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The equity premium, return on equity minus return on risk-free asset, is expected to be positive. We consider
imposing such positivity constraint in local historical average (LHA) in nonparametric kernel regression
framework. It is also extended to the semiparametric single index model when multiple predictors are used.
We construct the constrained LHA estimator via an indicator function which operates as “model-selection”
between the unconstrained LHA and the bound of the constraint (zero for the positivity constraint). We
smooth the indicator function by bagging, which operates as “model-averaging” and yields a combined
forecast of unconstrained LHA forecasts and the bound of the constraint. The local combining weights are
determined by the probability that the constraint is binding. Asymptotic properties of the constrained LHA
estimators without and with bagging are established, which show how the positive constraint and bagging
can help reduce the asymptotic variance and mean squared errors. Monte Carlo simulations are conducted
to show the finite sample behavior of the asymptotic properties. In predicting U.S. equity premium, we
show that substantial nonlinearity can be captured by LHA and that the local positivity constraint can
improve out-of-sample prediction of the equity premium.

KEY WORDS: Bagging; Equity premium; Model averaging; Nonparametric local historical average
model; Positivity constraint; Semiparametric single index model.

1. INTRODUCTION

Goyal and Welch (GW, 2008) showed that the historical av-
erage (HA) forecast of the equity premium (excess return on
equity over return on risk-free asset) performs better than fore-
casts from the predictive regression using covariates (predic-
tors). GW found that numerous economic predictor variables
with in-sample significance for the excess stock returns fail to
deliver out-of-sample forecasting gains relative to the HA. In
GW the benchmark model to beat in out-of-sample forecasting
was the “global historical average” (GHA), which is formed
from the sample average of the historical equity premium time
series over rolling fixed windows or expanding windows.

While the literature has generally confirmed that it is very
hard to beat GHA, there are a few limited demonstrations of
some success in beating this simple benchmark GHA. In partic-
ular we note the following three approaches here. The first one
is Campbell and Thompson (CT 2008), who asked a question in
their article title, “Predicting the equity premium out of sample:
Can anything beat the historical average?” They argued that the
answer to this question can be “Yes” if theoretically motivated
constraints (e.g., monotonicity, positivity) are imposed on the
predictive regression function. CT found that the predictive re-
gression models with some sensible constraints can do better
than GHA. The second one is Hillebrand, Lee, and Medeiros
(2014), who used bagging to smooth the CT’s constraint and

found that bagging can further improve CT’s constrained pre-
dictive regression forecasts. The third one is Chen and Hong
(2009), who showed that the nonparametric nonlinear forecasts
are better than the parametric linear regression forecasts.

This article extends the above literature by putting all of
these three approaches together. First, following Chen and Hong
(2009), we consider nonparametric local models to explore if
an LHA model can beat the GHA model.1 The answer from our
empirical analysis (Section 6) is clearly “Yes” using the same
dataset used in CT (2008). We find that LHA can easily beat
GHA for many predictors (especially for the annualized equity
premium in monthly frequency).2 Second, following CT (2008),
we consider imposing the local positivity constraint on the LHA

1Chen and Hong (2009) used the local linear model, while we use the Nadaraya-
Watson local constant model.
2See Section 6 for the definition of annualized excess return in monthly fre-
quency. Qt (k) in Equation (18) with k = 12 is the annualized excess return in
month t. Qt (k) with k = 1 is the monthly excess return in month t.
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equity premium forecast to explore if the constraint can improve
the LHA. The answer in Section 6 is also “Yes” for almost all
11 predictors for the annualized excess returns and also for the
monthly excess returns. Third, following Hillebrand, Lee, and
Medeiros (2014), we consider bagging to explore if smooth-
ing of the constraint can further help the positivity-constrained
LHA. The answer given in Section 6 to this possibility is again
“Yes” for most of the 11 predictors for the annualized equity
premium and for the monthly excess returns. In summary, these
three considerations give us three models—the LHA forecast,
the positivity-constrained LHA forecast (denoted as LHAp),
and the bagged positivity-constrained LHA forecast (denoted
as LHApb). LHApb is the new equity premium forecast using all
three features (local, constrained, and bagged).

