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a b s t r a c t

When some of the regressors in a panel data model are correlated with the random in-
dividual effects, the random effect (RE) estimator becomes inconsistent while the fixed
effect (FE) estimator is consistent. Depending on the various degree of such correlation, we
can combine the RE estimator and FE estimator to form a combined estimator which can
be better than each of the FE and RE estimators. In this paper, we are interested in whether
the combined estimator may be used to form a combined forecast to improve upon the RE
forecast (forecast made using the RE estimator) and the FE forecast (forecast using the FE
estimator) in out-of-sample forecasting. Our simulation experiment shows that the com-
bined forecast does dominate the FE forecast for all degrees of endogeneity in terms of
mean squared forecast errors (MSFE), demonstrating that the theoretical results of the risk
dominance for the in-sample estimation carry over to the out-of-sample forecasting. It also
shows that the combined forecast can reduce MSFE relative to the RE forecast for moderate
to large degrees of endogeneity and for large degrees of heterogeneity in individual effects.
© 2019 Production and Hosting by Elsevier B.V. on behalf of China Science Publishing &

Media Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

This paper investigates the forecast combination in the panel data model. Despite the scarcity of panel data studies on the
combined forecasts, there has been panel data research on forecast focusing on the pooling of information; see Stock and
Watson (1999, 2002a,b) and Forni, Hallim, Lippi, and Reichlin (2000, 2005). Nevertheless, there is little research on pool-
ing forecasts in the context of the forecast combination of Bates and Granger (1969). We consider a panel data regression
model

yit ¼ xit
0bþ ai þ uit ; (1)

where i ¼ 1;…;n and t ¼ 1;…; T ; b is q� 1; xit is the ith observation on q explanatory variables, ai is the individual effect, and
uit is the random error. The individual effect terms can be modeled as either random or fixed effects.

When estimating a panel data model, we need to decide whether we should use fixed effects (FE) or random effects (RE)
estimator. The FE and RE estimators and their combination are considered by Huang (2015) and Wang, Zhang, and Zhou
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(2016), who independently derive their asymptotic distributions using a local-to-exogeneity condition and calculate the
asymptotic risk of the estimators based on Hansen (2017). If the individual effects are correlated with the other regressors in
the model, the FE model is consistent and the RE model is inconsistent. The RE estimator becomes inconsistent since the
regressors are correlated with the individual effects and thus become endogenous. On the other hand, if the individual effects
are not correlated with the other regressors in the model, both RE and FE estimators are consistent and the RE estimator is
more efficient. Therefore, there is a trade-off between inefficient FE estimation and biased RE estimation.

In this paper, we consider the combined forecast approach to the combined estimation results for a panel data model. We
examine whether the FE and RE forecasts can be combined to produce a better forecast when the regressors (predictors) are
endogenous, and specifically we wish to see if the forecast combining the FE and RE models can outperform the FE model
forecast in terms of mean squared forecast error (MSFE).1 Our simulation experiment shows that the combined forecast can
uniformly dominate the FE forecast for all degrees of endogeneity, demonstrating that the in-sample estimation result carries
over to the out-of-sample forecasting. It also shows that the combined forecast can reduceMSFE relative to the RE forecast for
moderate to large degrees of endogeneity of the regressors and heterogeneity of the individual effects.

We illustrate this method with an application to forecasting electricity and natural-gas demands for 51 US states. Since
electricity and gasoline demand has been studied extensively, strong priors exist as to the plausibility of price and income
effects, providing a useful plausibility check to the results of the study. In this literature, Maddala, Trost, Li, and Joutz (1997)
obtained short-run and long-run elasticities of energy demand for each of 49 US states over the period 1970e1990. They
showed that heterogeneous time series estimates for each state yield inaccurate signs for the coefficients, while panel data
estimates are not valid because the hypothesis of homogeneity of the coefficients was rejected. Baltagi, Bresson, and Pirotte
(2002) compared the out-of-sample forecast performance of ten homogeneous and nine heterogeneous estimators including
the shrinkage estimators applying them to the same data set. They showed that the homogeneous panel data estimates give
the best out-of-sample forecasts. Our objective here is to compare the out-of-sample forecast performance of the FE forecast,
RE forecast, and the proposed combined forecasting procedures, by applying them to the updated electricity and natural-gas
panel data across 51 states (including Washington DC) over the period 1997e2012. We find that the combined forecast
outperforms.

The rest of this paper is organized as follows. We begin with Section 2 where the combined estimation and its asymptotic
results are presented. Sections 3 presents the combined forecasting approach. Section 4 gives Monte Carlo simulation. An
empirical application is given in Section 5. Section 6 concludes.

2. Stein-like combined estimation for panel data models

First, we consider estimation using a panel data regression model with the random effects

yit ¼ xit
0bþ ai þ uit ; (2)

where i ¼ 1;…;n; t ¼ 1;…;T , xit is the q explanatory variables, b is a q� 1 unknown parameter, ai is the individual effect, and

uit is the regression error. The RE model assumes that ai � i.i.d. ð0; s2aÞ; uit � i.i.d. ð0; s2uÞ; and ai are independent of the uit : In
addition, the regressors xit are independent of the ai and uit for all i and t. Under these assumptions, we can write

yit ¼ xit
0bþ vit ; Eðvit jxiÞ ¼ 0; (3)

where vit ¼ ai þ uit : Write the model (3) in matrix form
y ¼ Xbþ v; (4)

where y ¼ ðy11;…; y1T ;…; yn1;…; ynT Þ
0
is nT � 1, X ¼ ðx11;…; x1T ;…; xn1;…; xnT Þ

