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ABSTRACT
In this chapter we consider the “Regularization of Derivative Expectation
Operator” (Rodeo) of Lafferty and Wasserman (2008) and propose a modi-
fied Rodeo algorithm for semiparametric single index models (SIMs) in big
data environment with many regressors. The method assumes sparsity that
many of the regressors are irrelevant. It uses a greedy algorithm, in that, to
estimate the semiparametric SIM of Ichimura (1993), all coefficients of the
regressors are initially set to start from near zero, then we test iteratively if
the derivative of the regression function estimator with respect to each coeffi-
cient is significantly different from zero. The basic idea of the modified
Rodeo algorithm for SIM (to be called SIM-Rodeo) is to view the local
bandwidth selection as a variable selection scheme which amplifies the coeffi-
cients for relevant variables while keeping the coefficients of irrelevant vari-
ables relatively small or at the initial starting values near zero. For sparse
semiparametric SIM, the SIM-Rodeo algorithm is shown to attain consis-
tency in variable selection. In addition, the algorithm is fast to finish the
greedy steps. We compare SIM-Rodeo with SIM-Lasso method in Zeng
et al. (2012). Our simulation results demonstrate that the proposed SIM-
Rodeo method is consistent for variable selection and show that it has smaller
integrated mean squared errors (IMSE) than SIM-Lasso.
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1. INTRODUCTION
In a series of chapters, (Poirier, 1980a, 1980b, 1994, 1996; Poirier and Ruud,
1988; and Koop and Poirier, 1993, 2004), Dale Poirier has made many seminal
contributions to the issues of identification and inference of probit and logit
models, in Bayesian and classical approaches, for parametric, semiparametric,
and partially linear models. This chapter proposes a new method of variable
selection for sparse single index models (SIMs) that would be useful for
parametric and semiparametric probit and logit models with many regressors.

Nadaraya (1964) and Watson (1964) propose the Nadaraya�Watson local
constant kernel regression estimator. Kernel regression has been extremely
popular for it is free of parametric assumptions. However, it suffers from
computational complexity and the curse of dimensionality. Ichimura (1993)
studied the semiparametric SIM to overcome the curse of dimensionality by
assuming that the true model is a function of an index which is a linear
combination of the explanatory variables. Klein and Spady (1993) studied a
similar semiparametric SIM for binary outcomes and proposed to estimate the
model by maximum likelihood (ML). However, these SIM methods gain limited
improvements computationally over the local constant and local linear kernel
regression and are still slow to implement.

Recent statistics and econometrics literature has been focusing on big data
issues which are extremely difficult to solve with kernel regressions. To
overcome this problem, under the sparsity assumption, several papers propose
regularized SIM methods with penalty terms. See for example Huang,
Horowitz, and Wei (2010). Su and Zhang (2014) provide a comprehensive
review on those literature. However, those penalties may induce additional
complexity in computation and lead to huge bias and variance when the ratio of
information to noise is small. One such method that seems to be a natural way
for SIM is a Lasso-type approach by Zeng, He, and Zhu (2012) for estimation
and variable selection in SIM, which they termed as “SIM-Lasso.”

Meanwhile, there is a large volume of literature motivated by statistical
machine learning, such as AdaBoost, Boosting, Support Vector Machine, and
Deep Neural Net. In particular, in this chapter, we note that the method of
Lafferty and Wasserman (2008), called the Regularization of Derivative
Expectation Operator (Rodeo), may be modified for SIM. Rodeo is a greedy
algorithm for variable selection and estimation of the nonparametric regression
function based on testing of marginal contribution of an additional variable in
selecting relevant explanatory variables. A goal of this chapter is to modify
Rodeo so that it can be applied to semiparametric SIMs under sparsity. We will
call the modified Rodeo for SIM as “SIM-Rodeo.”

The SIM-Rodeo method is able to distinguish relevant explanatory variables
from irrelevant variables and gives a competitive estimator for the model. In
addition, the algorithm finishes in a reasonable period of time. The method
assumes sparsity under which most of the explanatory variables are irrelevant.
We use a greedy algorithm that starts with a semiparametric SIM estimator

(Ichimura, 1993) that sets all coefficients θ j ¼ β j

h

� �
as zero, which are the ratio
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of slope coefficients β j to bandwidth h in the original Ichimura estimator. Then,
we iteratively test if the derivative of the regression estimator with respect to
each coefficient θ j is zero. The intuition is for a relevant explanatory variable;
changing its coefficient would lead to a dramatic change in the value of the
estimator. However, for an irrelevant variable, changing its coefficient would
lead to ideally no change to the single index estimator. The impact of changing
the coefficient to the attained estimator can be measured with the derivative of
the estimator with respect to the coefficient. If the derivative with respect to one
coefficient is zero, it implies the corresponding explanatory variable does not
have a strong explanatory power on the dependent variable. And it will be seen
as an irrelevant variable and given coefficient zero. However, if the derivative
with respect to one coefficient is significantly different from zero, then we say
the corresponding explanatory variable has a strong explanatory power on the
dependent variable. Hence, it will be seen as a relevant explanatory variable and
given coefficient greater than zero. The proposed procedure attains a solution
path similar to the Least Angle Regression (Efron, Hastie, Johnstone, &
Tibshirani, 2004). The new method is superior to the usual Lasso-type penalty
(Zeng et al., 2012) in the sense that it does not introduce bias into the estimation
process, is free of user-specific parameters, and computationally more efficient.
Simulation results show that the proposed method is consistent for variable
selection and has smaller integrated mean squared errors (IMSE) than using
Lasso penalty.