The rest of the article is organized as follows. Section 2
presents four HA models—namely, GHA, LHA, LHAp, and
LHApb. In Section 3 we derive the asymptotic properties of
LHAp (Theorem 1), and LHApb (Theorem 2). We also show
that LHAp yields local “model-selection” between LHA model
and the bound of the constraint while LHApb operates as local
“model-averaging” of LHA and the bound of the constraint with
the model-averaging weights determined by the probability that
the constraint binds (Theorem 3). Extension to models with
multivariate predictors is considered in Section 4. Section 5
examines the finite-sample properties of these models via Monte
Carlo simulations. Section 6 evaluates their predictions of equity
premium. Section 7 concludes. The Appendix collects all the
technical proofs.

2. HISTORICAL AVERAGE MODELS

First, we consider the GHA model for the equity premium y
as

yt+1 = α + ut+1, (1)

where ut+1 is a disturbance term such that E(ut+1) = 0, t =
1, . . . , n. The least square estimator of the GHA α,

GHA : α̃ = 1

n

n∑
t=1

yt , (2)

is the unconstrained parametric estimator of α. Note that α̃ is a
random variable which is asymptotically normal with mean α.

Now we consider GHA and LHA models for the equity pre-
mium. The equity premium is the difference between returns
on risky equity and risk-free assets. As the equity premium is
the risk premium for the investment on the risky equity, it is
expected to be positive, that is α > 0. CT (2008) considered
imposing such positivity constraint on the linear parametric
(global) predictive regression model where the equity premium
y is predicted using a predictor x.

We consider such positivity constraint on the LHA model in
nonparametric kernel regression framework. Let y be the vari-
able to forecast and x be a predictor. For the ease of exposition,
we first consider the LHA model where x contains one regressor.
The case in which the predictor x is multivariate is treated in
Section 4. Let In = {xt−1, yt }nt=1 be an observed training sample
(drawn from a stationary process) at time t = n to train the LHA

α(x), and xt is the value of x at time t. The LHA model is

yt+1 = α(xt ) + ut+1, (3)

where α(xt ) = E(yt+1|xt ), ut+1 is a disturbance term such that
E(ut+1|xt ) = 0 by construction, t = 1, . . . , n. The LHA is the
local constant kernel estimator of α(x) trained using In

LHA : α̃(x) =
∑n

t=1 kh(xt−1 − x)yt∑n
t=1 kh(xt−1 − x)

, (4)

where h is a bandwidth, kh(·) = k(·/h), and k(·) is a kernel
function. α̃(x) is shown to be asymptotically normal, see Pagan
and Ullah (1999). The LHA equity premium forecast at time n
using the predictor value x = xn is α̃(xn).

We construct the constrained estimator via an indicator func-
tion. The indicator function selects either the unconstrained
LHA or the bound of the constraint (zero for the positivity
constraint) as a forecast of the equity premium. We consider the
constraint that the LHA of y conditional on x, α(x) = E(y|x),
exceeds some known lower bound, α1(x). That is,

α(x) > α1(x). (5)

This information is assumed to be known as a prior to a fore-
caster. Under this constraint (5), we can easily estimate α(x)
with

LHAp : ᾱ(x) = α̃(x)1[α̃(x)>α1(x)] + α1(x)1[α̃(x)≤α1(x)]. (6)

In the empirical example of this article, we consider the con-
straint with the constant bound α1(x) = 0, making ᾱ(x) the
LHA with positivity constraint (denoted as LHAp). Note that
LHAp operates as local “model-selection” between LHA α̃(x)
and α1(x) = 0 (the martingale difference, MD, model).

