(w)Ω̃)/̃Rt,T (w)| → 0 a.s. as T → ∞.

ssumption 8. k : [−1, 1] → R+ is a symmetric bounded probability density function.

ssumption 9. The bandwidth h = cT−λ for 0 < λ < 1 and 0 < c < ∞.

Assumption 1 is the same as condition (11) in Zhang et al. (2013), which is limited to Gaussian regressions. This
ondition can be removed to obtain the asymptotic optimality of the TVJMA estimator for a time-varying parameter
egression in Section 3. Assumption 2 ensures the largest singular values of the error covariance matrix Ω to be finite
hen the sample size T → ∞, corresponding to condition (12) in Zhang et al. (2013). Assumptions 3 and 4 correspond
o conditions (A.3) and (A.4) of Hansen and Racine (2012), respectively. Both of them are rather mild, because typical
stimators satisfy the regularity conditions that the maximum singular values of the corresponding matrixes are bounded.
Assumption 5 imposes the condition that the leave-one-out estimator is asymptotically equivalent to the local risk

f the regular estimator µ̂(w), uniformly over the class of averaging estimators. This is a standard condition for the
pplication of cross-validation and almost the same as condition (10) in Zhang et al. (2013), except that the continuous
ime-varying set HT is used here instead of the continuous constant set Hn in Zhang et al. (2013). In Section 3, we will
onsider time-varying parameter regressions as candidate models, where Assumption 5 is ensured by more primitive
onditions; see (A.18) in Supplementary Material.
Assumption 6 requires MT

∑MT
m=1 R

G
t,T (w

0
m) → ∞ at a rate slower than ξ 2G

t,T → ∞ as T → ∞. Assumption 6′ is
eaker than Assumption 6, when G is set to 1. To gain further insight into Assumptions 6 and 6′, we define ηt,T =

ax1≤m≤MT Rt,T (w0
m). Then, we obtain more primitive conditions for Assumptions 6 and 6′ that M2

T ξ
−2G
t,T ηG

t,T → 0 a.s. and
T ξ

−2
t,T ηt,T → 0 a.s., respectively. These conditions restrict the rates of MT → ∞, ξt,T → ∞ and ηt,T → ∞; in particular

hey require that the infimum risk ξt,T explode quickly enough and the maximum risk of an individual model do not
xplode very quickly. Note that ξt,T → ∞ is obviously necessary for Assumptions 6 and 6′ to hold, which is pointed out
y Hansen (2007) that this is no finite approximating model for which the bias is zero in linear regression as well as
onparametric regression. Like Ando and Li (2014), we consider a case with ξt,T ∼ T 1−̃δ for δ̃ < 1/2. From Assumptions 2,

3 and 8, we can obtain ηt,T = Op(Th). Given ξt,T → ∞ with the rate T 1−̃δ , MT → ∞ with a slower rate than TG−2̃δGh−G

and ηt,T = Op(Th), Assumptions 6 and 6′ hold. Assumption 6 is required for the asymptotic optimality of all MMA and
JMA estimators; see more discussions in Wan et al. (2010) and Zhang et al. (2013).

Assumption 7 restricts the correlation strength among unobservable disturbances and can be removed when distur-
bances are not correlated. Under the set-up of linear DGP, Assumption 7 can be simplified to sup |tr(̃P(w)Ω̃)/̃R (w)|
w∈HT t,T

5
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0 a.s. as T → ∞, which is the same as condition (14) in Zhang et al. (2013). If all candidate models are linear regressions
ith constant parameters, it can be shown that supw∈HT

|tr(̃P(w)Ω̃)/̃Rt,T (w)| ≤ ξ−1
t,T γ max1≤m≤MT ζ (̃PmΩ̃), where γ is the

umber of regressors. It follows that condition (14) boils down to condition (22) in Zhang et al. (2013), which assumes
hat the growth rate of the number of regressors in the largest model must be slower than the rate at which ξt,T → ∞. In
his paper, under the linear regression setting with time-varying parameters in Section 3, we can establish the asymptotic
ptimality without Assumption 7.
In Assumption 8, the kernel is symmetric and bounded, and has a compact support [−1, 1]. It usually discounts the

bservations whose values are far away from the time point of interest. This implies that kmax ≡ maxs,t kst < ∞, which is
used in our proof. A commonly used kernel function, the Epanechnikov kernel k(u) = 0.75(1−u2)I(|u| ≤ 1), is employed in
his paper, where I(·) is the indicator function. Assumption 9 implies h → 0 and Th → ∞ as T → ∞, which is a standard
ondition for the bandwidth; see Chen and Hong (2012). Assumption 9 includes the optimal bandwidth h ∝ T−1/5, which
inimizes the integrated mean squared error (MSE) of a smoothed nonparametric estimator; see more discussions in Cai

2007) and Chen and Hong (2012).
We now state the main result of this section.

heorem 1. Suppose Assumptions 1–9 hold. Then for any given time point t, the TVJMA estimator satisfies the asymptotic
ptimality (OPT) property, i.e.,

Lt,T (ŵt )
infw∈HT Lt,T (w)

p
→ 1.

Theorem 1 shows that the local squared error loss obtained from the time-varying combination weight vector ŵt is
asymptotically equivalent to the infeasible optimal combination weight vector at any time point t . This implies that the
TVJMA estimator is asymptotically optimal in the class of time-varying model averaging estimators based on possibly
nonlinear models where the weight vector w is restricted to the set HT , which allows the combination weights to change
smoothly over time.

3. Time-varying parameter regression

In this section, we focus on a set of candidate models with a specific form, i.e., time-varying parameter linear
regressions. This is a special case of the general candidate models in Section 2. Consider the mth time-varying parameter
egression model

Yt = Xm
t βm

t + εm
t , t = 1, . . . , T , m = 1, . . . ,MT , (12)

here Xm
t is a 1 × qm vector of explanatory variables, βm

t is a qm × 1 possibly time-varying parameter vector, εm
t is an

nobservable disturbance, and qm is a positive integer that may be infinite. Note that we allow E(εm
t |Xm

t ) ̸= 0 in the set
f candidate models, which arises when the mth model is misspecified for E(Yt |Xm

t ).
As Hansen (2001) points out, ‘‘it may seem unlikely that a structural break could be immediate and might seem more

reasonable to allow a structural change to take a period of time to take effect’’. We are thus interested in the following
mth smooth time-varying parameter model:

Yt = Xm
t βm

(
t
T

)
+ εm

t , t = 1, . . . , T , (13)

here βm
: [0, 1] → Rqm is a qm-dimensional vector-valued function on [0, 1]. In the neighborhood of each time point,

he model is locally stationary but it is globally nonstationary.
Various smooth time-varying parameter models have been considered to capture the evolutionary behavior of

conomic time series. For example, a smooth transition regression (STR) model is proposed by Chan and Tong (1986)
nd further studied by Lin and Teräsvirta (1994), which allows both the intercept and the slope to change smoothly over
ime. If the parameter function is correctly specified, parametric models for time-varying parameters can be consistently
stimated with the root-T convergence rate. However, there is no economic theory to justify any concrete functional form
ssumption for these time-varying parameters, and the choice of a particular functional form for time-varying parameters
s somewhat arbitrary, probably leading to serious misspecification. Robinson (1989, 1991) considers a nonparametric
ime-varying parameter model and it is further studied by Blundell et al. (1998), Cai (2007) and Chen and Hong (2012).
ne advantage of the nonparametric approach is that little or restrictive prior information is required for the functional
orms of time-varying parameters, except for the regularity assumption that they evolve over time smoothly. In the
resent context, for the time-varying parameter βm(t/T ), we follow the spirit of the smoothed nonparametric estimation
n Robinson (1989).

Instead of specifying a parameterization for βm(t/T ), which may lead to serious bias, we assume that βm(·) is a
mooth time-varying function of the ratio t/T . This assumption is based upon a common scaling scheme in the literature
e.g., Robinson (1989)). To reduce the bias and variance of a smoothed nonparametric estimator for βm

t at any fixed time

oint t , it is necessary to balance the increase between the sample size T and the amount of local information at time

6
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oint t . One possible solution, as suggested in Robinson (1989) and Cai (2007), is to assume a smooth function β(·) on an
qually spaced grid over [0,1] and consider estimation of βm(u) at fixed points u ∈ [0, 1]. We note that the parameter βm

t
epends on the sample size T , so that new information accumulates at time point t when T increases. This ensures the
onsistency of parameter βm

t at any time point t (Cai, 2007; Chen and Hong, 2012).
For any s in a neighborhood of a fixed time point t , βm

s follows a Taylor expansion:

βm
s ≈ βm

t , s ∈ [t − Th, t + Th]. (14)

efine K−t = diag{k1t , k2t , . . . , k(t−1)t , 0, k(t+1)t , . . . , kTt} as the weights for Jackknife estimation and Xm as a T×qm matrix
with Xm

t as its tth row. Thus for every time point t , we obtain a local constant estimator β̂
m
t for βm

t , and so a local least
square estimator µ̂m

t and a Jackknife estimator µ̃m
t for the mth candidate model respectively:

β̂
m
t = (Xm′

KtXm)−1Xm′

KtY, (15)

µ̂m
t = Xm

t (X
m′

KtXm)−1Xm′

KtY (16)

and

µ̃m
t = Xm

t (X
m′

K−tXm)−1Xm′

K−tY. (17)

Based on the expressions of µ̂m
t and µ̃m

t , it is straightforward to obtain

Pm =

⎡⎢⎢⎣
Xm

1 (X
m′K1Xm)−1Xm′K1

Xm
2 (X

m′K2Xm)−1Xm′K2
· · ·

Xm
T (X

m′KTXm)−1Xm′KT

⎤⎥⎥⎦ (18)

and

P̃m =

⎡⎢⎢⎣
Xm

1 (X
m′K−1Xm)−1Xm′K−1

Xm
2 (X

m′K−2Xm)−1Xm′K−2
· · ·

Xm
T (X

m′K−TXm)−1Xm′K−T

⎤⎥⎥⎦ . (19)

Thus, P̃m = Dm(Pm − IT )+ IT , where Dm is a diagonal matrix with the tth diagonal element (1− hm
tt )

−1, and hm
tt is the (t, t)

element in Pm.
To establish the asymptotic optimality property of µ̂(ŵ), we impose the following regularity conditions:

Assumption 10. For any given time point t , supw∈HT
tr(P′(w)P(w))ξ−1

t,T = op(1).

ssumption 11. For any given time point t , the local average of µ2
t is bounded, i.e., 1

Thµ
′Ktµ = O(1) a.s. as T → ∞.

Assumption 12. For any given time point t , h∗
= O(T−1h−1) and h−1ξ−1

t,T → 0 a.s. as T → ∞, where ξt,T is defined in
(10) and h∗

= max1≤m≤MT max1≤t≤T hm
tt .

As pointed out by a referee, Assumption 10 implies that the bias part dominates the risk since tr(P′(w)P(w)) is related
o the variance part of the risk. Typically, the risk is minimized by equating its bias part and its variance part. One way to
ake Assumption 10 hold is to restrict the set for weights. Another way is to restrict the number of candidate models or

he number of variables in candidate models. Assumption 10 is the price for allowing a dependent and non-normal random
rror εt . When Assumption 1 (normal errors) is imposed or it is assumed that ε is a vector of independent variables as
n the existing literature on JMA (e.g., Hansen and Racine (2012) and Ando and Li (2014)), Assumption 10 is no longer
eeded. Since Theorem 1 has considered normal errors, Theorem 2′ will consider the situations where ε is a vector of
ndependent variables without using Assumption 10.

Given Kt , we have 1
Thµ

′Ktµ =
1
Th (µ1, . . . , µT )′Kt (µ1, . . . , µT ) =

1
Th

∑T
s=1 kstµ

2
s

a.s.
→ Eµ2

t , as T → ∞. Thus,
Assumption 11 implies that the local average of µ2

t is bounded. This is similar to condition (11) in Wan et al. (2010)
and condition (23) in Zhang et al. (2013), which concern the average of µ2

t over the whole sample period. Finally, the
first part of Assumption 12 is rather mild, which corresponds to condition (C.2) in Zhang (2015) and equation (5.2)
in Andrews (1991). The second part of Assumption 12 excludes extremely unbalanced designs. This condition is reasonable
and typical for the application of cross-validation; see Li (1987), Hansen and Racine (2012) and Zhang et al. (2013) for
more discussions.

Theorem 2. Suppose Assumptions 2, 3, 6′ and 8–12 hold. Then for any given time point t, the TVJMA estimator satisfies the
asymptotic optimality (OPT) property.
7
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Theorem 2 shows that the TVJMA estimator is asymptotically optimal in the class of time-varying weighted average
estimators.

Next, we establish the asymptotic optimality (OPT) result without Assumption 10. Theorem 2′ addresses the asymptotic
ptimality of the TVJMA estimator.

heorem 2′. Suppose ε is a vector of independent variables and Assumptions 2, 3, 6′, 8–9 and 11–12 hold. Then for any given
time point t, the TVJMA estimator satisfies the asymptotic optimality (OPT) property.