The rest of the chapter is organized as follows. Section 2 introduces the
intuition and algorithm of the original Rodeo of Lafferty and Wasserman
(2008). Section 3 sets up a model for the semiparametric SIM of Ichimura
(1993), introduces the SIM-Rodeo, and discusses the asymptotic properties of
SIM-Rodeo in variable selection and estimation of the semiparametric SIM.
Section 4 provides Monte Carlo simulation results for SIM-Rodeo in
comparison with SIM-Lasso of Zeng et al. (2012). Section 5 concludes.

2. RODEO
This section introduces the idea behind the Rodeo proposed by Lafferty and
Wasserman (2008). We first provide an illustration of the Rodeo algorithm,
and then, a simple numerical example with one relevant explanatory variable
and one irrelevant noise variable.

2.1. Algorithm

Let yi ∈R be the dependent variable, Xi ∈R
k be an observation of k variables,

X ¼ ðX 0
1; … ;X 0

nÞ0 be a matrix of n observations, and x∈R
k be a local

estimation point.
The Rodeo algorithm uses the kernel estimator:

m̂hðxÞ ¼
Pn

i¼1 yiKðXi; x; hÞPn
i¼1 KðXi; x; hÞ

; ð1Þ

67Variable Selection in Sparse Semiparametric Single Index Models



where h is a vector of length k that is equal to the number of potential explana-
tory variable, hj is the jth element of h that is corresponding to variable j, and
KðXi; x; hÞ is the standard notation of a product kernel that takes the form

KðXi; x; hÞ ¼ ∏
k

j¼1
κ

Xij � xj
hj

� �
; ð2Þ

where κ ð⋅Þ is usually given as a one-variable density function. Xij is the ith
observation of the jth variable and xj is the jth variable of a local estimation
point x. In what follows, we keep the same notation except that in the SIM, our
kernel becomes a one-variable density function instead of a product kernel.

The Rodeo algorithm takes the derivative of the kernel estimator (1) with
respect to each bandwidth hj . Let

ι ¼
1

⋮
1

0
B@

1
CA; ð3Þ

and

Wx ¼
K X1; x; hð Þ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ K Xn; x; hð Þ

0
B@

1
CA: ð4Þ

With fairly easy derivation, we can get the closed form of an estimate of the
derivative:

Zj ≡
∂ m̂hðxÞ
∂ hj

¼ ð ι 0Wx ι Þ�1 ι 0
∂Wx

∂ hj
y� ð ι 0Wx ι Þ�1 ι 0

∂Wx

∂ hj
ι ð ι 0Wx ι Þ�1 ι 0Wxy

≡
Xn
i¼1

Gj Xi; x; hð Þyi;

ð5Þ

where y ¼ ðy1; … ; ynÞ is a vector of observations on the dependent variable. The
conditional variance of Zj can be calculated by:

s2j ≡VarðZj |X Þ

¼ σ 2
Xn
i¼1

G2
j Xi; x; hð Þ;

ð6Þ
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where σ 2 is the variance of the error term in the model. A detailed derivation
can be found in Section 3 of Lafferty and Wasserman (2008). Here we skip the
derivation for the kernel regression. However, we provide a detailed derivation
for the SIM in Section 4. Now we get all the ingredients of the Rodeo algorithm.
The Rodeo algorithm is as follows.

Algorithm 1. Rodeo (Lafferty & Wasserman, 2008)

(1) Select constant 0< α < 1 and initial bandwidth

h0 ¼ c0
log log n

where c0 > 0 is sufficiently large.
(2) Initialize the bandwidths, and activate all covariates:

• hj ¼ h0, j ¼ 1;… ; k:

• A ¼ 1;… ; kf g:
(3) While A is nonempty, do for each j ∈A:

• compute the estimated derivative and its conditional variance: Zj and
sj using Eqs. (5) and (6);

• compute the threshold λ j ¼ ŝj
ffiffiffiffiffiffiffiffiffiffiffiffi
2logn

p
; and

• if Zj

�� �� > λ j, then set hj← α hj ; otherwise remove j from A (i.e.,
A←A� j

� 	
).

(4) Output bandwidths h� ¼ h1; … ; hkð Þ and estimator m̂h� xð Þ where m̂h� ðxÞ is
the kernel estimator with bandwidth h�.

The basic idea of the Rodeo algorithm by Lafferty and Wasserman (2008)
is to view the local bandwidth selection as variable selection in sparse
nonparametric kernel regression models by shrinking the bandwidths for
relevant variables while keeping the bandwidths of irrelevant variables relatively
large. The Rodeo algorithm is greedy as it solves for the locally optimal path
choice at each iteration and is shown to attain the consistency in mean square
error when it is applied to sparse nonparametric local linear model (Lafferty &
Wasserman, 2008 Corollary 5.2).1

2.2. A Numerical Example

Now we give a numerical illustration of how Rodeo works. First we generate
100 data points from the data generating process (DGP):

y ¼ 1
1þ e�x1

þ u; ð7Þ

where x1 is a random variable following uniform distribution with range
½�3; 3� and u is a random variable following the normal distribution with mean
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0 and standard deviation 0.02. The generated data of x1 and y are shown in
Fig. 1.

Next, we generate an irrelevant variable x2 that follows the same distribution
as x1 but is not included in the model. Thus, x2 and y are independent. The
generated data of x2 and y are shown in Fig. 2.