The LHAp estimator ᾱ(x) involves an indicator and is not
stable in the sense of Breiman (1996b) and Bühlmann and Yu
(2002). Following Bühlmann and Yu (2002), we smooth the
indicator function by bagging (Breiman 1996a). To define the
“bagging positivity-constrained LHA” of α(x), we construct a
bootstrap sample {x∗

t−1, y
∗
t }nt=1 which is used to derive a boot-

strap constrained estimator via (6) using the plug-in princi-
ple. The bagging predictor is an expectation of this estimator
over the bootstrapped samples. To be precise, denote α̃∗(j )(x)
as the unconstrained estimator of α(x) computed from the
jth bootstrapped sample {x∗(j )

t−1 , y
∗(j )
t }nt=1, j = 1, . . . , J . Then

the plug-in constrained estimator in the jth bootstrap sample
ᾱ∗(j )(x) = α̃∗(j )(x)1[α̃∗(j )(x)>α1(x)] + α1(x)1[α̃∗(j )(x)≤α1(x)]. We de-
fine the bagging positivity-constrained LHA estimator (denoted
as LHApb) as

LHApb : α̂(x) = 1

J

J∑
j=1

ᾱ∗(j )(x) := E∗ᾱ∗(x). (7)

in line with that of Breiman (1996a).
In the next section, we will show that

α̂(x) ≈ w(x)α̃(x) + (1 − w(x))α1(x). (8)

In Theorem 3, we show that the combining weight w(x) is
the limiting probability that the local positivity-constraint is
nonbinding. If w(x) > 0, bagging operates as convex “model-
averaging” locally instead of as “model-selection” and yields a
combined forecast of unconstrained LHA α̃(x) and the bound
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of the constraint α1(x). The underlying reason for the benefit
of imposing the (correct) constraint is the “shrinkage” principle
with (1 − w(x)) being the extent of the shrinkage toward the
bound. Breiman (1996a) showed that bagging estimator enjoys
a smaller mean squared error loss. Bühlmann and Yu (2002)
established the asymptotic properties of bagging estimators in
variable selection scenario and show that bagging estimator has
a much smaller variance, albeit introducing an additional bias.
In the next section, we will study sampling properties of LHAp

and LHApb.

3. ASYMPTOTIC PROPERTIES OF LOCAL
HISTORICAL AVERAGE

Denote Z as a standard normal random variable with CDF
�(·) and PDF ϕ(·). Furthermore, define Zb(x) = Z + b(x). The
following assumptions will be used to establish the asymptotic
properties of the constrained estimator and its bagging version.

Assumption A.

(A.1) As n → ∞, (i) γ (n, h) → ∞, (ii) h → 0, (iii)
γ (n, h)h2 → 0.

(A.2) γ (n, h)σ−1
α (x)(α̃(x) − α(x))

d→Z, where σα(x) > 0.
(A.3) α(x) = α1(x) + γ −1(n, h)σα(x)b(x) for some real func-

tion b(·).
Assumption (A.1) places conditions on the bandwidth param-

eter. Assumption (A.2) states that the unconstrained estimator
α̃(x) is asymptotically normal. We note that (A.2) is a high-
level assumption whose lower-level assumptions would depend
on the persistence in the predictor x: (a) when x is strongly
mean-reverting (stationary), γ (n, h) is a function of n and h,
usually taking the form of

√
nh. In this case, lower-level as-

sumptions that leads to (A.2) can be found in Li and Racine
(2007), for example; (b) when x is highly persistent or unit root,

γ (n, h) =
√∑n

t=1 K
(

x−xt−1

h

)
, with convergence in (i) and (iii)

of Assumption (A.1) adjusted to convergence in probability, and
lower-level assumptions for (A.2) were studied by Bandi (2004),
Wang and Phillips (2009a,b) among others. These lower level
assumptions are not repeated here. It can be seen that σα(x)
represents the asymptotic standard deviation of α̃(x), whose ex-
pression can be found in earlier references. We emphasize that
if γ (n, h)h2 → 0, the asymptotic bias term of α̃(x) vanishes
to zero. Assumption (A.3) describes that the distance between
α(x) and the lower bound α1(x) is controlled by the drift function
b(·). This assumption is only relevant when local asymptotics
are considered. It will be made explicit that asymptotic distri-
butions of constrained estimators will depend on b(·).

We first establish the following theorem for the constrained
estimator ᾱ(x).