Finally, we consider asymptotic properties of the time-varying parameter averaging estimator. Suppose the DGP is
a linear time-varying parameter regression, i.e., Yt = Xtβt + εt , where Xt is a 1 × q vector of explanatory variables,
βt ≡ β(t/T ) is a q×1 smooth time-varying parameter vector, and β : [0, 1] → Rq is an unknown smooth function except
for a finite number of points on [0, 1]. Here, q is a fixed integer, and εt is an unobservable disturbance with E(εt |Xt ) = 0
almost surely. A model including only all regressors with nonzero parameters is called a true model; see Zhang (2015).
Any candidate model omitting regressors with nonzero parameters is called an under-fitted model; see more discussions
in Zhang (2015), Zhang and Liu (2019). It is not required that the true model be one of the candidate models. However,
at least one candidate model should not be under-fitted. This implies that one candidate model must include all these
regressors with nonzero parameters and may have some redundant regressors as well. From (15), the time-varying model
averaging estimator of parameter βt is β̂t (w) =

∑MT
m=1 wmΠ′

mβ̂
m
t , where Πm = (Iqm , 0qm×(q−qm)) (i.e., a column permutation

thereof) and the maximum number of columns of Xm in all candidate models (i.e., max1≤m≤MT qm) is bounded.
Next, we impose the following regularity conditions:

Assumption 13. For each j = 1, . . . , q, the jth element of β(·) is continuously differentiable over the unit interval [0, 1].

Assumption 14. For any given time point t , Ψt,T ≡ T−1h−1 ∑T
s=1 kstX

′
sXs

p
→ Ψ as T → ∞, where Ψ is a q×q symmetric,

bounded and positive definite matrix, and T−1/2h−1/2 ∑T
s=1 kst Xtεt = Op(1).

Assumption 13 places a smoothness condition on parameters, which is commonly imposed in the literature; see Robin-
son (1989, 1991). Assumption 14 can be obtained from Proposition A.1 in Chen and Hong (2012) and Lemma 3 in Cai
(2007). The following theorem shows that the TVJMA parameter estimator β̂t (ŵt ) is

√
Th-consistent under these regularity

ssumptions.

heorem 3. Suppose Assumptions 3, 8 and 12–14 hold, and h = cT−λ for 1
5 ≤ λ < 1, where 0 < c < ∞. Then for any given

time point t in the interior region t ∈ [Th, T − Th],
√
Th(̂βt (ŵt ) − βt ) = Op(1) as T → ∞.

A similar result holds for the boundary regions [1, Th] ∪ [T − Th, T ] if we assume h = cT−λ for 1
3 ≤ λ < 1, where

0 < c < ∞. This happens because the local constant estimator suffers from the well-known boundary effect problem in
smoothed nonparametric estimation. As shown in Cai (2007), the convergence rate of the asymptotic bias with the local
constant estimator is h2 in the interior region, but only h in the boundary regions.

4. Asymptotic optimality of TVJMA with lagged dependent variables

In this section, we develop an asymptotic optimality theory for the TVJMA estimator based on time-varying parameter
regression models that include lagged dependent variables as regressors. Dynamic regressions are widely used in
macroeconomic forecasts. It is highly desirable to extend the TVJMA estimator from static regressions to dynamic
regressions. Consider the following DGP

Yt =

∞∑
j=1

βjtYt−j + εt , t = 1, . . . , T , (20)

here εt is i.i.d. with mean zero and variance σ 2. This is a special case of the DGP in Section 2.
More generally, exogenous regressors can be added to the candidate models with finitely many lagged dependent

variables. This yields an augmented regression model

Yt =

r1∑
j=1

βjtYt−j +

r2∑
j=1

β(r1+j)tX∗

tj + ε
f
t , t = 1, . . . , T , (21)

where X∗

tj is an exogenous variable, εf
t is the innovation, r1 is the maximal lag order, and r2 is the number of exogenous

regressors. Let r1 be allowed to increase and r2 be fixed when T increases. Denote Y = (Y1, . . . , YT )′, YLt = (Yt−1, . . . , Yt−r1 ),
and let YL = (Y′

L1, . . . ,Y
′

LT )
′ be a T × r1 matrix containing T observations of r1 lagged dependent regressors, X∗

=

(X∗
′

1 , . . . ,X∗
′

T )′ with X∗
t = (X∗

t1, . . . , X
∗
tr2 ) be a T×r2 matrix containing observations of r2 exogenous regressors, X = (YL,X∗)

be a T × γ matrix with rank γ = r + r , and εf
= (εf

, . . . , ε
f )′. The regressor matrix Xm of the mth candidate model
1 2 1 T

8
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s formed by combining the columns of X. Define P in a similar way to Pm with Xm replaced by X. Note that Xm is the
egressor matrix in the mth candidate model and qm is the number of regressors in Xm. Regressors are allowed to be locally
tationary (Dahlhaus, 1996, 1997). Thus, our framework covers AR as well as ARX models with time-varying parameters.
or each candidate model, time-varying parameters are estimated by a local constant method, which is the same as (15)
n Section 3.

We impose the following regularity conditions:

ssumption 15. {Yt} is a locally stationary process, {X∗
t } is a strictly stationary process, and both {Yt} and {X∗

t } are β-
ixing processes with mixing coefficients {β(j)} satisfying

∑
∞

j=1 j
2β(j)δ/(1+δ) < C < ∞, supt E∥Yt∥

4 < C and E∥X∗
t ∥

4 < ∞

for some constant 0 < δ < 1 and C > 0.

Assumption 16. Tq−1
m hm

tt = Op(1), t = 1, . . . , T , m = 1, . . . ,MT , and for any given time point t , T−1h−1µ′Ktµ = Op(1),
γ ξ ∗−1

t,T = op(1), and γµ′µξ ∗−2
t,T = op(1), where ξ ∗

t,T = infw∈HT Vt,T (w) and Vt,T (w) = µ′A′(w)KtA(w)µ+σ 2tr(P′(w)KtP(w)).

Assumption 17. For any given time point t , ζ (T−1h−1X∗
′KtX∗) = Op(1), X∗

′Ktε/
√
Th

d
→ N(0,∆), and ζ ((T−1X∗

′MtX∗)−1)
= Op(1), where ∆ is a symmetric, bounded and positive definite matrix, and Mt ≡ Kt − KtYL(Y′

LKtYL)−1Y′

L.

Assumption 18. The innovation process {εt} is an i.i.d. sequence with mean 0 and variance σ 2, and satisfies that with
some positive constants α1, α2 and α3,

|Ft (d1) − Ft (d2)| ≤ α1|d1 − d2|α2 ,

for all t when |d1 − d2| ≤ α3, where F (·) is the distribution function of εt .