In the algorithm, we start by setting bandwidths hj for all j large enough so
that:

Xij � xj
hj

→ 0 as hj →∞ for all i: ð8Þ

Hence,

KðXi; x; hÞ→ ∏
k

j¼1
κ ð0Þ as hj →∞ for all i: ð9Þ

For simplicity of illustration, we assume the kernel function is an indicator
function κ ðXij ; xj ; hjÞ ¼ 1ð|Xij � xj |< hjÞ This makes our estimate a simple
average of the observations that satisfy Xij � xj

�� �� < hj for all j. If for all j,

Xij � xj
�� �� is smaller than the bandwidth hj , then we include observation i in the
average. Otherwise, we exclude it. At the beginning, when the bandwidths are
large enough, our estimate is the global mean since all observations are included
in the estimate. However, if we shrink the bandwidth hj, we exclude the
observations whose Xij has a distance greater than hj from xj. Hence, our

Fig. 1. y with x1.
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estimate changes from the global mean m̂h xð Þ ¼ y to a local mean m̂h xð Þ as
shown in Fig. 3.

However, this holds only for x1. Changing the bandwidth of x2 does not
have the same effect. A larger bandwidth of x2 includes more observations
whose Xi2 is far away from x2. If Xi2 does not determine yi, then including those

Fig. 2. y with x2.

Fig. 3. Shrinking bandwidth of x1 from a to b. Notes: m(h1, h2) (x1, x2) is the kernel
estimator (1) with bandwidth h1 for x1 and bandwidth h2 for x2. We start with a
large bandwidth a for both x1 and x2. Shrinking the bandwidth h1 from a to b leads

to a dramatic change in the kernel estimator.
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observations does not affect m̂hðxÞ. In fact, from Fig. 4 we can see that shrinking
the bandwidth of x2 does not affect the value of the estimate. This observation
gives us a criteria to distinguish between relevant explanatory variables and
irrelevant variables.

3. RODEO FOR SINGLE INDEX MODEL (SIM-RODEO)
In this section we show that Rodeo can be modified for the sparse
semiparametric linear SIMs by considering the bandwidths as the inverse of the
parameters which form the linear single index.

First, we give a short introduction to the general set up of the SIM model
and the Ichimura (1993) estimator we use for estimation. We also give detailed
intuition and description of our proposed greedy estimation procedure.

3.1. SIM

We consider a standard SIM,

y ¼ m x0 βð Þ þ u; ð10Þ

where β ¼ ð β 1; … ; β kÞ is a vector of coefficients. Under the sparsity condition,
we assume that β j ≠ 0 for j ≤ r and β j ¼ 0 for j > r. We also assume that the ran-
dom errors u are independent. However, we allow the presence of heteroskedas-
ticity to encompass a large category of models for binary prediction, e.g., Logit
and Probit models. The kernel estimator (Ichimura, 1993) we use is as follows:

Fig. 4. Shrinking bandwidth of x2 from a to b. Notes: m(h1, h2) (x1, x2) is the kernel
estimator (1) with bandwidth h1 for x1 and bandwidth h2 for x2. We start with a
large bandwidth a for both x1 and x2. Shrinking the bandwidth h2 from a to b has no

significant effect on the kernel estimator.
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m̂ x0 β ; hð Þ ¼
Pn

i¼1 yiK
X 0

i β�x0 β
h

� �
Pn

i¼1 K
X 0

i β�x0 β
h

� � ; ð11Þ

where K ⋅ð Þ is a kernel function. The semiparametric kernel regression looks for
the best β and h to minimize a weighted squared error loss. However, exact
identification is not available. If one blows up β and h simultaneously by multi-
plying the same constant, the kernel estimator would yield identical estimates
and losses. The standard identification approach is to set the first element of β
to be one (Ichimura, 1993).

As recent research pays more attention to high-dimensional data, most
literature make the sparsity assumption that many, if not most, of the
elements of β are zero. The previously mentioned identification method
appears to be unsuitable unless we have specific information that the true
value of the element of β that we set to be one is not zero. The most
popular regularization method, Lasso (Tibshirani, 1996), also fails for the
same reason. With L1 penalty, the algorithm can always achieve a lower loss
by shrinking β and h while keeping the ratio of β

h constant. This would lead
to a lower value in the penalty term without changing the value of the
squared error term.

In terms of variable selection and prediction, we only need to focus on
finding the best θ ≡ β

h : Hence, we can simplify the estimator to:

m̂ x0 θð Þ ¼
Pn

i¼1 yiK X 0
i θ � x0 θ


 �Pn
i¼1 K X 0

i θ � x0 θ

 � : ð12Þ

Instead of the standard two-stage estimation of Ichimura (1993), we
introduce a test-based greedy approach similar to Lafferty and Wasserman
(2008) where it was used for bandwidth selection in local linear regression. The
intuition for the method is that if xj is a relevant explanatory variable of y, then
we would expect that increasing the magnitude of θ j would lead to a significant
change in m̂ x0 θð Þ: This can be seen as giving higher weights to the observations
closer to x0 θ and lower weights to the observations further away from x0 θ .
However, if xj is not a relevant explanatory variable of y, then increasing the
magnitude of θ j can be seen as randomly reassigning weights for the
observations and will only result in a random (moderate) change in m̂ x0 θð Þ.
The influence of changing the magnitude of θ j on m̂ x0 θð Þ can be measured as

the derivative of ∂ m̂ x0 θð Þ
∂ θ j

. Hence, we can test if xj is a relevant explanatory

variable by testing if ∂ m̂ x0 θð Þ
∂ θ j

is statistically different from zero.