Theorem 1. (i) Under (A.1)–(A.2), we have,

(a) when α(x) > α1(x), γ (n, h)σ−1
α (x)(ᾱ(x) − α(x))

d→ Z.

(b) when α(x) = α1(x) , Pr[γ (n, h)σ−1
α (x)(ᾱ(x) − α(x)) <

z]
d→ �(z) · 1{z≥0}.

(ii) If we further assume (A.3), then

γ (n, h)σ−1
α (x)(ᾱ(x) − α(x))

d→ Zb(x)1[Zb(x)>0] − b(x).

Remark 1. The proofs are collected in the Appendix. Theo-
rem 1 states the limiting distribution of ᾱ(x). Part (i) presents
the usual asymptotic distribution when the constraint is strict
and when the α(x) is on the boundary. The result confirms the
intuition that, as long as the constraint is strict, it will be met by
the unconstrained estimator α̃(x) when the sample size is large
enough. This leads to the conclusion that ᾱ(x) would be asymp-
totically equivalent to α̃(x). When α(x) is on the boundary, the
limiting CDF compresses all the mass of negative values at 0.
Part (ii) establishes the local asymptotic distribution of ᾱ(x) that
depends on the drift parameter b(x). It is easy to see that, if b(x)
is allowed to grow as n, Zb(x)1[Zb(x)>0] − b(x) will collapse to Z,

and result in (ii) becomes that in (i.a). Similarly, (ii)reproduces
the result of (i.b) when b(x) = 0.

The following corollary presents the asymptotic bias and vari-
ance of the constrained estimator.

Corollary 1. Under (A.1)–(A.3), it follows that

(a) limn→∞ γ (n, h)σ−1
α (x)E[ᾱ(x) − α(x)] = ϕ(b(x)) +

b(x)�(b(x)) − b(x).
(b) limn→∞ var[γ (n, h)σ−1

α (x)ᾱ(x))] = �(b(x)) +
b(x)ϕ(b(x)) − ϕ2(b(x)) − 2b(x)ϕ(b(x))�(b(x)) +
b2(x)�(b(x))[1 − �(b(x))].

Now we consider the LHApb with the constraint and bagging.
To apply bagging, we need an additional assumption:

Assumption A (continued).

(A.4) γ (n, h)σ−1
α (x)(α̃∗(x) − α̃(x))

d→ Z.

Assumption (A.4) requires the bootstrap consistency for the
unconstrained LHA estimator α̃(x). Validity for bootstrap for
local nonparametric estimators can be found in Hall (1992) or
Horowitz (2001).

Theorem 2. Under (A.1)–(A.4), we have,

γ (n, h)σα(x)−1(α̂(x) − α(x))
d→ Z − Zb(x)�(−Zb(x)) +

ϕ(−Zb(x)).

Corollary 2. If (A.1)–(A.4) hold, then

(a) limn→∞ γ (n, h)σ−1
α (x)E[α̂(x) − α(x)] = 2ϕ ∗

ϕ(−b(x)) − b(x)� ∗ ϕ(−b(x)).
(b) limn→∞ var[γ (n, h)σ−1

α (x)α̂(x)] = 1 + �2 ∗
ϕ′′(−b(x)) + �2 ∗ ϕ(−b(x)) − 2b�2 ∗ ϕ′(−b(x)) +
b2(x)�2 ∗ ϕ(−b(x)) + ϕ2 ∗ ϕ(−b(x)) − 2� ∗
ϕ′′(−b(x)) − 2� ∗ ϕ(−b(x)) + 2b(x)� ∗ ϕ′(−b(x)) −
2ϕ ∗ ϕ′(−b(x)) + 2(� · ϕ) ∗ ϕ′(−b(x)) − 2b(x)(� ·
ϕ) ∗ ϕ(−b(x)) − [2ϕ ∗ ϕ(−b(x)) − b(x)� ∗
ϕ(−b(x))]2.