Assumption 19. r6+α4
1 = O(T ) for some α4 > 0 and supt Eε4

t < ∞.

In Assumption 15, local stationarity is weaker than strict stationarity. Intuitively, local stationarity implies that when
the standardized time t/T is in a neighborhood of any fixed point τ ∈ [0, 1], the behavior of time series {Yt} can
be approximated up to a certain high order by a strictly stationary process {Yt (τ )}, and it holds that ∥Yt − Yt (τ )∥ =

Op (h + 1/T ), where h is a bandwidth such that h → 0 as T → ∞; see Dahlhaus (1996, 1997) and Vogt (2012) for
details. Thus, the autocovariance function of {Yt} for all times t , with t/T in the neighborhood of τ , can be approximated
arbitrarily well by that of the strictly stationary time series {Yt (τ )}.

Assumption 16 is analogous to Assumptions 10–12, which are used for time-varying parameter regression models
when Xt is assumed to be strictly stationary. The first part of Assumption 16 is a counterpart of Assumption 12 and
excludes extremely unbalanced designs. The second part of Assumption 16 concerns the local average behavior of µ2

t for
any given time point t . Like in Shao (1997) and Wan et al. (2010), if {Yt ,Xt} is a strictly stationary process, this is the
average behavior of µ2

t over the whole sample period. By µ′µ/T = Op(1) and Assumption 3, a sufficient condition of the
fourth part of Assumption 16 is γ Tξ ∗−2

t,T = op(1). By comparing the expression of Vt,T (w) with the risk Rt,T (w) defined
in (7), we can view Vt,T (w) as a kind of risk as well, which may be called as a pseudo-risk. Hence, the third and fourth
parts of Assumption 16 impose a restriction on the relationship among the number of regressors γ , the sample size T ,
and the infimum pseudo-risk ξ ∗

t,T . Similar assumptions are used in Zhang et al. (2013), Liu and Okui (2013) and Ando and
Li (2014).

When {X∗
′

t εt} is a stationary ergodic martingale difference sequence with finite fourth moments and T−1X∗
′X∗

converges to a symmetric positive definite matrix in probability, the first part of Assumption 17 holds. The second part of
Assumption 17 can be ensured by more primitive conditions; see more discussions in equation (A.7) in Cai (2007). Here,
X∗

= (X∗
′

1 , . . . ,X∗
′

T )′, with X∗
t = (X∗

t1, . . . , X
∗
tr2 ), is a T × r2 matrix containing observations of r2 exogenous regressors. In

this paper, we assume that r2 is fixed when T increases. It is conceivable that we could allow r2 to increase with T at
the cost of more tedious proof and other assumptions. Assumption 18 is a mild condition which is the same as condition
(K.2) of Ing and Wei (2003). It holds for any distribution with a bounded probability density. This assumption is also
used to prove Lemma 1 in the Supplementary Material. Assumption 19 is a reiteration of assumptions in Lemma 4 in
the Supplementary Material. It can be replaced by the conditions of r2+α4

1 = O(T ) and sup−∞<t<∞ E|εt |
S < ∞ for all

S = 1, 2, . . ..
Next, we impose conditions on the strictly stationary process {Yt (τ )} indexed by τ ∈ [0, 1].

Assumption 20. For any τ ∈ [0, 1] and q > 0, {Yt (τ )} is strictly stationary with E|Yt (τ )|q < ∞ and Yt (τ ) +∑
∞

j=1 ajYt−j(τ ) = εt , t = . . . , −1, 0, 1, . . . , where the roots of A(z) = 1 +
∑

∞

j=1 ajz
j

= 0 lie outside the unit circle
|z| = 1, and {εt} is a sequence of independent random variables with mean 0 and variance σ 2.

Assumption 21. For any τ ∈ [0, 1], {Yt (τ )} is a stationary β−mixing process with mixing coefficients {β(j)} satisfying∑
∞ 2 δ/(1+δ)

j=1 j β(j) < C for some 0 < δ < 1 and 0 < c < ∞.

9
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Assumption 20 is a standard condition for ARMA models; see more discussions in Ing and Wei (2003). The mixing
condition in Assumption 21 imposes a restriction on temporal dependence in {Yt (τ )}, which is commonly used in the
literature (e.g., Chen and Hong (2012)).

Theorem 4. Suppose Assumptions 3, 8, 9 and 15–21 hold. Then for any given time point t, the TVJMA estimator in this section
satisfies the asymptotic optimality (OPT) property.

As a main contribution, Theorem 4 extends Theorem 2 for the asymptotic optimality property of the TVJMA estimator
from static regression models with constant parameters to the dynamic regression models with time-varying parameters
and locally stationary regressors.

5. Monte Carlo Simulation

To examine the finite sample performance of the proposed TVJMA estimator, we consider the following DGPs:
DGP 1 (Smooth Structural Changes):

Yt = µt + εt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where τ = t/T , F (τ ) = τ 3, Xt1 = 1, and observations on all other regressors {Xtj, j ≥ 2} are generated from i.i.d.N(0, 1)
sequences. Following Hansen and Racine (2012), θj = c

√
2αj−α−1/2, with c > 0 and α = 1.5, and the coefficient c is

selected to control the population coefficient of determination R2
= c2/(1 + c2) to vary on a grid from 0.1 to 0.9.

To examine robustness of the TVJMA estimator, we consider three cases for {εt}: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii)
εt = et,1 + et,2, et,1 ∼ N(0, X2

t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5. This error process is the same as that
of Zhang et al. (2013); Case (iii) εt =

√
htut , ht = 0.2 + 0.5X2

t2, ut ∼ i.i.d.N(0, 1), which follows the error structure in
Chen and Hong (2012). Note that var(εt |Xt2) ̸= σ 2 under Case (iii).