3.2. SIM-Rodeo

The basic idea of the modified Rodeo algorithm for SIM (SIM-Rodeo) is to
view the local bandwidth selection as a variable selection in sparse
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semiparametric SIM. The SIM-Rodeo algorithm amplifies the inverse of the
bandwidths for relevant variables while keeping the inverse of the bandwidths of
irrelevant variables relatively small. The SIM-Rodeo algorithm is greedy as it
solves for the locally optimal path choice at each iteration. SIM-Rodeo is able
to distinguish truly relevant explanatory variables from noisy irrelevant
variables. In addition, the algorithm is fast to finish the greedy steps.

Now we derive the Rodeo for SIM. First we introduce some notation. Let

Wx ¼
K X 0

1 θ � x0 θ

 �

⋯ 0

⋮ ⋱ ⋮
0 ⋯ K X 0

n θ � x0 θ

 �

0
B@

1
CA ð13Þ

where K ⋅ð Þ is the Gaussian kernel. The standard Ichimura (1993) estimator takes
the form:

m̂ x0 θð Þ ¼
Pn

i¼1 yiK X 0
i θ � x0 θ


 �Pn
i¼1 K X 0

i θ � x0 θ

 � ¼ ι 0Wx ιð Þ�1 ι 0Wxy: ð14Þ

The derivative of the estimator Zj with respect to θ j is

Zj ≡
∂ m̂ðx0 θ Þ
∂ θ j

ð15Þ

¼ ι 0Wx ιð Þ�1 ι 0
∂Wx

∂ θ j
y� ι 0Wx ιð Þ�1 ι 0

∂Wx

∂ θ j
ι ι 0Wx ιð Þ�1 ι 0Wxy

¼ ι 0Wx ιð Þ�1 ι 0
∂Wx

∂ θ j
y� ι m̂ x0 θð Þð Þ:

ð16Þ

For the ease of computation, let

Lj ¼

∂ log K X 0
1 θ � x0 θ


 �
∂ θ j

⋯ 0

⋮ ⋱ ⋮

0 ⋯
∂ log K X 0

n θ � x0 θ

 �
∂ θ j

0
BBBBBBB@

1
CCCCCCCA
: ð17Þ

Note that:

∂Wx

∂ θ j
¼ WxLj ; ð18Þ
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which appears in Eq. (16). With the Gaussian kernel, K tð Þ ¼ e�
t2
2 , then Lj

becomes:

Lj ¼

� 1
2
∂ X 0

1 θ � x0 θ

 �2

∂ θ j
⋯ 0

⋮ ⋱ ⋮

0 ⋯ � 1
2
∂ ðX 0

n θ � x0 θ Þ2
∂ θ j

0
BBBBBBBBB@

1
CCCCCCCCCA

¼
� X 0

1 θ � x0 θ

 �

X1j � xj

 �

⋯ 0

⋮ ⋱ ⋮

0 ⋯ � X 0
n θ � x0 θ


 �
Xnj � xj

 �

0
BBB@

1
CCCA;

where X1j and Xnj are the jth elements of vectors X1 and Xn. And xj is the jth
element of vector x. To simplify the notation, let Bx ¼ ι 0Wx ιð Þ�1 ι 0Wx: Then,
the derivative Zj becomes:

Zj ¼ ι 0Wx ιð Þ�1 ι 0
∂Wx

∂ θ j
y� ι m̂ x0 θð Þð Þ

¼ BxLj I � ιBxð Þy
≡Gj x; θð Þy:

ð19Þ

Note that now we are using a different notation with Gjð⋅Þ. In Section 2, Gjð⋅Þ
is a three-argument function and GjðXi; x; hÞ is a scalar. However, in this section,
Gjð⋅Þ is a two-argument function and Gjðx; θ Þ is a vector of length n. We are
aware that this change of notation may cause confusion. Nevertheless, Gjð⋅Þ in
Sections 2 and 3 play the same role as the weights of y in Zj. So we think
sticking with Gjð⋅Þ would be easier for the readers to understand and compare
Rodeo and SIM-Rodeo as long as the difference is pointed out and noticed by
the readers.

Next, we give the conditional expectation and variance of Zj.

Zj ¼ Gj x; θð Þy ¼ Gj x; θð Þ m x0 βð Þ þ uð Þ; ð20Þ

E Zj |X

 � ¼ E Gj x; θð Þ m x0 βð Þ þ uð Þ|X
 � ¼ Gj x; θð Þm x0 βð Þ; ð21Þ

Var Zj |X

 � ¼ Var Gj x; θð Þ m x0 βð Þ þ uð Þ|X
 � ¼ σ0Gjðx; θ Þ0Gj x; θð Þσ; ð22Þ

where σ ¼ ð σ ðu1Þ; … ; σ ðunÞÞ0 is the vector of standard deviations of u. In the
algorithm, it is necessary to insert an estimate of σ . In Algorithm 1, Lafferty
and Wasserman (2008) suggest to use a generalized estimator of Rice (1984)
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under homoskedasticity. In our Algorithm 2, we allow the errors to be hetero-
skedastic as in Logit and Probit models and estimate σ ðuiÞ using the estimator
σ̂ 2ðuiÞ ¼ mðx0i θ̂ Þð1�mðx0i θ̂ ÞÞ:

SIM-Rodeo is described in Algorithm 2, which is a modified algorithm of
Rodeo (Lafferty & Wasserman, 2008).