Remark 2. We adopt the notation f ∗ g to denote the con-
volution of two functions f and g, defined as f ∗ g(s) =∫

f (t) × g(s − t)dt . Theorem 2 states the limiting distribution
of α̂(x) and Corollary 2 shows the explicit expression for its
asymptotic bias and variance. The dependence of the limiting
distribution on the drift parameter b(x) is explicit through Zb(x).
To compare the performance of bagging constrained estimator
α̂(x) and constrained estimator ᾱ(x) without bagging, we plot
asymptotic variance, squared bias and MSE against the drift
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function b(·) = b in Figure 1. Figure 1 should be understood for
GHA or for LHA for a fixed value of x. We notice from the figure
that there is a trade off using bagging, which reduce asymptotic
variance while incurring some additional bias. Overall, it is
clear that for a large range of values of b(·) (≥ 0.391), bagging
estimator enjoys a reduction in asymptotic MSE (AMSE).

Theorem 3. Under (A.1)–(A.4), we have

α̂(x) = α̃(x)�(Zb(x)) + α1(x)�(−Zb(x)) + Op

(
1

γ (n, h)

)
.

Remark 3. Theorem 3 establishes that the LHApb estimator
α̂(x) is a model averaging type estimator with a weight �(Zb(x))
assigned to the unconstrained estimator LHA α̃(x) and a weight
�(−Zb(x)) to the lower bound α1(x), up to order Op( 1

γ (n,h) ). Note
that as b(x) increases to infinity, that is, when the constraint be-
comes less binding, α̃(x) will receive probability weight that
goes to 1 (since �(Zb(x)) approaches 1). On the other hand,
as b(x) decreases to zero, that is, when the constraint becomes
more binding, �(Zb(x)) will become closer to a uniform random
variable (since �(z) is uniform by probability integral transfor-
mation). Overall, the performance of the bagging constrained
estimator, compared to constrained estimator and unconstrained
estimator, can be sensitive to the distance of the lower bound to
the true function value, as depicted in Figure 1.

4. SEMIPARAMETRIC EXTENSIONS

In this section, we extend the results developed in the previ-
ous section to models with multivariate predictors. It has been
long recognized that kernel regressions with multivariate re-
gressors suffer from the “curse of dimensionality,” that is, the
convergence rate of the kernel estimators will deteriorate as
the dimension of the regressors increases. To circumvent this
challenge, semiparametric models have become popular. Many
recent works have focused on the single index model that en-
joys easy implementation. For more details, see Gao (2007) and
references therein. This section will illustrate the extension on
single index model. We note that the results would be similarly
extended to other semiparametric models.

Consider the single index model of the form

yt+1 = α(X′
tβ0) + ut+1. (9)

The model for iid data has been extensively studied by many
authors, to cite a few, Ichimura (1993) and Härdle, Hall, and
Ichimura (1993). In time series setting, (9) is a special case
of the model studied by Xia, Tong, and Li (1999). The esti-
mation procedure follows from Ichimura (1993). Let α(z) =
E(yt+1|X′

tβ = z). Denote its (leave-one-out) Nadaraya-Watson
kernel estimator (with the sth observation omitted) as

α̃−s(z) =
∑n

t=1,t 
=s kh(X′
t−1β − z)yt∑n

t=1,t 
=s kh(X′
t−1β − z)

, (10)

where h is a bandwidth, and kh(·) = k(·/h), k(·) is a kernel func-
tion. The estimation of β0 and the choice of h can be performed
by selecting the orientation β and h that minimize a measure of
the distance. That is,

(β̂, ĥ) = arg min
β,h

Sn(β, h), (11)

where Sn(β, h) = ∑n
s=1[ys − α̃−s(X′

s−1β)]2. With β̂ and ĥ, the
semiparametric single index local historical average forecast at
time n using z = X′

nβ̂ is obtained from

α̃(X′
nβ̂) =

∑n
t=1 kĥ(X′

t−1β̂ − X′
nβ̂)yt∑n

t=1 kĥ(X′
t−1β̂ − X′

nβ̂)
. (12)

Conditions for α̃(X′
nβ̂) to satisfy Assumption (A.1)–(A.2) are

given in Xia, Tong, and Li (1999). Under the constraint of (5),
ᾱ(X′

nβ̂) and α̂(X′
nβ̂) can be defined analogous to (6) and (7),

respectively. It follows that Theorems 1–3 also hold in the semi-
parametric single index model.