0
is nT � q; v ¼ Daþ u with D ¼ In5iT : Let iT
be a vector of ones of dimension T, JT ¼ iT iT
0, and P ¼ In5JT where JT ¼ JT=T: Let Q ¼ InT � P be a matrix which obtains the

deviations from individual means. The variance-covariance matrix of v is given by

U ¼ s2aðIn5JT Þ þ s2uðIn5IT Þ ¼ s21P þ s2uQ ; (5)

where s21 ¼ Ts2a þ s2u: The feasible estimator of bU of U can be obtained by first running the OLS regression y on X to get bvit ¼

yit � xitbbOLS as the OLS residual and bbOLS ¼ ðX0XÞ�1X0y. This gives

bs2
u ¼ 1

nðT � 1Þ
Xn
i¼1

XT
t¼1

�bvit � bvi�2

: (6)
1 This paper considers a static model. If one wants to perform a better forecasting a dynamic panel data model with a lagged dependent variable would
be more appropriate. However, for a dynamic panel data model, both the FE and RE estimators become inconsistent and thus we need other robust
estimation methods such as IV and GMM estimators. We can certainly extend the current paper to the dynamic models by combining RE with GMM
estimators for instance, but it would be beyond the scope of the current paper and thus we leave this for a future work.
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Similarly, doing the OLS regression of yi ¼ xibþ vi, where VðviÞ ¼ Ts2a þ s2u=T ¼ s21=T and yi ¼ 1
T
PT

t¼1yit ; we get

bs2
1 ¼ T

n

Xn
i¼1

bv2i : (7)

b2 1 b2 b2
Note that sa ¼ T ðs1 � suÞ: With these estimates, one can obtain the generalized least squares (GLS) of b based on (4) is

bbRE ¼
�
X0 bU�1

X
��1

X0 bU�1
y; (8)

and bbRE has the asymptotic distribution as
ffiffiffi
n

p �bbRE � b
�
/Nð0;VREÞ; (9)

where
VRE ¼
 
plim

X0U�1X
n

!�1

: (10)
Remark 1. Except for Nerlove’s (1971) method, there is no guarantee that the estimate of bs2
a would be nonnegative

regardless of the existence of the endogeneity problem. One solution suggested by Maddala and Mount (1973) is to replace
these negative estimates by zero. They find that the negative estimates occurred only when the true s2a was small and close to
zero, in which case OLS is still viable, and therefore the problem is dismissed as not being serious. In the parametric models,
one may consider some other positive estimators of two unknown error variances in the random effect covariance matrix. In
the nonparametric model, one of them is as considered in Henderson and Ullah (2005). A detailed study on comparing es-
timators under various estimates of variance parameters in the RE covariance matrix will be subject to a future study.

Second, we consider estimation using a panel data regressionmodel with the fixed effects, for which the ai are assumed to
be fixed parameters to be estimated. Pre-multiplying the model by Q and performing the OLS on the resulting transformed
model

Qy ¼ QXbþ Qu; (11)

we obtain the OLS estimator
bbFE ¼ ðX0QXÞ�1X0Qy; (12)

ba ¼ ðD0DÞ�1D0
�
y� Xbb �

: (13)
FE FE

b
The asymptotic distribution of bFE follows

ffiffiffi
n

p �bbFE � b
�
/
d

Nð0;VFEÞ; (14)

where
VFE ¼ s2u

�
plim

X0QX
n

��1

: (15)

b b
Under the random effects specification, bRE is the asymptotically efficient estimator while bFE is unbiased and consistent

but not efficient. If EðaixitÞs0; bbRE is biased and inconsistent while bbFE is not affected.
Third, we consider the following combined estimator of b

bbc ¼ wbbRE þ ð1�wÞbbFE; (16)

where

w ¼
8<:

t

Hn
if Hn � t

1 if Hn < t

; (17)
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Hn ¼ n
�bbFE � bbRE

�0hbV FE � bVRE

i�1�bbFE � bbRE

�
; (18)

and t is a shrinkage parameter, Hn is the Hausman (1978) statistic. We set t ¼ q� 2 when q>2: The degree of shrinkage
depends on the ratio t=Hn:When Hn < t then bbc ¼ bbRE;When Hn � t then bbc is a weighted average of bbRE and bbFE;with more
weight on bbFE whenHn is larger. The combined estimator can alternatively bewritten as a positive-part James-Stein estimator

bbc ¼ bbRE þ
�
1� t

Hn

�þ�bbFE � bbRE

�
(19)

where ðbÞþ ¼ maxðb;0Þ.
Next, to examine the asymptotic properties of bbc; we use the local asymptotic approach based on the Mundlak’s (1978)

projection, where we write ai as a linear function of xi ¼ 1
T
PT

t¼1xit

ai ¼ xi
0rþ εi; (20)

with Eðx ε Þ ¼ 0: The variable x are exogenous if a and x are uncorrelated (when the coefficient r is zero). For fixed T, r is
i i it i it
local to zero

r ¼ 1ffiffiffi
n

p d; (21)

where the q� 1 parameter d is a localizing parameter, which is the degree of correlation between x and a . If ds0, then x are
it i i
endogenous and the FE estimator is preferred. If d ¼ 0, xit are exogenous and the RE estimator is preferred. Note that xi

0 is 1�
q and is the ith row of the n� q matrix X:

Remark 2. We focus on the Mundlak's (1978) projection, which projects the unobserved effect ai onto the average of xit all
across all T time period. As a referee pointed out, Chamberlain’s (1984) approach can be used instead. Chamberlain's method
is a generalization of Mundlak's model, but rather to replace ai with the linear projection of it onto the explanatory variables
in all time periods. Specifically, Chamberlain's method leads to the following equation

ai ¼ cþ xi1r1 þ xi2r2 þ…þ xiTrT þ εi
We leave this for a future work.