Algorithm 2. SIM-Rodeo

(1) Select a constant 0 < α < 1 and the initial value:

θ 0 ¼ c0log log n

where c0 is sufficiently small. Compute Zj with θ j ¼ θ 0 for all j.
(2) Initialize the coefficients θ , and activate all covariates:

• θ j ¼
θ 0 Zj > 0

� θ 0 otherwise;
j ¼ 1;… ; k:

(

• A ¼ 1;… ; kf g.
(3) While A≠∅ is nonempty, do for each j ∈A:

• compute Zj and sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Zj |X


 �q
using Eqs. (19) and (22)

respectively;

• compute the threshold λ j ¼ sj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
;

• if Zj

�� �� > λ j ; then set θ j←
θ j

α ; Otherwise, remove j from A (i.e.,
A←A� j

� 	
); and

(4) Output θ̂ ¼ θ 1; … ; θ kð Þ and estimator m̂ x0 θ̂
� �

:

Notice that in Algorithm 1, when selecting bandwidth for local linear and
local constant regression, the bandwidth is always positive. Hence, we do not
have to worry about the sign of the bandwidth. However, in our SIM, θ is the
ratio of β and the bandwidth. Since β could be either positive or negative, θ
could also take positive or negative values. In Algorithm 2, we propose to use
the sign of the derivative estimate Zj as the sign of θ j. Our method is based on
the observation that if θ j and θ j0 have the same sign, then their respective Z
statistic Zj and Zj0 will also have the same sign. Hence, SIM-Rodeo will give
relatively correct signs to each θ , i.e., all the positive θ will be given the same
sign and all the negative θ will be given the same sign. A similar method is
applied by Ichimura (1993) where the value positive one is given to the first β to
ensure identification. Under the sparsity assumption, it is problematic to
arbitrarily assign a magnitude greater than zero to any θ since the true value
could be zero. However, it is safe to assume the sign of one of the θ to be
positive or negative since positive zero and negative zero will not affect the
relative scale of θ . Once again, due to the the identification issue with SIM,
exact identification of θ is not available. However, signs of θ can be obtained
relatively.

76 JIANGHAO CHU ET AL.



We start by setting θ j ¼ θ 0 that is close to zero. Hence, X 0
i θ � x0 θ


 �
are

close to zero and K X 0
i θ � x0 θ


 �
are close to K 0ð Þ. This means our estimator

starts with the simple average of all observations, y. If the derivative of θ j is
statistically different from zero, we amplify θ j : If xj is indeed a relevant
explanatory variable, then the weights K X 0

i θ � x0 θ

 �

change according to xj :
The estimator will give higher weights to observations close to x0 θ and lower
weights to observations away from x0 θ :

3.3. Asymptotic Properties of SIM-Rodeo

We make the following assumptions.

A1. The density f xð Þ of x1; … ; xkð Þ is uniform on the unit cube.

A2. lim infn→∞min1≤ j ≤ r mjj ⋅ð Þ
�� �� > 0 where mjjð⋅Þ is the second derivative

of mð⋅Þ.

A3. All derivatives of m ⋅ð Þ up to and including fourth order are bounded.

A1 greatly simplifies the proof of Theorem 1. However, it is not necessary as
shown in our Monte Carlo designs where x’s are not uniform distributed. A2 is
crucial for SIM-Rodeo. As shown in Lemma 1, the expectation of Zj for a
relevant variable will be zero if the second derivative of mð⋅Þ is zero. As a result,
we will not be able to distinguish relevant variables from irrelevant variables
through Zj, since in both cases, the expectation of Zj is zero.

In the statement of Theorem 1, we follow the notation of Lafferty and
Wasserman (2008) and write Yn ¼ ~O anð Þ to mean that Yn ¼ O bnanð Þ where bn is

logarithmic in n. And we write an ¼ Ω bnð Þ if lim infn
an
bn

��� ��� > 0 and an ¼ ~Ω bnð Þ if

an ¼ Ω bncnð Þ where cn is logarithmic in n.

Theorem 1. Suppose that A1, A2, and A3 hold. In addition, suppose that:

min
j ≤ r

mjj x0 θð Þ
�� �� ¼ ~Ω 1ð Þ ð23Þ

and

max
j ≤ r

mjj x0 θð Þ
�� �� ¼ ~O 1ð Þ: ð24Þ

Then the SIM-Rodeo outputs θ̂ satisfying

Pr θ j ¼ θ 0 for all j > r

 �

→ 1 as n→∞ ð25Þ
and

Pr θ j > θ 0 for all j ≤ r

 �

→ 1 as n→∞: ð26Þ
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Proof: see Appendix.

Theorem 1 shows that under the given assumptions and conditions, the
coefficients θ for relevant variables will always be amplified while the
coefficients θ for irrelevant variables will always stay at the initial value. Hence,
we are able to consistently select the relevant variables by checking whether the
coefficients θ is amplified by the SIM-Rodeo.

Remark 1. Theorem 1 shows the consistency of the variable selection by
the SIM-Rodeo. However, the consistency of estimating mð⋅Þ is not proved
in Theorem 1. We conjecture that the consistency holds as supported by
our simulation results. We leave this extension for a future work.

Remark 2. An alternative consistent estimation procedure is as follows.
First, we use the proposed SIM-Rodeo algorithm for variable selection.
Then, we use the selected explanatory variables to estimate β̂ and
m̂ðx0 β̂ ; hÞ by using either Ichimura (1993) or Klein and Spady (1993).
Since Theorem 1 shows that the SIM-Rodeo consistently selects the rele-
vant variables, the methods of Ichimura (1993) and Klein and Spady
(1993) would yield consistent estimation of mð⋅Þ after the consistent vari-
able selection via the SIM-Rodeo.