5. FINITE SAMPLE PROPERTIES OF LOCAL
HISTORICAL AVERAGE

In this section, we study the finite sample performance of
the constrained estimator LHAp ᾱ(x) and its bagging version
LHApb α̂(x). We first consider the following data-generating
process (DGP)

DGP 1 : yt+1 = a(4xt − 2)3 + et+1, (13)

where

xt − μ = ρ(xt−1 − μ) + ut , (14)

with μ = 1, et and ut are iid normal r.v. with mean 0 and σe = 1
and σu = 0.5, and a ∈ {0.001, 0.004, 0.007, 0.010, 0.020} that
controls the distance between α(x) and the bound α1(x) = 0.
Hence, from Assumption (A.3), note that the value of a also
controls b(x) for given γ (n, h) and σα(x). We follow the design
of Chen and Hong (2009) to allow time series dependence in
the predictor and consider different values of ρ chosen from
{0, 0.1, 0.9, 1}. We evaluate the estimators of α(x) at x = 1
and 1.5. We compute the mean of squared errors out of 200
Monte Carlo replications. In each replication, we experiment
with sample size n = 50, 100, 200, and the bootstrap sample
size J = 100 for bagging in each replication. The relative mean
squared errors are reported in Table 1. We use cross-validation
to select a bandwidth h that minimizes the integrated mean
squared error and use this same bandwidth for the J = 100
bootstrap samples generated within each replication. The block
bootstrap method is used to generate bootstrap samples. We
consider the block length to be 1, 4, and 12 but the main results
do not change much. Therefore, the result for block length equal
to 4 will be reported. See Härdle, Horowitz, and Kreiss (2003)
and references therein for details of block bootstrap method for
time series.

Consider a forecasting model

Model : yt+1 = α(x) + ut+1. (15)

For a given evaluation predictor value x, we are inter-
ested in forming a forecast ŷn+1 = α(x|In), where In =
{xn0 , . . . , xn, yn0 , . . . , yn} is used to estimate a model. In this
section for simulation we fix both n0 = 1 and n = 50, 100, 200,

and estimate various models using the R ≡ n − n0 + 1 = n ob-
servations. In each Monte Carlo replication i (i = 1, . . . , 200),
200 values of {m̂(i)(x)} are computed at various fixed x val-
ues, and also 200 values of {û(i)(x) ≡ α(x) − m̂(i)(x)}200

i=1 are
computed. Here, m̂(x) = α̃(x), ᾱ(x), or α̂(x). We compute the
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Figure 1. Asymptotic properties of the local historical average with positivity constraint (LHAp, solid line) and the local historical average
with positivity constraint and bagging (LHApb, dashed line).

Monte Carlo average of the squared û(i)(x) over i for each eval-
uation point x, MSE ≡ 1

200

∑200
i=1 û(i)2(x). We compare the three

models pointwise for different values of x, the results are re-
ported in Table 1 at x = 1 and in Table 2 at x = 1.5. We report
the relative MSE of LHAp ᾱ(x) and LHApb α̂(x) w.r.t. that of
LHA α̃(x).

We summarize the main findings as follows. At x = 1, the
constrained estimator works better than unconstrained estima-
tor for small values of a in all sample sizes. The gain in
relative mean squared errors (MSELHAp/MSELHA) can be as
big as 50%. When a gets larger, the gain of constrained es-
timator starts to decrease, as noted by the increase of rela-
tive MSE. The constraint will become nonbinding eventually
and thus constrained estimator performs the same as the un-

constrained. Bagging does not tend to work for sample size
n = 50 for small values of a considered here. When a and n
get larger (a = 0.02, n = 100, 200), bagging improves upon the
constrained estimator for all values of ρ, with the gain in relative
mean squared error (MSELHApb/MSELHA) as large as 5%. This
is consistent with the theory that bagging estimator works better
than the constrained estimator when the sample size n and the
level of the function determined by a are of suitable proportion
for b(x). For large values of a, the relative mean squared errors
that are larger than 1 are due to sampling errors incurred in the
bootstrap procedure.