Now, we make the following assumptions:

Assumption 1. fxit ; ai; uitg are i.i.d. over i, uit is i.i.d. over t, Eðuit jxit ;aiÞ ¼ 0 , Eðu4it
��xit ;aiÞ<∞:.

Assumption 2. Ejjxit jj2þk <∞ and E
���uit j2þk <∞ for some k>0:

Assumption 3. bs2
u ¼ s2u þ opð1Þ and bs2

a ¼ s2a þ opð1Þ:
Assumptions 1 and 2 specify that the variables have finite fourth moments (so that the conventional central limit theory

applies) and that the error is conditionally homoskedastic given the regressors, which is used to simplify the asymptotic
covariance expressions. We have the following asymptotic results, extending Hansen (2017) for the panel data models.

Theorem 1. Under Assumptions 1-3,

ffiffiffi
n

p
 bbRE � bbbFE � b

!
/
d

hþ x; (22)

where

h ¼
�
s�2
1 VRESd

0

�
; with S ¼ plim

X
0
X
n

; (23)

and

x � Nð0;VÞ; with V ¼
�
VRE VRE
VRE VFE

�
: (24)

Furthermore,
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Hn/
d ðhþ xÞ0Bðhþ xÞ; (25)

and

ffiffiffi
n

p �bbc � b
�
/
d

J≡G2
0x�

 
t

ðhþ xÞ0Bðhþ xÞ

!
1

G0ðhþ xÞ; (26)

Where X is n� q with xi
0 in its ith row; B ¼ GðVFE � VREÞ�1G0; G ¼ ð�I I Þ0 ; G2 ¼ ð0 I Þ0 ; and ðaÞ1 ¼ min½1;a�.

Proof 1: See Appendix.
Theorem 1 presents the joint asymptotic distribution of bbRE and bbFE , the Hausman statistic, and bbc under the local

endogeneity setup in (21). The joint asymptotic distribution of bbRE and bbFE is normal. bbRE has an asymptotic bias when ds0
but bbFE is consistent. The Hausman statistic has an asymptotic non-central chi-square distribution, with non-centrality
parameter h depending on the local endogeneity parameter d. The asymptotic distribution of bbc is a nonlinear function of
the normal random vector x and a function of the noncentrality parameter h:

Finally, we compare bbRE;
bbFE;

bbc in the asymptotic risk. The asymptotic risk of any sequence of estimators bn of b is defined as

Rðbn; b;WÞ ¼ lim
n/∞

E
h
nðbn � bÞ0Wðbn � bÞ

i
: (27)

Denote RðbnÞ ¼ Rðbn; b;WÞ for notational brevity. So long as the estimator has an asymptotic distribution

ffiffiffi
n

p ðbn � bÞ/d j;

for some random variable j; the asymptotic risk can be calculated using

RðbnÞ ¼ E
�
j0Wj

	 ¼ tr
�
WE
�
jj0		: (28)

For example,

R
�bbFE

�
¼ trðWVFEÞ (29)

from (14).
Let l1 � l2 � / � lq denote the ordered eigenvalues of WðVFE � VREÞ: Denote the ratio

d ¼ trðWðVFE � VREÞÞ
l1

: (30)

Notice that (30) satisfies 1 � d � q: In the case W ¼ ðVFE � VREÞ�1, l1 ¼ 1 and we have the simplification d ¼ q:

Theorem 2. Under Assumption 1-3, ifd>2and

0< t � 2ðd� 2Þ; (31)

then

R
�bbc

�
<R
�bbFE

�
� tl1½2ðd� 2Þ � t�
s�4
1 d0SVREðVFE � VREÞ�1VRESdþ q

: (32)

,

Proof 3: See Appendix.

Remark 3. Equation (32) shows that the asymptotic risk of bbc is strictly less than that of bbFE , so long as t satisfies the
condition (31). The assumption d>2 is the critical condition needed to ensure that bbc can have smaller asymptotic risk than
that of bbFE . It is necessary in order for the right-hand-side of (31) to be positive, which is necessary for the existence of t. t
appears in the risk bound (32) as a quadratic expression, so there is an optimal choice

t� ¼ d� 2; (33)
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whichminimizes this bound. Note that d>2 is equivalent to l2 þ/þ lq > l1:This is violated only if l1 is much larger than the

other eigenvalues. (31) is equivalent to 0< t � 2
�Pq

i¼1
li
l1
� 2

�
For the practical implementation we replace the maximum

eigenvalue l1 with the average trðWðVFE�VREÞÞ
q ¼ 1

q
Pq

1li. See Hansen (2016).

Corollary 1. RðbbcÞ � RðbbFEÞ<0; ford>2and0< t � 2ðd� 2Þ:WhenW ¼ ðVFE � VREÞ�1; the condition simplifies to q>2 and
0< t � 2ðq� 2Þ;which is Stein’s (1956) classic condition for shrinkage.,

The following two corollaries are obtained with W ¼ ðVFE � VREÞ�1.