4. MONTE CARLO
This section examines the performance of SIM-Rodeo using Monte Carlo
simulation compared with SIM-Lasso (Zeng et al., 2012) and ML (Klein &
Spady, 1993). We first describe the designs of the DGPs. Then a brief
introduction of SIM-Lasso is provided. At the end of this section, we give a
comprehensive discussion on the simulation results.

4.1. Simulation Designs

We follow the simulation designs of Klein and Spady (1993) where the DGP is
given by:

y�i ¼ β 1xi1 þ β 2xi2 þ β 3xi3 þ⋯þ β kxik þ ui for i ¼ 1; … ; n ð27Þ

where

β j ¼
1 if j ¼ 1; 2;

0 otherwise:

(
ð28Þ

The observed variable yi is generated by:

yi ¼
1 if y�i ≥ 0;

0 otherwise:

(
ð29Þ
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The x’s are independently and identically distributed. x1 is a chi-squared variate
with three degrees of freedom truncated at 6 and standardized to have zero
mean and unit variance; x2 is a standard normal variate truncated at ± 2 and
similarly standardized. All the other x’s are irrelevant variables and follow uni-
form distribution between �2 and 2.

We consider two link functions as shown in Fig. 5 (Designs 1 and 2). In
Design 1, the ui’s are standard normal. In Design 2, they are normal with mean

zero and variance 0.25 1þ v2i

 �2

where vi ≡ β 1xi1 þ β 2xi2. In both designs, ui’s
are independently distributed.

The probability Pr y ¼ 1|vð Þ of the two designs is shown in Fig. 5. Design 1 is
the standard Probit model. Design 2 is different from Design 1 in the sense that
it is not monotone and is steeper in the tails. Hence, Design 2 has a larger
curvature than Design 1 on average. As a result, SIM-Rodeo is expected to
preform better under Design 2 since A2 and Conditions (23) and (24) require the
second derivative of the link function to be greater than zero.

4.2. SIM-Lasso

We show results for SIM-Rodeo together with SIM-Lasso (Zeng et al., 2012) to
check the relative efficiency of SIM-Rodeo. The SIM-Lasso is introduced as an
application of the Lasso penalty under the framework of semiparametric SIMs

Fig. 5. Designs.
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for variable selection and estimation. Zeng et al. (2012) propose to solve the
following minimization problem:

min
a;b; β ;∥ β ∥¼1

Xn
j¼1

Xn
i¼1

yi � aj � bj β 0 Xi � Xj

 �� 2

wij þ λ
Xn
j¼1

bj
�� ��Xk

p¼1

β p

�� �� ð30Þ

where λ is a hyper-parameter as in standard Lasso practices and

wij ¼
K

X 0
i β�X 0

j β

h

� �
Pn

q¼1 K
X 0

q β�X 0
j β

h

� � : ð31Þ

The authors provide their code to the supplemental materials of their chapter
which is available on the website of Journal of Computational and Graphical
Statistics.

4.3. Results

We report θ ¼ β
h


 �
from SIM-Rodeo and SIM-Lasso both for the estimator of

Ichimura (1993). The results of the simulations are presented in Tables 1�4.
Notice that for both algorithms, large values of θ indicate that the associated
variables are relevant explanatory variables while small values of θ indicate
that the associated variable are irrelevant variables. In both designs, only the
first two variables are relevant explanatory variables as in the description of the

Table 1. Design 1 ðk ¼ 5Þ.
θ 1 θ 2 θ 3 θ 4 θ 5 IMSE of m x θð Þ

n ¼ 100 Rodeo 0.5739 0.3422 0.0713 0.0693 0.0724 0.0774

Lasso 0.6032 0.5822 0.0223 0.0228 0.0235 0.1136

ML 15.7902 11.3961 2.2156 2.2339 2.2334 0.3103

n ¼ 200 Rodeo 0.8063 0.5095 0.1811 0.1894 0.1904 0.0780

Lasso 0.6572 0.6348 0.0142 0.0141 0.0142 0.0740

ML 13.6022 11.6887 1.5990 1.6322 1.6093 0.2356

Table 2. Design 2 ðk ¼ 5Þ.
θ 1 θ 2 θ 3 θ 4 θ 5 IMSE of m x θð Þ

n ¼ 100 Rodeo 0.2486 0.1452 0.0160 0.0120 0.0057 0.0474

Lasso 0.5241 0.4919 0.0332 0.0334 0.0357 0.1137

ML 10.0696 4.5824 1.5773 1.6003 1.5993 0.1858

n ¼ 200 Rodeo 0.5022 0.2803 0.0296 0.0393 0.0426 0.0369

Lasso 0.6547 0.6031 0.0209 0.0192 0.0207 0.0616

ML 7.8625 4.7588 0.8896 0.8920 0.9034 0.1321
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Table 3. Design 1 ðk ¼ 20Þ.
n ¼ 100 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Rodeo 0.2349 0.2117 0.0032 0.0048 0.0027 0.0049 0.0013 0.0080 0.0009 0.0023 0.1487

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Rodeo 0.0093 0.0066 0.0037 0.0045 0.0026 0.0036 0.0016 0.0033 0.0030 0.0016

θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Lasso 0.4140 0.3904 0.0036 0.0036 0.0044 0.0045 0.0046 0.0048 0.0047 0.0047 0.2105

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Lasso 0.0063 0.0041 0.0056 0.0047 0.0048 0.0057 0.0034 0.0047 0.0045 0.0048

n ¼ 200 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Rodeo 0.4191 0.3404 0.0036 0.0104 0.0182 0.0120 0.0109 0.0118 0.0115 0.0060 0.1238