We compare (1) the TVJMA estimator with a variety of popular model averaging estimators, namely (2) the nonpara-
metric version of bias-corrected AIC in Cai and Tiwari (2000) (AICc); (3) a smoothed AICc (SAICc); (4) the JMA of Hansen
and Racine (2012); (5) the MMA of Hansen (2007); (6) a smoothed Akaike information criterion (SAIC); and (7) a smoothed
Bayesian information criterion (SBIC). The AICc for order selection is AICc = ln RSS+(T + tr(S∗))/(T − (tr(S∗) + 2)), where
RSS =

∑T
t=1(Yt − Ŷt )2 is based on a local constant regression and tr(S∗) is the number of parameters in the model, which

penalizes extra parameters for a larger value of tr(S∗). For the definition of S∗, see more discussions in Cai and Tiwari
(2000). The SAICc method is the model averaging estimator with the weight wm

= exp(− 1
2AICcm)/

∑MT
m=1 exp(−

1
2AICcm),

here AICcm is obtained from Cai and Tiwari (2000) for the mth candidate model. The other four model averaging
stimators are based on linear regressions with constant combination weights, including JMA, MMA, SAIC and SBIC.
AIC, proposed by Buckland et al. (1997), is the least squares model averaging estimator with the weight wm

=

exp(− 1
2AICm)/

∑MT
m=1 exp(−

1
2AICm), where AICm = T ln σ̂ 2

m+2m. SBIC is a simplified form of the Bayesian model averaging
with the weight wm

= exp(− 1
2BICm) /

∑MT
m=1 exp(−

1
2BICm), where BICm = T ln σ̂ 2

m + m ln T .
The number of candidate models is determined by the rule in Hansen and Racine (2012), i.e., MT = [3T 1/3

], the nearest
nteger of 3T 1/3. This yields MT = 11, 14, 15 and 18 for T = 50, 75, 100 and 200, respectively. The candidate models
re Yt =

∑m
j=1 βm

j (τ )Xtj + εm
t , t = 1, . . . , T , m = 1, . . . ,MT . For our TVJMA estimator, parameters in these candidate

odels are estimated by the local constant method described in Section 3. For the JMA, MMA, SAIC and SBIC methods,
he parameters {βm

j (τ )} in candidate models are assumed to be constant (i.e., they do not depend on τ = t/T ), and as a
esult, the candidate models are simplified to Yt =

∑m
j=1 βm

j Xtj + εm
t , t = 1, . . . , T , m = 1, . . . ,MT .

For the TVJMA and AICc methods, we use the Epanechnikov kernel in smoothed nonparametric estimation; this kernel
as been shown to be the optimal kernel for density estimation (Epanechnikov, 1969) and robust regression (Lehmann
nd Casella, 2006), although our experience suggests that the choice of k(·) has little impact on the performance of our
VJMA estimator. For space, we report results based on a rule-of-thumb bandwidth h = 2.34T−1/5, which attains the
ptimal rate for MSE. We generate N = 1000 data sets from the random sample {Yt , Xtj, j ≥ 2} of size T , and use the

following MSE criterion to assess the accuracy of forecasts:

1
N

N∑
n=1

∥µ̂(w)(n) − µ(n)
∥
2, (22)

where µ̂(w)(n) and µ(n) denote the forecast value and the true value of the conditional expectation of Y in the nth
replication, where n = 1, . . ., N . To simplify comparisons, the risk (i.e., expected squared error loss) of all model averaging
estimators are normalized by the MSE of the infeasible optimal least squares model averaging estimator, which is the same
as in Hansen and Racine (2012). For space, we report the Monte Carlo results in graphical forms.

Figs. 1–3 report the results of simulations under DGP 1. Some MSE plots are not shown in these figures, because these
methods perform so poorly that their results are beyond the range of the y-axis. In most cases, the TVJMA estimator

2 is relatively large. Under both
delivers the most precise forecasts among all estimators considered, especially when R

10
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Fig. 1. Finite-sample performance under DGP 1 with Case (i).
Notes: (1) DGP 1 (Smooth Structural Changes):

Yt = µt + εt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where τ = t/T , F (τ ) = τ 3 , Xt1 = 1, and all other regressors {Xtj, j ≥ 2} are i.i.d.N(0, 1) sequences; θj = c
√
2αj−α−1/2 , with c > 0 and α = 1.5.

2) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
3) Three cases for {εt }: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2 , et,1 ∼ N(0, X2

t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5; Case
iii) εt =

√
htut , ht = 0.2 + 0.5X2

t2 , ut ∼ i.i.d.N(0, 1).
4) In each panel, the y-axis and the x-axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

onditionally heteroscedastic errors and autocorrelated errors, our method displays the best performance in terms of the
isk, as is expected. Also, when the sample size T is large enough, the AICc and SAICc estimators are sometimes marginally
imilar to the TVJMA estimator in the cases of large R2. This happens because the parameters in DGP 1 are changing over
ime and the candidate models are time-varying parameter models as well. In most cases, the TVJMA estimator is preferred
o any of the four estimators based on linear least squares, although occasionally small to moderate reductions in MSE
an be achieved for the MMA and JMA estimators with small R2 and small T ; see T = 50 for example. We note that in
ome cases the TVJMA performances are a bit sensitive to bandwidth selection. The selection of an optimal bandwidth to
stimate the time-varying combination weights is an important issue for future study. A possible solution is to consider
odel averaging bandwidths; see Henderson and Parmeter (2016) and Zhu et al. (2017).
Next, we consider a special case of time-varying parameter dynamic models that contain lagged dependent variables

s regressors:
GP 2 (Dynamic Regression with Smooth Structural Changes):

Yt =

∞∑
j=1

θjF (τ )Yt−j + ϵt ,

here θj = 1/
√
2αj−α−1/2, F (τ ) = τ , ϵt = Rεt/c , c =

∑
∞

j=1 θ2
j , εt ∼ i.i.d.N(0, 1) and α = 1.5. We allow R2 to vary on a

grid from 0.1 to 0.9.
Furthermore, to investigate the finite sample performance of the TVJMA estimator under DGPs with various structural

changes, we consider following three DGPs with Case (ii) for {εt}. For DGPs 3–5 below, θj = c
√
2αj−α−1/2, with various

alues of c > 0 and α = 1.5. These parameter values are the same as those in DGP 1.
11
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Fig. 2. Finite-sample performance under DGP 1 with Case (ii).
Notes: (1) DGP 1 (Smooth Structural Changes):

Yt = µt + εt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where τ = t/T , F (τ ) = τ 3 , Xt1 = 1, and all other regressors {Xtj, j ≥ 2} are i.i.d.N(0, 1) sequences; θj = c
√
2αj−α−1/2 , with c > 0 and α = 1.5.

2) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
3) Three cases for {εt }: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2 , et,1 ∼ N(0, X2

t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5; Case
iii) εt =

√
htut , ht = 0.2 + 0.5X2

t2 , ut ∼ i.i.d.N(0, 1).
4) In each panel, the y axis and the x axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

GP 3 (Single Structural Break):

Yt =

∞∑
j=1

θjF (τ )Xtj + εt ,

here F (τ ) = 0.5I(τ ≤ 0.3) + I(τ > 0.3) and τ = t/T .
DGP 4 (Smooth Transition Regression):

Yt =

∞∑
j=1

θjF (τ )Xtj + εt ,

where F (τ ) = 1.5 − 1.5 exp(−3(τ − 0.3)2) and τ = t/T .
DGP 5 (Smooth Structural Changes with Periodicity):

Yt =

∞∑
j=1

θjF (τ )Xtj + εt ,

where F (τ ) = sin(πτ 2) and τ = t/T .
For each of DGPs 2–5, we generate N data sets of the random sample {Yt , Xtj, j ≥ 2} for each sample size T =

50, 75, 100 and 200, where Xt1 = 1 and observations on all other regressors {Xtj, j ≥ 2} are generated from i.i.d.N(0, 1)
sequences. The candidate models and their parameter estimation methods under DGPs 2–5 are the same as those under
12
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Fig. 3. Finite-sample performance under DGP 1 with Case (iii).
Notes: (1) DGP 1 (Smooth Structural Changes):

Yt = µt + εt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where τ = t/T , F (τ ) = τ 3 , Xt1 = 1, and all other regressors {Xtj, j ≥ 2} are i.i.d.N(0, 1) sequences; θj = c
√
2αj−α−1/2 , with c > 0 and α = 1.5.

2) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
3) Three cases for {εt }: Case (i) εt ∼ i.i.d.N(0, 1); Case (ii) εt = et,1 + et,2 , et,1 ∼ N(0, X2

t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5; Case
iii) εt =

√
htut , ht = 0.2 + 0.5X2

t2 , ut ∼ i.i.d.N(0, 1).
4) In each panel, the y-axis and the x-axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

GP 1. Specifically, DGP 2 is a dynamic linear regression model with time-varying parameters, which is based on Section 4.
GPs 3–5 are based on the same set-up as that of DGP 1, except that DGPs 3–5 focus on various structural changes with
ase (ii) for {εt}. The results are reported in Figs. 4–7.
In Fig. 4, we consider the dynamic regression model with smooth time-varying parameters under DGP 2. When the

ample size T is large enough, the TVJMA estimator yields a smaller risk than all other four estimators. This is even more
lear for small R2.
In Fig. 5, we consider the deterministic single break under DGP 3, namely, a single break with a given breakpoint and

ize. The TVJMA estimator, not surprisingly, outperforms all other estimators when the sample size T is larger than 50 for
ll R2, while AICc and SAICc yield smaller risks than SAIC and SBIC respectively; see, for example, the case with T = 200

and R2 > 0.4.
In Fig. 6, we consider the smooth transition regression with nonmonotonic smooth structural changes under DGP 4.

This is considered in Lin and Teräsvirta (1994), which is further studied by Cai (2007) and Chen (2015). The smooth
transition function is a second-order logistic function. The TVJMA estimator dominates all other estimators. We note that
in most cases, the AICc estimator is similar to the SAICc estimator for large T and large R2, while both of them have a
higher risk than the TVJMA estimator. SAIC achieves a lower risk for a smaller R2 and SBIC is the least accurate estimator
or large R2.

In Fig. 7, we consider DGP 5, which has periodic structural changes, covering long or short period cycles; see Twrdy and
atista (2016) for an example of container throughput forecasting. The TVJMA estimator outperforms all other estimators.
he SAICc estimator is the worst performing estimator when R2 < 0.3, while its performance improves as R2 increases

and yields the second smallest risk when R2
≥ 0.7.
13
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Fig. 4. Finite-sample performance under DGP 2.
Notes: (1) DGP 2 (Dynamic Regression with Smooth Structural Changes):

Yt = µt + ϵt =

∞∑
j=1

θjF (τ )Yt−j + ϵt , t = 1, . . . , T ,

where θj = 1/
√
2αj−α−1/2 , c =

∑
θ2
j , F (τ ) = τ , ϵt = Rεt/c with R2 varying on a grid from 0.1 to 0.9, εt ∼ i.i.d.N(0, 1) and α = 1.5.

2) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
3) In each panel, the y-axis and the x-axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

To sum up, the TVJMA estimator achieves the lowest risk among all the model averaging estimators under various
GPs. When the sample size T increases, even for small R2, the TVJMA appears to be the best estimator. When R2 is
arge, the SAICc estimator achieves a lower risk than the AICc model selection, which is consistent with the findings in
he earlier literature. However, both of them perform worse than the TVJMA estimator for large T and all R2. We also
onsider a benchmark nonparametric local constant estimator without any model selection. It is shown that the local
onstant model without model selection performs quite poorly relative to other methods in most cases. Furthermore,
ollowing a referee’s suggestion, we also compare the TVJMA estimator with a time-varying leave-k-out cross-validation
odel averaging (LkoMA) method (e.g., Gao et al. (2016)). We find that when R2 is small, the TVJMA estimator outperforms

he time-varying LkoMA estimator under different DGPs, especially DGP 2. Nevertheless, when R2 is large, the time-
arying LkoMA estimator achieves a slightly lower risk than the TVJMA estimator except for DGP 2. Developing optimal
ime-varying leave-k-out cross-validation weight selection methods and extending the proof technique for the asymptotic
ptimality property are important topics for future research.

. Empirical application

It is widely accepted that stock return predictability is an important yet controversial issue in empirical finance.
he conventional wisdom, studied by Campbell (1990) and Cochrane (1996), is that aggregate dividend yields strongly
orecast excess stock return, even at longer horizons. Other commonly used predictive variables are financial ratios, such
s dividend–price ratio, earnings–price ratio, and book-to-market ratio (Rozeff, 1984; Fama and French, 1988; Campbell
nd Shiller, 1988; Lewellen, 2004), as well as corporate payout and financing activity (Lamont, 1998; Baker and Wurgler,
000). However, Wang (2003) and Welch and Goyal (2008) show that predictive regressions of excess stock returns
erform poorly in out-of-sample forecasts of the U.S. equity premium while historical average returns generate superior
orecasts, which causes vigorous debates in the literature (Campbell and Thompson, 2008). It is possible that the presence
14
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Fig. 5. Finite-sample performance under DGP 3 with Case (ii).
Notes: (1) DGP 3 (Single Structural Break):

Yt = µt + εt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where F (τ ) = 0.5I(τ ≤ 0.3) + I(τ > 0.3), τ = t/T , Xt1 = 1, and all other regressors {Xtj, j ≥ 2} are i.i.d.N(0, 1) sequences; θj = c
√
2αj−α−1/2 , with

c > 0 and α = 1.5.
(2) In DGP 3, {εt } follows Case (ii) εt = et,1 + et,2 , et,1 ∼ N(0, X2

t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5.
3) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
4) In each panel, the y-axis and the x-axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

f structural changes leads to a changing predictive relationship. Indeed, Pesaran and Timmermann (2007) find that the
ize of parameter variations between the break points in models is considerably large, and the parameter estimates
f dividend yields take even opposite signs before and after 1991. Chen and Hong (2012) find strong evidence against
tability in univariate and multivariate predictor regressions for both the postwar and post-oil-shock sample periods.
urthermore, Rapach and Zhou (2013) point out that model instability and uncertainty seriously impair the forecasting
bility of predictive regression models.
The sensitivity of empirical results to model parameter estimation highlights the need of time-varying combination

eights in model averaging. In this section, we compare the performance of stock return forecasts using our TVJMA
ethod and existing methods. The key distinction between these methods lies in that we allow model combination
eights to change over time in combining time-varying parameter predictive models.
We employ Campbell and Thompson’s (2008) popular data set, which is used in Chen and Hong (2012), Jin et al. (2014)

nd Lu and Su (2015), among many others. We consider the following predictive regression model:

Yt+1 = αt + Xtβt + εt+1,

here Yt+1 = ln[(Pt+1 + Dt+1)/Pt ] − rt , Pt is the S&P 500 price index, Dt is the dividend paid on the S&P 500 price index,
t is the 3-month treasury bill rates, Xt is a set of predictive variables, i.e., Xt = (Xt1, . . . , Xtp), and p is the number of
redictive variables. Quarterly variables from Welch and Goyal (2008) are available for 1927Q1-2005Q4, since quarterly
tock returns before 1927 are constructed by interpolation of lower-frequency data, which may be not reliable.
Following Welch and Goyal (2008) and Rapach et al. (2010), we consider 14 financial and economic variables, sorted by

elevance to Y: default yield spread (X1), treasury bill rate (X2), net equity expansion (X3), term spread (X4), log dividend
price ratio (X ), log earnings price ratio (X ), long-term yield (X ), book-to-market ratio (X ), inflation (X ), log dividend
5 6 7 8 9
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Fig. 6. Finite-sample performance under DGP 4 with Case (ii).
Notes: (1) DGP 4 (Smooth transition regression):

Yt = µt + εt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where F (τ ) = 1.5− 1.5 exp(−3(τ − 0.3)2), τ = t/T , Xt1 = 1 all other regressors {Xtj, j ≥ 2} are i.i.d.N(0, 1) sequences; θj = c
√
2αj−α−1/2 , with c > 0

nd α = 1.5.
2) In DGP 4, {εt } follows Case (ii) εt = et,1 + et,2 , et,1 ∼ N(0, X2

t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5.
3) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
4) In each panel, the y-axis and the x-axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

ield (X10), log dividend payout ratio (X11), stock variance (X12), long-term return (X13), default return spread (X14). For
implicity, we consider the following 14 nested candidate models: {1, X1}, {1, X1, X2}, . . . , {1, X1, . . . , X14}. All candidate
models are time-varying parameter linear regression models, and parameters are estimated by the local constant method
in (15) in Section 3.

The estimation sample starts from 1947Q1 and our estimation is based on subsamples with size T1 = 80, 92, 104,
116, 128, 140, 152, 164, 176, 188, 200, 212 and 224, respectively. The remaining observations are used for out-of-sample
recursive forecast accuracy assessment. For example, we use the model averaging weights for the time period T1, ŵT1 ,
to construct a forecast of YT1+1. After that we input a new observation and recalculate new model averaging weights
for the time period T1 + 1 and then obtain a forecast of YT1+2. Thus, the out-of-sample forecast periods begins from
1967Q1, 1970Q1, 1973Q1, 1976Q1, 1979Q1, 1982Q1, 1985Q1, 1988Q1, 1991Q1, 1994Q1, 1997Q1, 2000Q1 and 2003Q1,
respectively, and all end at 2005Q4. The postwar sample, covering 1947Q1–2005Q4, and the post-oil-shock subsample,
covering 1976Q1–2005Q4, are commonly used in the literature, e.g., Welch and Goyal (2008), Chen and Hong (2012), etc.
The bandwidth employed in TVJMA, AICc and smoothed AICc is set to be 2.34T−0.2

1 . Following Ullah et al. (2017), we use
the out-of-sample R̃2 measure:

R̃2
= 1 −

∑T−1
t=T1

(Yt+1 − Ŷt+1)2∑T−1
t=T1

(Yt+1 − Y )2
,

where Ŷt+1 is the prediction of Yt+1 based on a given forecast method, and Y is the historical average of Yt over the
observations. This measure represents the relative difference in squared error predictive risks. The negative (positive)
1
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Fig. 7. Finite-sample performance under DGP 5 with Case (ii).
Notes: (1) DGP 5 (Smooth Structural Changes with Periodicity):

Yt =

∞∑
j=1

θjF (τ )Xtj + εt , t = 1, . . . , T ,

where F (τ ) = sin(πτ 2), τ = t/T , Xt1 = 1, and all other regressors {Xtj, j ≥ 2} are i.i.d.N(0, 1) sequences; θj = c
√
2αj−α−1/2 , with c > 0 and α = 1.5.

2) In DGP 5, {εt } follows Case (ii) εt = et,1 + et,2 , et,1 ∼ N(0, X2
t2), et,2 = φet−1,2 + ut , ut ∼ i.i.d.N(0, 1) and φ = 0.5.

3) In each figure, the sample sizes are shown in four panels. The sample size varies from T = 50, 75, 100 and 200.
4) In each panel, the y-axis and the x-axis display the MSE and the population R2 , respectively. Seven methods to estimate parameters are shown
n these figures, including TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators.

alue of R̃2 suggests that Ŷ yields a larger (smaller) sum of squared one-period forecast errors than the historical average
ethod.
Another measure we use is the mean square predictive error (MSPE), which is widely used in the literature (e.g., Sun

t al. (2018)).

MSPE =
1

T − T1

T−1∑
t=T1

(Yt+1 − Ŷt+1)2. (23)

Tables 1 and 2 compare R̃2 and MSPE between the TVJMA estimator and other estimators. We find that in most
cases, the TVJMA estimator is almost always the best estimator among all methods considered. Our finding supports
the argument of Chen and Hong (2012) that instability exists in univariate predictor models for stock returns and smooth
structural change is a possibility, which explains why the TVJMA estimator is more appropriate than JMA and MMA. We
note that the JMA estimator yields the second smallest forecast errors in most cases, with the MMA estimator being a
close fourth. In most cases, the AICc estimator yields the worst performance. It is possible that the evidence of instability
is a bit weak in quarterly data, which is consistent with the findings in Chen and Hong (2012).