Corollary 2. RðbbREÞ ¼ trðWVREÞ þ s�4
1 d0SVREWVRESd; tr RðbbREÞ � RðbbFEÞ when s�4

1 d0SVREWVRESd � q; and RðbbREÞ>RðbbFEÞ
otherwise.,

Proof 4: See Appendix.

Corollary 3. RðbbcÞ� RðbbREÞ<0; forq< s�4
1 d0SVREWVRESd;d>2, and0< t � 2ðd� 2Þ.,

Remark 4. Corollary 1 shows, as in Stein's (1956), that q>2 is necessary in order for the Stein estimator to achieve global
reductions in risk relative to the usual estimator. d>2 is the generalization to allow for general weight matrices. Corollary 2
indicates that when endogeneity is weak (r and hence d is close to zero) the random effects estimator may perform better
than the fixed effects estimator. Corollary 3 indicates that when endogeneity is strong, d>2, and 0< t � 2ðd� 2Þ; the
combined estimator is better than the RE estimator.,
3. Stein-like combined forecast for panel data models

First, we consider forecasting using a panel data regression model with the random effects. Suppose we want to predict s
periods ahead for the ith individual. By minimizingP

i
P

t
�
yit � xit 0b� ai

	2
s2u

þ
P

ia
2
i

s2a
; (34)

we can obtain

bai ¼
bs2
abs2
1

TbviðREÞ; (35)

where bviðREÞ ¼ 1
T
P

tbvitðREÞ: Then the s period ahead forecast for the ith individual is

byi;Tþs;RE ¼ xi;Tþs’
bbRE þ

bs2
abs2
1

TbviðREÞ; (36)

where bs2

abs2

1

P
tbvitðREÞ can be treated as bai;RE: Baltagi (2008) showed that Goldberger (1962) gave the best linear unbiased pre-

dictor (BLUP) of yi;Tþs as following

byi;Tþs;RE ¼ xi;Tþs
0bbRE þ60U�1bvRE; (37)

where bvRE ¼ y� XbbRE and 6 ¼ Eðvi;Tþ1vÞ: Note that for period T þ s

vi;Tþs ¼ ai þ ui;Tþs; (38)

and 6 ¼ s2aðli5iT Þ where li is ith column of IN , i.e. li is a vector that has 1 in the ith position and zero elsewhere. In this case

60U�1 ¼ s2a
�
li
05iT

0	" 1
s21

P þ 1
s2u

Q

#
¼ s2a

s21
li
05iT

0; (39)

since ðli 05iT
0ÞP ¼ ðli 05iT

0Þ and ðli05iT
0ÞQ ¼ 0: The typical element of 60U�1bvRE becomes

 
Tbs2

abs2

1

bviðREÞ
!

Therefore, this BLUP for

byi;Tþs corrects the RE prediction by a fraction of the mean of the RE residuals corresponding to the ith individual.
Next, consider forecasting using a panel data regression model with the fixed effects, from (13), we know that for the ith

individual, bai;FE ¼ yi � xibbFE: Thus, the s period ahead forecast for the ith individual is
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byi;Tþs;FE ¼ yi þ
�
xi;Tþs � xi

	0 bbFE; (40)

or alternatively,
byi;Tþs;FE ¼ xi;Tþs
0 bbFE þ buiðFEÞ: (41)
Now, we consider the combined forecast. In Section 2, we have shown that the combined estimator is better than the FE
estimator in asymptotic risk (Theorem 2), and also better than the RE estimator when the endogeneity is strong (Corollary 3).
To see if this dominance in in-sample estimation holds true in out-of-sample forecasting, we combine byi;Tþs;RE and byi;Tþs;FE
using the weight in (17), then

byi;Tþs;c ¼ xi;Tþs’
bbc þw6’U�1bvRE þ ð1�wÞbuiðFEÞ ¼ w byi;Tþs;RE þ ð1�wÞbyi;Tþs;FE; (42)

b b
In the following two sections, we conduct the comparison of the combined forecast yi;Tþs;c (the forecast using bc) with the
RE forecast byi;Tþs;RE (the forecast using bbRE) and the FE forecast byi;Tþs;FE (the forecast using bbFE) based on Monte Carlo and an
application.

4. Monte Carlo

We consider the following data generating process

yit ¼ xit
0bþ ai þ uit ; (43)

ai ¼ r
ffiffiffi
T

p
xi

0 i =qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

q
εi; (44)

where xit is q� 1 i.i.d. Nð0; IqÞ; i is a q� 1 vector of ones, uit are i.i.d. Nð0; s2uÞ across i;t. εi are i.i.d. Nð0; 1Þ independent of fxit ;
uitg. su2f:6; :8; 1g; VarðaiÞ ¼ 1:We set

ffiffiffi
q

p
¼ sa

su
2



5
3;

5
4; 1

�
; so that we have r� ¼ q

1þq
¼ f74; :61; :50g r� controls the degree

of heterogeneity which is the temporal correlation between ai þ uit and ai þ uit0 : Then ai and xit have correlation rffiffi
q

p ; which

controls the degree of endogeneity.We allow r to vary in ð� 1; 1Þ. The distribution are invariant to b sowe set it to zero, b ¼ 0.
First we generated 300,000 samples on each calculated bbRE;

bbFE;
bbc. We also calculated the Hausman pre-test (PT)

estimator

bbPT ¼ bbRE1
�
Hn <c2q;0:05

�
þ bbFE1

�
Hn � c2q;0:05

�
(45)

where c2q;0:05 is the 5% critical value from the c2q distribution.
To compare the in sample fit of these estimators, calculate the median squared error (MedSE) of each estimator and plot

the relative MedSE relative to that of the robust estimator FE under endogeneity, that is

median
��bb � b

�0�bb � b
�


median
��bbFE � b

�0�bbFE � b
�
: (46)
Thus a value less than one indicates improved precision relative to the FE estimator, and a value greater than one indicates
worse performance than the FE estimator, with larger MedSE than FE estimator. The MedSE is symmetric with respect to r; so
we only report the results with r between 0 and 1.