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Rodeo 0.0077 0.0123 0.0086 0.0082 0.0074 0.0147 0.0105 0.0156 0.0105 0.0081

θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Lasso 0.4308 0.4120 0.0021 0.0029 0.0026 0.0024 0.0023 0.0023 0.0018 0.0019 0.1572

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Lasso 0.0021 0.0025 0.0026 0.0026 0.0020 0.0027 0.0022 0.0026 0.0025 0.0025
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Table 4. Design 2 ðk ¼ 20Þ.
n ¼ 100 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Rodeo 0.0692 0.0479 0.0007 0.0011 0.0000 0.0007 0.0000 0.0001 0.0004 0.0001 0.0611

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Rodeo 0.0004 0.0001 0.0000 0.0000 0.0000 0.0007 0.0000 0.0000 0.0002 0.0000

θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Lasso 0.3488 0.2933 0.0104 0.0120 0.0121 0.0111 0.0106 0.0117 0.0106 0.0091 0.2078

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Lasso 0.0094 0.0109 0.0113 0.0093 0.0117 0.0120 0.0123 0.0112 0.0107 0.0106

n ¼ 200 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Rodeo 0.1958 0.1822 0.0018 0.0010 0.0024 0.0017 0.0008 0.0026 0.0022 0.0025 0.0517

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Rodeo 0.0014 0.0024 0.0024 0.0002 0.0003 0.0041 0.0005 0.0013 0.0036 0.0029

θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ 10 IMSE

Lasso 0.4324 0.3810 0.0058 0.0069 0.0066 0.0064 0.0059 0.0059 0.0063 0.0055 0.1728

θ 11 θ 12 θ 13 θ 14 θ 15 θ 16 θ 17 θ 18 θ 19 θ 20

Lasso 0.0058 0.0057 0.0053 0.0054 0.0067 0.0069 0.0063 0.0072 0.0052 0.0049
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DGPs. We consider different values for n∈ 100; 200f g and k∈ 5; 20f g where n is
the number of observations in the training sample and k is the total number of
relevant explanatory variables and irrelevant variables for each observation. We
also present results using the ML of Klein and Spady (1993) for the low-
dimension case (k ¼ 5). We skip the ML for the high-dimension case (k ¼ 20)
since ML suffers dramatically from the curse of dimensionality. ML is strictly
dominated by the other methods even in the low-dimension case. And
theoretically, it would only get worse when dimension increases. We report the
Monte Carlo average of the value of θ̂ obtained by the methods and the IMSE.

IMSE ¼
Z

ðm̂ðx0 θ̂ Þ �mðx0 β ÞÞ2f ðxÞdx ð32Þ

of the estimate m̂ x0 θ̂
� �

using the θ̂ obtained where f ðxÞ is the probability den-
sity function of x as in A1.

From the simulation results, we can see that under the sparsity condition,
SIM-Rodeo and SIM-Lasso both outperform the traditional ML method of Klein
and Spady (1993) which does not take advantage of the sparsity structure in the
DGP. While among the two methods that take into account the sparsity structure,
SIM-Rodeo outperforms SIM-Lasso in both variable selection and estimation. In
Design 2, SIM-Rodeo dominates SIM-Lasso in small and large samples and
various degrees of sparsity. In addition, SIM-Rodeo works better under Design 2
than Design 1. This is consistent with our analytical result since the expectation of
the derivative estimate Zj is depending on the second derivative of mð⋅Þ. When the
second derivative of mð⋅Þ is close to zero, the expectations of Zj of relevant
explanatory variables are also close to zero which makes the difference between
relevant variables and irrelevant variables smaller. Moreover, the conditions (23)
and (24) in Theorem 1 state that SIM-Rodeo requires a larger value for the
second derivative of mð⋅Þ when the number of observations n increases. As a
result, when n increases from 100 to 200, the already small second derivative in
Design 1 becomes even more problematic. That is why in Table 1, the IMSE of
SIM-Rodeo for Design 1 does not benefit from the increase of sample size. In
summary, SIM-Rodeo and SIM-Lasso both have excellent performance in terms
of variable selection. However, SIM-Rodeo generally has a smaller IMSE than
SIM-Lasso. ML should not be used when sparsity is assumed since both SIM-
Rodeo and SIM-Lasso have considerably better performance.

5. CONCLUSIONS
The basic idea of the Rodeo algorithm by Lafferty and Wasserman (2008) is to
view the local bandwidth selection as variable selection in sparse nonparametric
kernel regression by shrinking the bandwidths for relevant variables while
keeping the bandwidths of irrelevant variables relatively large. The Rodeo
algorithm is greedy as it solves the locally optimal path choice at each stage
which is shown to attain the asymptotic optimality in mean square error for
sparse nonparametric local linear or local constant kernel regression models
(Lafferty & Wasserman, 2008 Corollary 5.2).
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In this chapter, we propose a new algorithm, based on the Rodeo, for
variable selection and estimation for the sparse semiparametric linear SIMs by
viewing the bandwidths as the inverse of the parameters which form the linear
single index. The basic idea of the modified Rodeo algorithm for SIM (which we
call SIM-Rodeo) is to view the local bandwidth selection as a variable selection
in sparse semiparametric SIM by amplifying the inverse of the bandwidths for
relevant variables while keeping the inverse of the bandwidths of irrelevant
variables relatively small. The SIM-Rodeo algorithm is greedy as it solves the
locally optimal path choice at each stage which can also be shown to attain the
asymptotic optimality in mean square error for sparse semiparametric SIMs.
The SIM-Rodeo method is able to distinguish truly relevant explanatory
variables from noisy irrelevant variables and gives a “competitive” estimator for
the model. In addition, the algorithm is fast to finish the greedy steps.