7. Conclusion

Although structural changes have received considerable attention in time series econometrics for a long time, no
work has attempted to consider time-varying model averaging for both linear and nonlinear candidate models, including
those with time-varying parameters. We propose a frequentist method for model averaging with time-varying jackknife
17
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able 1
ut-of-sample R̃2 of different methods.
Estimation Prediction TVJMA AICc SAICc JMA MMA SAIC SBIC

h = 2.34T−0.2
1

1947Q1(T1 = 80) 1967Q1 0.1771◦ 0.0335 0.1018 0.1761◦◦ 0.1657 0.1111 0.1024
1947Q1(T1 = 92) 1970Q1 0.1242◦

−0.0312 0.0549 0.1228◦◦ 0.1124 0.0512 0.0530
1947Q1(T1 = 104) 1973Q1 0.1212◦

−0.0443 0.0770 0.1107◦◦ 0.0977 0.0358 0.0367
1947Q1(T1 = 116) 1976Q1 0.0372◦

−0.1574 −0.0397 0.0025◦◦
−0.0165 −0.1128 −0.0708

1947Q1(T1 = 128) 1979Q1 0.0357◦
−0.1727 −0.0291 −0.0188◦◦

−0.0381 −0.1393 −0.1007
1947Q1(T1 = 140) 1982Q1 −0.1057◦

−0.3579 −0.1375◦◦
−0.1830 −0.2064 −0.3210 −0.2220

1947Q1(T1 = 152) 1985Q1 −0.1833◦
−0.4899 −0.2359◦◦

−0.2586 −0.2829 −0.4043 −0.2567
1947Q1(T1 = 164) 1988Q1 −0.2630◦◦

−0.6292 −0.2522 ◦
−0.3773 −0.4091 −0.5724 −0.3658

1947Q1(T1 = 176) 1991Q1 −0.2238◦◦
−0.4310 −0.2242 −0.2194◦

−0.2347 −0.2945 −0.3095
1947Q1(T1 = 188) 1994Q1 −0.2181 −0.4080 −0.1579◦

−0.2207 −0.2161◦◦
−0.2570 −0.3249

1947Q1(T1 = 200) 1997Q1 −0.0423◦◦
−0.1979 −0.1005 −0.0365◦

−0.0538 −0.0735 −0.0990
1947Q1(T1 = 212) 2000Q1 0.0125◦◦

−0.1434 −0.1316 0.0694◦
−0.0207 −0.0383 −0.0330

1947Q1(T1 = 224) 2003Q1 0.1859 −0.0714 −0.0560 0.1822 0.2909◦◦ 0.3013◦
−0.0543

Notes: (1) The estimation sample begins from 1947Q1, with T1 observations. The prediction period begins from the quarter indicated in the second
column.
(2) Seven methods are shown in Table 1: TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators. The larger the criteria,
the better the method.
(3) The bandwidth used here is 2.34T−0.2

1 , the same as that in the simulation study.
(4) ◦ and ◦◦ denote the best and the second best forecast among these seven methods, respectively.

able 2
ut-of-sample MSPE of different methods.
Estimation Prediction TVJMA AICc SAICc JMA MMA SAIC SBIC

h = 2.34T−0.2
1

1947Q1(T1 = 80) 1967Q1 0.0758◦ 0.0891 0.0827 0.0759◦◦ 0.0769 0.0819 0.0827
1947Q1(T1 = 92) 1970Q1 0.0803◦ 0.0945 0.0866 0.0804◦◦ 0.0814 0.0870 0.0868
1947Q1(T1 = 104) 1973Q1 0.0797◦ 0.0947 0.0837 0.0806◦◦ 0.0818 0.0874 0.0874
1947Q1(T1 = 116) 1976Q1 0.0693◦ 0.0833 0.0748 0.0717◦◦ 0.0731 0.0800 0.0770
1947Q1(T1 = 128) 1979Q1 0.0708◦ 0.0861 0.0755 0.0748◦◦ 0.0762 0.0836 0.0808
1947Q1(T1 = 140) 1982Q1 0.0740◦ 0.0908 0.0761◦◦ 0.0791 0.0807 0.0884 0.0817
1947Q1(T1 = 152) 1985Q1 0.0779◦ 0.0981 0.0814◦◦ 0.0829 0.0845 0.0925 0.0828
1947Q1(T1 = 164) 1988Q1 0.0695◦◦ 0.0897 0.0690◦ 0.0758 0.0776 0.0866 0.0752
1947Q1(T1 = 176) 1991Q1 0.0699◦◦ 0.0818 0.0700 0.0697◦ 0.0706 0.0740 0.0748
1947Q1(T1 = 188) 1994Q1 0.0816 0.0943 0.0776◦ 0.0818 0.0814◦◦ 0.0842 0.0887
1947Q1(T1 = 200) 1997Q1 0.0875◦◦ 0.1006 0.0924 0.0870◦ 0.0885 0.0901 0.0923
1947Q1(T1 = 212) 2000Q1 0.0821◦◦ 0.0951 0.0941 0.0774◦ 0.0849 0.0863 0.0859
1947Q1(T1 = 224) 2003Q1 0.0395 0.0520 0.0513 0.0397 0.0344◦◦ 0.0339◦ 0.0512

Notes: (1) For comparison, all results are multiplied by 10. The estimation sample begins from 1947Q1, with T1 observations. The prediction period
egins from the quarter indicated in the second column.
2) Seven methods are shown in Table 2: TVJMA, AICc in Cai and Tiwari (2000), SAICc, JMA, MMA, SAIC and SBIC estimators. The smaller the criteria,
he better the method.
3) The bandwidth used here is 2.34T−0.2

1 , the same as that in the simulation study.
(4) ◦ and ◦◦ denote the best and the second best forecast among these seven methods, respectively.

ombination weights. This method is more appropriate than the conventional MMA and JMA methods under structural
hanges. It is shown that our TVJMA estimator is asymptotically optimal in the sense of achieving the lowest possible
quared error loss in a class of time-varying model average estimators. In a simulation study, we document that the TVJMA
ethod outperforms a variety of existing methods, including a nonparametric version of the bias-correct AIC method. An
pplication to predicting stock returns also demonstrates that the TVJMA method outperforms many model averaging
ethods.
We conclude this paper by pointing out some important areas of future work. First, it would be interesting to propose a

ime-varying lasso-type method to select relevant regressors from a set of many potential predictive variables in the first
tep, and then consider time-varying model averaging in the second step. This would allow different sets of regressors (so
ifferent models) in different time periods. In these scenarios, time-varying model averaging weights are expected to yield
obust and accurate forecasts. Second, this paper has only considered a global bandwidth for the TVJMA estimator, which
ay be severely affected by the existence of structural changes. It will be desirable to use a time-varying bandwidth for
ach time point. Finally, an extension of ‘‘leave-k-out’’ cross-validation model averaging (e.g., Gao et al. (2016)) to allow

for time-varying combination weights would be highly interesting, which may be more appropriate for averaging time
series models under structural changes.
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ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.02.006.
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