We use a portion of the available data for forecasting and use the other portion of the data for estimating the model as
follows: Use the observations over t ¼ 1;…; T � s to estimate the forecastingmodels. Compute the s-step error on the forecast
for time T. Compute the forecast accuracy measures based on the forecast errors obtained. To compare the prediction pro-
cedures, we calculate the s-step ahead out-of-samplemean squared forecast error (MSFE) of each approach. The forecast error
is defined as eTþs ¼ yTþs � byTþs; and its MSFE is MSFEðeTþsÞ ¼ EðeTþs

0eTþsÞ: Generate 10,000 samples on the FE forecastbyTþs;FE; the RE forecast byTþs;RE; the Hausman pre-test forecast byTþs;PT ; and the combined forecast byTþs;c: Plot the MSFEs of the
RE, FE, combined forecasts relative to the MSFE of the FE forecast. Thus values less than one indicate improved precision
relative to the FE forecast, and values greater than one indicate worse performance than the FE forecast. We set T ¼ 5; s ¼ 1;
q ¼ 4; and n2f20;100g.

Figs. 1 and 3 present the in-sample estimation results. In Fig. 1: (a), (c) and (e) plot the relative MedSE for n ¼ 20; (b), (d)
and (f) plot the relative MedSE for n ¼ 100: We see that the region of dominance for the combined estimator over RE



Fig. 1. Relative MedSE of FE, RE, combined and pretest estimators, n ¼ f20;100g; T ¼ 5; q ¼ 4; r� ¼ f:74; :61; :50g.
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estimator is greater for small n. Fig.1 plots the relativeMedSE for r�2f74; :61; :50g and t ¼ t�. This is the case of moderate to
large degree of heterogeneity. Fig. 1(e) and (f) are the cases, r� ¼ :50:We see that the gains from the combined estimator are
strong for small r;with the MedSE converging to that of FE as r increases towards 1. This is consistent with Theorem 2, which
shows that the improvements are asymptotically local to r ¼ 0: The RE estimator has lower MedSE than the combined
estimator, but the ranking is reversed for larger values of r: Fig.1(a), (b),1(c), and 1(d) are the cases, r�2f:74; :61g. The general
nature of the plot is the same, except that the gains are not as strong as in the case r� ¼ :50: Still the combined estimator has
uniformly smaller MedSE than that of FE. The FE and the combined estimators are getting closer as r� increases. RE has similar
MedSE to FE and combined estimators for small r; but the MedSE of the RE estimator increases dramatically after inter-
mediate values of r: It is also instructive to examine the performance of the pre-test estimator. The MedSE of the pre-test
estimator is generally similar to FE for moderate and higher values of r: In summary, for moderate r� and higher r; or
moderate r and higher r�; the combined estimator is better than RE estimator. For very large r� and very low r, the combined
estimator is close to RE estimator. The estimation simulation results provide strong finite sample confirmation of Theorem 2.
Fig. 2 plots the relativeMedSE for t ¼ 2t;which still satisfies the classic James-Stein conditions in equations (30) and (31). The
region of dominance for the RE and combined estimators over FE is greater for the large value of t. The MSE of the combined
estimator is closer to that of FE when the degree of endogeneity is small for large t. This can be seen by contrasting Figs. 1 and
2. Hence, this indicates that the optimal choice of t ¼ t� in (33) obtained from minimizing the “bound” of the risk of RðbbcÞ is



Fig. 2. Relative MSFE of the FE, RE combined and pretest estimators, one-step forecast, s ¼ 1; n ¼ f20; 100g; T ¼ 5; q ¼ 4; r� ¼ f:74; :61; :50g.
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not “optimal” in the sense of minimizing the risk of RðbbcÞ itself. To our knowledge, there is no result on this yet and thus we
leave this for a future work.

Figs. 2 and 4 present the out-of-sample forecasting results. Fig. 2 shows the relative 1-step ahead out-of-sample MSFE of
each approach with r�2f74; :61; :50g. By contrasting Fig. 2 with Fig. 1, we see that the general nature of the plots is the same.
In Fig. 2: (a), (c) and (e) plot the MSFE for n ¼ 20; (b), (d) and (f) plot the MSFE for n ¼ 100: We see again that the region of
dominance for the combined forecast over the FE forecast is greater for small n. Fig. 2(e) and (f) are the cases for r� ¼ :50: This
is similar to Fig. 1(e) and (f) that the combined forecast has much lower MSFE than the FE forecast, regardless of the degree of
endogeneity. For small r; the RE forecast has lower MSFE than the combined forecast, but the ranking is reversed for larger
values of r: Figs. 2(a), (b), (c), and (d) are the cases for larger r� ¼ f:74; :61g, for which the combined forecast has lower MSFE
than the FE forecast for small r but the reverse holds for large r: The combined and the pre-test forecasts have much smaller
MSFE than FE for small values of r; but the ranking is reversed for large values of r: For large values of r; the MSFE of the pre-
test forecast is typically larger than the combined forecast. In all the cases, the combined forecast uniformly dominates the FE
forecast (which is the same as for the in-sample estimation results in Theorem 2 and in Fig. 1), demonstrating that the in-
sample estimation results (Theorem 2) can hold true for the out-of-sample forecasting. Fig. 3 shows the relative 1-step
ahead out-of-sample MSFE of each approach with t ¼ t�: Fig. 4 shows the relative 1-step ahead out-of-sample MSFE of



Fig. 3. Relative MedSE of FE, RE and combined estimators, n ¼ f20;100g; T ¼ 5; q ¼ 4; r� ¼ f:74; :61; :50g, 2t� .
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each approach with t ¼ 2t�: By contrasting Figs. 2 and 4, we see again that the region of dominance for the combined forecast
over FE is greater for the large value of t.