We compare the SIM-Rodeo with a Lasso-type approach by Zeng et al.
(2012) for estimation and variable selection in SIM, which Zeng et al. (2012) call
SIM-Lasso. Our Monte Carlo simulation shows that SIM-Rodeo outperforms
SIM-Lasso in variable selection and also in estimation. The new method is
superior to the usual Lasso-type penalty in estimation because SIM-Rodeo does
not introduce bias from using the additive Lasso penalty and is computationally
more efficient. Simulation results also show that the proposed SIM-Rodeo is
consistent for variable selection and has smaller IMSEs than using SIM-Lasso.

NOTE
1. We can also make Rodeo for local constant kernel regression models as we will

demonstrate in this chapter later.
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APPENDIX: PROOF OF THEOREM 1
We follow the notation of Lafferty and Wasserman (2008) and write
Yn ¼ ~OP anð Þ to mean that Yn ¼ OP bnanð Þ where bn is logarithmic in n. And we

write an ¼ Ω bnð Þ if lim infn an
bn

��� ���> 0 and an ¼ ~Ω bnð Þ if an ¼ Ω bncnð Þ where cn is

logarithmic in n.
Define

μ j θð Þ ¼ ∂

∂ θ j
E m̂ θ xð Þ �m xð Þ|X1; … ;Xn½ �;

which is the derivative of the conditional bias. The first lemma analyzes μ j θð Þ
and E μ j θð Þ
 �

under the assumption that f is uniform. The second lemma ana-
lyzes the variance. The third lemma bounds the probabilities P Zj

�� ��≥ λ j

 �

in
terms of tail inequalities for standard normal variables.

In each of these lemmas, we make the following assumptions. We assume
that f is uniform, K is a Gaussian kernel, and α > 1. Moreover, without loss of
generality, we make use of the following set B of coefficients where θ 0 > 0:

B ¼ θ ¼ θ 1; … ; θ kð Þ ¼ α t1 θ 0; … ; α tr θ 0;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
r terms

θ 0; … ; θ 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k�r terms

0
@

1
A: 0≤ tj ≤Tn; j ¼ 1;… ; r

8<
:

9=
;;

where Tn ≤ c1log n. Finally, we assume that:

r ¼ O 1ð Þ;

k ¼ O
log n

log log n

0
@

1
A;

θ 0 ¼ c0 log log n:

The proofs of the lemmas can be found in Lafferty and Wasserman (2008).

Lemma 1. For each θ ∈B,

E μ j θð Þ
 � ¼
ν 2mjj x θð Þ

θ j
þ gj xR θ Rð Þ

θ j
; j ≤ r;

0; j > r;

8><
>:

where ν 2I ¼ R uuTK uð Þdu and gj xR θ Rð Þ depend only on the relevant
variables and bandwidths, and satisfies
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gj xR θ Rð Þ
�� �� ¼ O

X
l ≤ r

sup
x

mjjll x θð Þ
�� ��

θ 2
l

 !
:

Furthermore, for any δ > 0,

Pr max
θ ∈B1≤ j ≤ k

μ j θð Þ � E μ j θð Þ
 ��� ��
sj θð Þ

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ log n

p
log log n

≤
1

n δ σ 2= 8c0ð Þ

 !

where

s2j θð Þ ¼ C θ 2
j

n
∏
k

l¼1
θ l ;

with

C ¼ σ 2

R
K2 uð Þdu
f xð Þ :

Lemma 2. Let ν j θð Þ ¼ Var Zj |X1; … ;Xn

 �

. Then

Pr max
θ ∈B1≤ j ≤ k

ν j θð Þ
s2j θð Þ � 1

�����
����� > ε

 !
→ 0;

for all ε > 0.

Lemma 3. For any c> 0 and each j > r;

Pr Zj θ 0ð Þ
�� �� > λ j θ 0ð Þ
 � ¼ o

1
nc

� �
:

Uniformly for θ ∈B, c> 0 and j ≤ r;

Pr Zj θð Þ
�� �� < λ j θð Þ
 �

≤Pr N 0; 1ð Þ> ν j mjj x θð Þ
�� ��þ zn
sj θð Þ θ j

� �
þ o

1
nc

� �
;

where zn ¼ O θ �3
j

� �
:

Proof of Theorem 1. Let At be the active set at step t. Define St to be the event
that At ¼ 1;… ; rf g. We want to show that:

Pr S1ð Þ→ 1;

from which the theorem follows.

Fix c> 0. In what follows, we let ξ n cð Þ denote a term that is o n�cð Þ; we will
suppress the dependence on c and simply write ξ n:
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At step t ¼ 1, define the event

B1 ¼ Zj

�� �� > λ j for all j ≤ r
� 	

∩ Zj

�� �� < λ j for all j > r
� 	

:

Thus, A1 ¼ B1. We claim that:

Pr Bc
1


 �
≤O

1
n

� �
þ ξ n:

From Lemma 3, when j > r,

Pr max
j > r

Zj

�� ��> λ j

� �
≤
Xk
j¼rþ1

Pr Zj

�� �� > λ j

 �

≤ d ξ n ¼ ξ n:

When j ≤ r,

Pr Zj

�� �� < λ j for some j ≤ r

 �

≤O
1
n

� �
þ ξ n:

Hence,

Pr θ j ¼ θ 0 for all j > r

 �

→ 1 as n→∞:

and

Pr θ j > θ 0 for all j ≤ r

 �

→ 1 as n→∞
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