As shown from Table 2, the results become more apparent
when the estimators are evaluated at x = 1.5. Again, the role
of the constraint becomes less important as a gets larger. Bag-

Table 1. Simulation results for DGP 1: Evaluation point, x = 1

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a p pb p pb p pb p pb p pb p pb

ρ = 0 ρ = 0.1
0.001 0.522 0.561 0.556 0.589 0.619 0.644 0.506 0.525 0.624 0.657 0.461 0.483
0.004 0.516 0.539 0.586 0.595 0.572 0.579 0.606 0.633 0.573 0.583 0.534 0.548
0.007 0.644 0.661 0.673 0.657 0.545 0.525 0.670 0.679 0.753 0.766 0.555 0.549
0.010 0.619 0.638 0.707 0.676 0.765 0.725 0.784 0.779 0.720 0.720 0.614 0.598
0.020 0.689 0.681 0.813 0.790 0.818 0.750 0.742 0.715 0.939 0.919 0.745 0.695

ρ = 0.9 ρ = 1
0.001 0.605 0.634 0.475 0.521 0.538 0.582 0.412 0.356 0.518 0.551 0.587 0.616
0.004 0.550 0.580 0.638 0.663 0.785 0.804 0.481 0.442 0.672 0.712 0.649 0.687
0.007 0.757 0.771 0.610 0.623 0.809 0.813 0.474 0.397 0.811 0.844 0.862 0.901
0.010 0.615 0.623 0.483 0.494 0.946 0.942 0.583 0.447 0.825 0.821 0.895 0.893
0.020 0.707 0.700 0.707 0.697 1.000 0.986 0.743 0.597 0.981 0.897 0.998 0.993

NOTE: aThe column “p” denotes relative MSE of LHAp to that of LHA and “pb” denotes that of LHApb to LHA.
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Table 2. Simulation results for DGP 1: Evaluation point, x = 1.5

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a p pb p pb p pb p pb p pb p pb

ρ = 0 ρ = 0.1
0.001 0.555 0.552 0.398 0.389 0.723 0.692 0.534 0.524 0.510 0.489 0.674 0.641
0.004 0.682 0.618 0.759 0.708 0.824 0.715 0.613 0.539 0.607 0.541 0.843 0.763
0.007 0.900 0.802 0.796 0.732 0.957 0.905 0.834 0.754 0.976 0.917 0.990 0.936
0.010 0.997 0.965 0.983 0.920 0.964 0.956 0.8589 0.803 0.982 0.921 1.000 0.999
0.020 1.000 0.995 1.000 0.992 1.000 0.995 1.000 0.972 1.000 0.982 1.000 1.000

ρ = 0.9 ρ = 1
0.001 0.389 0.404 0.619 0.631 0.717 0.698 0.403 0.392 0.518 0.511 0.452 0.474
0.004 0.681 0.585 0.837 0.796 0.814 0.754 0.407 0.307 0.465 0.342 0.632 0.607
0.007 0.752 0.643 0.948 0.905 0.979 0.912 0.436 0.331 0.563 0.445 0.745 0.650
0.010 0.782 0.702 0.991 0.960 0.968 0.934 0.415 0.295 0.616 0.498 0.877 0.790
0.020 0.987 0.941 1.000 1.010 1.000 0.983 0.660 0.602 0.926 0.759 1.000 0.958

NOTE: aThe column “p” denotes relative MSE of LHAp to that of LHA and “pb” denotes that of LHApb to LHA.

ging’s role become more salient in this case, with gain in MSE
more than 10% when a = 0.007 and n = 50. As Figure 1 shows,
the AMSE of bagging estimator can be over 10% smaller than
constrained estimator. So the result we find is congruent with
the asymptotic theory. Bagging achieved the maximal amount
of gain in relative MSE (16%) when a = 0.02, ρ = 1 and
n = 100.