Fig. 5 plots the relative 1-step ahead out-of-sample MSFE of each approach with fixed d on the interval ½0; 5� on the
horizontal abscissa for n2f25; 100; 400g, which correspond to varying ranges of r on ½0; 1�, ½0; :5�, ½0; :25� for the different
sample size n2f25; 100; 400g, respectively. These are the cases where the degree of endogeneity does not depend on the
sample size. In this plot, we see again that the gain form the combined forecast has uniformly smaller MSFE than FE, with the
MSFE converging to that of FE as the degree of endogeneity increases. This is consistent with holds, which shows that the
improvements are asymptotic local to zero. This shows numerically that the improvements in Theorem 2 can be expected to
hold broadly in the parameter space.

In summary, the simulation evidence provides strong finite sample confirmation of the predictions from the large sample
theory on the estimation (Theorems 1 and 2). It also shows that the finite sample properties of the in-sample combined
estimation is carried over to the out-of-sample combined forecasting. The improvement in the combined forecast over the FE
forecast is greater for smaller heterogeneity r�: For moderate to large r� and higher r; ormoderate to large r and higher r�; the
combined forecast is better than the RE forecast. For very large r� and low r, the combined forecast is close to the RE forecast.

Remark 5. In constructing the Stein-like combined estimator we focus on the shrinkage parameter t that makes the Stein
estimator dominate FE in the asymptotic risk (Theorem 2), rather than making it dominate the RE estimator. The cost of



Fig. 4. Relative MSFE of the FE, RE and combined forecasts, one-step forecast, s ¼ 1; n ¼ f20;100g; T ¼ 5; q ¼ 4; r� ¼ f:74; :61; :50g, 2t� .
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winning over the FE is to increase the probability of losing to the RE when the endogeneity is weak (when r is small) because
t� is too small for the Hausman statistic Hn to go below t�. Therefore, we also consider a two-step approach, the pretesting
(PT) estimator in (45), using the Hausman statistic Hn to construct the PT estimator in (45) as done also in Hansen (2017). For
the PT estimator based on the Hausman statistic, we use the 5% critical value c2q;0:95. Under the null of no endogeneity ðr ¼ 0Þ,
PrðHn <c2q;0:95Þ ¼ PrðHn <9:49Þ ¼ 0:95 as c2q;0:95 ¼ 9:49 with d.f. ¼ q ¼ 4: Thus, PT will have a 95% chance to have the weight
w ¼ 1 to completely shrink FE towards RE, while the Stein combined estimator has only 5% chance to do that with w ¼ 1.

Remark 6. The optimal choice of t, t� in (33), is obtained to minimize the “bound” of the risk of RðbbcÞ in Theorem 2. The
bound is the RHS term in equation (32). However, as discussed in Remark 5 above, the optimal choice of t ¼ t� is too small
when r is small because the probability that the Hausman statistic is smaller than t ¼ t� will be too small. Hence we have
increased it to 2t� as this choice still satisfies the classic James-Stein conditions in equations (30) and (31). This makes the
MSE of the combined estimator closer to the MSE of FE when the degree of endogeneity is small. The results are reported in
Figs. 3 and 4, where t ¼ 2t� are considered. Hence, this indicates that the optimal choice of t ¼ t� in (33) obtained from
minimizing the “bound” of the risk of RðbbcÞ is not “optimal” in the sense of minimizing the risk of RðbbcÞ itself. To our
knowledge, there is no result on this yet and thus we leave this for a future work.

Remark 7. The risk function (27) with a general weight matrixW includes many special cases. For example, the unweighted
MSE is obtained by settingW ¼ Iq; in which case the coefficients are of equal importance. The canonical case is motivated by



Fig. 5. Relative MSFE of the FE, RE and Combined Forecasts, One-Step Forecast, s ¼ 1;n ¼ f25;100;400g; T ¼ 5; q ¼ 4; r� ¼ f:74; :50g, d.
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ease of use and simplicity, which is obtained by setting W ¼ ðVFE � VREÞ�1: This choice simplifies many formulae, e.g.,
equation (30) has the simplification d ¼ q; and the optimal choice of t, t� in (33) is q� 2. Following Hansen (2017), we set t ¼
q� 2, which would be the same as the optimal choice t� ¼ d� 2 when W ¼ ðVFE � VREÞ�1 is used. See Corollary 1. See also

Remark 3 and equation (33). However, whenW ¼ Iq is used instead ofW ¼ ðVFE � VREÞ�1, it is possible that the condition 0<
t<2ðd� 2Þ in equation (31) may not hold if t ¼ q� 2 is used, especially when the dimension q of X is large. In that case, we

should use the theoretical optimal t ¼ d� 2 ¼ trðWðVFE�VREÞÞ
l1

� 2:

Remark 8. If t is small, then w will be small towards zero. The Stein-like combined estimator puts more weights on FE,
resulting in less bias and more variance; If t is large, then w will be large towards one. The Stein combined estimator puts
more weights on RE, resulting in more bias and less variance.
5. Application

There have been numerous studies on the price and income elasticities of residential natural-gas and electricity demand.
Maddala et al. (1997) applied classical, empirical Bayes, and Bayesian procedures to the problem of estimating short-run and
long-run elasticities of residential demand for electricity and natural gas in the US for each of 49 states over the period
1970e1990. They found that shrinkage Bayesian type estimators are superior to either the individual heterogeneous
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estimates or the homogeneous estimates, especially for prediction purpose, through shrinking the individual estimates to-
wards the pooled estimate using weights depending on their corresponding variance-covariance matrices.

Using the Maddala et al. (1997) specification and data sets, Baltagi et al. (2002) compare the out-of-sample forecast
performance of homogeneous and heterogeneous estimators applying them to electricity and natural-gas. In this section, we
compare the performances of the residential gas and electricity demand forecast using panel data across 51 states (including
Washington DC) over the period 1997e2012. The annual state residential electricity and gas price data used in this study were
obtained fromThe State Energy Price and Expenditure System of the U.S. Energy Information Administration. Annual personal
income per capita by state were drawn from the Bureau of Business and Economic Research, and the annual Consumer Price
Index for the United States was from CITIBASE.

Following Baltagi et al. (2002), we consider the following panel data model:

byi;Tþs ¼ bb0 þ bb1x1i;T þ bb2x2i;T þ bb3x3i;T þ bai; (47)

where i ¼ 1;…;51; t ¼ 1;…;14: The LHS variable of the equation is y ¼ log (residential electricity per capita consumption) for
the electricity demand equation or y ¼ log (residential natural-gas per capita consumption) for the natural gas demand
equation. The RHS variables for the electricity demand equation are x1 ¼ log (real per capita personal income), x2 ¼ log (real
residential electricity price), and x3 ¼ log (real residential natural-gas price). The RHS variables for the natural-gas demand
equation are x1 ¼ log (real per capita personal income), x2 ¼ log (real residential natural-gas price), and x3 ¼ log (real res-
idential electricity price).

We compare alternative estimators in the prediction performance. Given the large data set of N ¼ 51 states over T ¼ 14
years, we estimate our model using a truncated data set (i.e. without the last 3 years of data) and then apply each estimator to
an out-of-sample forecast period. Panel A of Table 1 gives a comparison of forecasts using the root-mean-squared-forecast-
errors (RMSFE) for residential electricity demand and similarly Panel B for residential natural-gas demand. Because the ability
of an estimator to characterize the long-run as well as the short-run response is at issue, the RMSFE is calculated across the 51
states at different forecast horizons. The RMSFEs are reported in Table 1 for forecast horizons s ¼ 1;3 years. Both for the
electricity demand (Panel A) and for the natural-gas demand (Panel B), the combined estimator dominates FE forecast
whether it is for the 1-year ahead or 3-years ahead forecasts, confirming that the gains in estimation by the combined
estimator (Theorem 2) can benefit the combined forecast in out-of-sample forecasting. The combined forecast using the
combined estimator performs better than both FE and RE forecasts.

The overall forecast ranking in RMSFE offers a clear and strong endorsement for the combined forecast which is con-
structed using the Stein-like combined estimator bbc. The “Stein-like combined forecast” is superior to both the FE forecast and
the RE forecast in out-of-sample prediction.
6. Conclusions

The goal of this paper is to examine if the theoretical results on the combined estimation for the parametric panel data
model with weak endogeneity (i.e., local to exogeneity) may be useful to form the combined forecasting in the panel data
model such that the gains in asymptotic risk in the combined estimator may be carried over to the gains in mean squared
forecast errors. We examine this by asymptotic theory, by Monte Carlo simulation, and empirical applications. The FE and RE
forecasts are combined when the RE estimator suffers from various degrees of endogeneity to produce a combined forecast.
Specifically we show that the forecast combining the FE and RE models can outperform the FE model forecast in terms of
mean squared forecast error. Our simulation experiment shows that the combined forecast can uniformly dominate the FE
forecast for all degrees of endogeneity, demonstrating that the in-sample estimation result is carried over to the out-of-
sample forecasting. It also shows that the combined forecast can reduce MSFE relative to the RE forecast for moderate to
large degrees of endogeneity and heterogeneity in the individual effects.

The use of the combined forecasting approach allows applied researchers to implement efficient forecasting under the
presence of weak endogeneity. Even when there is no endogeneity or when there is strong endogeneity, without having to
select a consistent forecast or an efficient forecast, the weights in the combined estimator will be 1 or 0. Hence, the combined
forecast is particularly useful when the degree of endogeneity is weak or when it is not clear which of the RE or FE panel data
models to choose.
Table 1
Combined forecast from the combined estimator.

A. Electricity Demand B. Natural Gas Demand

s ¼ 1 s ¼ 3 s ¼ 1 s ¼ 3

FE 5.5261 6.4135 6.1593 8.1922
RE 6.6025 7.9441 7.1044 9.0036
Combined 5.2837 6.1467 5.7310 7.4145

51 U.S. States including Washington DC. Reported are RMSFE for forecast horizons s ¼ 1;3.
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Appendix
Proof of Theorem 1

Let h1 ¼ G1h and x1 ¼ G1xwith G1 ¼ ðI 0Þ0 ; and let h2 ¼ G2h and x2 ¼ G2xwith G2 ¼ ð0 IÞ0 : Herewe derive the asymptotic
distribution of the RE estimator for the parametric panel data model. Note that

bbRE ¼
�
X0U�1X

��1
X0U�1y
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s21
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!
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The asymptotic bias h1 is
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where the second equality follows from noting that QD ¼ 0; PD ¼ D; and X0D ¼ X; and the last equality follows from denoting
S≡ plim 1

n XX:

Proof of Theorem 2

First, we derive the asymptotic risk of the RE estimator RðbbREÞ for the parametric panel data model. From Theorem 1.1,ffiffiffi
n

p �bbRE � b
�
/h1 þ x1;

with x1 � Nð0;V1Þ: Hence,
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R
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For the asymptotic risk of the FE estimator, note that nðbFE � bÞ/x2 � Nð0;V2Þ; and thus
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The rest of the proof is based on Theorem 2 of Hansen (2017). Define J as a random variable without positive part
trimming
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Define B1 ¼ ðV2 � V1Þ 2G and A ¼ ðV2 � V1Þ2WðV2 � V1Þ2: Note that GWG2 VP ¼ GWG ¼ B1 A B1; B1 B1 ¼ B: Using the
inequality b0ab � ðb0bÞlmaxðaÞ for symmetric a; and let
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Using equation (48) and Jensen's inequality, we have
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Substituted into (49) we have
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Proof of Corollary 2

RðbbREÞ � RðbbFEÞ when s�4
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R
�bbRE

�
¼ trðWV1Þ þ s�4

1 d0SV1WV1Sd

R
�bbFE

�
¼ trðWV2Þ

trðWðV2 � V1ÞÞ ¼ q if W ¼ ðV2 � V1Þ�1

R
�bbFE

�
� R

�bbRE

�
¼ trðWðV2 � V1ÞÞ � s�4

1 d0SV1WV1Sd ¼ q� s�4
1 d0SV1WV1Sd:
References

Baltagi, B. H. (2008). Forecasting with panel data. Journal of Forecasting, 27(2), 153e173.
Baltagi, B. H., Bresson, G., & Pirotte, A. (2002). Comparison of forecast performance for homogeneous, heterogeneous and shrinkage estimators: Some

empirical evidence from US electricity and natural-gas consumption. Economics Letters, 76(3), 375e382.
Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Journal of the Operational Research Society, 20(4), 451e468.
Chamberlain, G. (1984). Panel data. Handbook of Econometrics, 2, 1247e1318.

http://refhub.elsevier.com/S2096-2320(19)30005-8/sref1
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref1
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref2
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref2
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref2
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref3
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref3
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref4
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref4


B. Huang et al. / Journal of Management Science and Engineering 4 (2019) 28e4444
Forni, M., Hallim, M., Lippi, M., & Reichlin, L. (2000). The generalized dynamic factor model: Identification and estimation. The Review of Economics and
Statistics, 82, 540e554.

Forni, M., Hallim, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American
Statistical Association, 100, 830e840.

Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear regression model. Journal of the American Statistical Association, 57(298),
369e375.

Hansen, B. E. (2016). Efficient shrinkage in parametric models. Journal of Econometrics, 190(1), 115e132.
Hansen, B. E. (2017). A stein-like 2SLS estimator. Econometric Reviews, 36, 840e852.
Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46, 1251e1271.
Henderson, D. J., & Ullah, A. (2005). A nonparametric random effects estimator. Economics Letters, 88(3), 403e407.
Huang, B. (2015). A combined fixed and random effects estimator for parametric panel model. Riverside: University of California.
Maddala, G. S., & Mount, T. D. (1973). A comparative study of alternative estimators for variance components models used in econometrics applications.

Journal of the American Statistical Association, 68, 324e328.
Maddala, G. S., Trost, R. P., Li, H., & Joutz, F. (1997). Estimation of short-run and long-run elasticities of energy demand from panel data using shrinkage

estimators. Journal of Business & Economic Statistics, 15, 90e100.
Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica, 46, 69e85.
Nerlove, M. (1971). Further evidence on the estimation of dynamic economic relations from a time-series of cross-sections. Econometrica, 72, 214e253.
Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability, 1, 399.
Stock, J., & Watson, M. (1999). Forecasting inflation. Journal of Monetary Economics, 44, 293e335.
Stock, J., & Watson, M. (2002a). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20, 147e162.
Stock, J., & Watson, M. (2002b). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association,

460, 1167e1179.
Wang, Y., Zhang, Y., & Zhou, Q. (2016). A Stein-like estimator for linear panel data models. Economics Letters, 141, 156e161.

http://refhub.elsevier.com/S2096-2320(19)30005-8/sref5
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref5
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref5
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref6
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref6
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref6
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref7
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref7
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref7
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref8
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref8
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref9
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref9
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref10
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref10
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref11
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref11
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref12
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref13
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref13
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref13
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref14
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref14
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref14
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref14
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref15
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref15
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref16
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref16
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref17
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref17
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref18
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref18
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref19
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref19
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref19
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref20
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref20
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref20
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref21
http://refhub.elsevier.com/S2096-2320(19)30005-8/sref21

	A combined random effect and fixed effect forecast for panel data models
	1. Introduction
	2. Stein-like combined estimation for panel data models
	3. Stein-like combined forecast for panel data models
	4. Monte Carlo
	5. Application
	6. Conclusions
	Conflicts of interest
	Proof of 
	Proof of 
	Proof of 

	References