We next consider the following DGP

DGP 2 : yt+1 = a exp(x ′
tβ) + et+1, (16)

where β = (1, 0.5, 0.5)′, xt = (x1,t , x2,t , x3,t )′, xk,t , for k =
1, 2, 3, is generated independently from an AR(1) process as in
(14) with μk = 1, et and uk,t are iid normal r.v. with mean 0 and
σe = 1 and σu,k = 1, a ∈ {0.001, 0.004, 0.007, 0.010, 0.020}.
ρ is set to be 0 or 0.9. Other specifications on the simulation
are the same as those in DGP 1. We consider two forecasting
models. One is the multivariate local constant least square es-
timator or the Nadaraya-Watson (NW) estimator, and the other
is the estimator derived from the single index model (SIM).
The models are compared at evaluation point xt = (1, 1, 1)′.

The relative forecasting MSEs are reported in Table 3. It can
be seen from Table 3 that the constrained estimator and the
bagging constrained estimator achieve the uniform reduction in
MSE for the multivariate NW estimator and the SIM estimator.
Furthermore, as a gets larger, the bagging constrained estimator
tends to outperform the constrained estimator without bagging.
The role of imposing constraint becomes less important for
larger a. These findings are very much similar to those from
DGP 1.

6. EMPIRICAL PROPERTIES OF LOCAL
HISTORICAL AVERAGE

To put our proposed constrained local historical average es-
timators LHAp and LHApb in practice, we consider forecasting
U.S. equity premium. Equity premium or excess return is de-
fined as return of the S&P500 Index over the risk-free short-term
interest rate. Denote by Pt the S&P500 Index at month t. The
monthly simple one-month return from month t to month t + 1

Table 3. Simulation results for DGP 2: Evaluation point, x = (1, 1, 1)′

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

a p pb p pb p pb p pb p pb p pb

ρ = 0, NW ρ = 0, SIM

0.001 0.558 0.595 0.581 0.620 0.512 0.539 0.568 0.563 0.549 0.514 0.558 0.516
0.004 0.451 0.487 0.571 0.578 0.618 0.624 0.516 0.509 0.585 0.471 0.659 0.541
0.007 0.594 0.602 0.708 0.695 0.607 0.574 0.597 0.545 0.664 0.585 0.766 0.586
0.010 0.595 0.611 0.780 0.753 0.705 0.681 0.594 0.535 0.783 0.567 0.771 0.612
0.020 0.699 0.648 0.954 0.926 0.824 0.772 0.809 0.594 0.964 0.716 0.962 0.693

ρ = 0.9, NW ρ = 0.9, SIM
0.001 0.600 0.623 0.469 0.501 0.528 0.575 0.610 0.589 0.552 0.532 0.531 0.451
0.004 0.554 0.569 0.470 0.486 0.701 0.707 0.585 0.530 0.732 0.550 0.782 0.621
0.007 0.599 0.587 0.518 0.523 0.581 0.587 0.688 0.588 0.875 0.562 0.699 0.545
0.010 0.519 0.524 0.602 0.592 0.661 0.661 0.681 0.590 0.946 0.533 0.862 0.635
0.020 0.673 0.656 0.352 0.336 0.809 0.784 0.853 0.741 0.984 0.537 0.941 0.706

NOTE: aThe column “p” denotes relative MSE of LHAp to that of LHA and “pb” denotes that of LHApb to LHA. NW denotes the Nadaraya-Watson estimator, while SIM denotes the
estimator obtained from the single index model.
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Table 4. Empirical results

(a) Forecasting annualized equity premium Qt (k = 12) at month t

Forecast begins Forecast begins
from 1960:01 from 1980:01

LHA LHAp LHApb LHA LHAp LHApb

/GHA /GHA /GHA /GHA /GHA /GHA

d/p 0.974 0.963 0.963 0.984 0.975 0.978
e/p 0.979 0.966 0.966 0.990 0.981 0.981
se/p 1.045 1.016 1.009 0.986 0.978 0.976
b/m 1.012 0.999 0.993 1.007 0.997 0.993
roe 1.010 1.000 0.999 1.003 0.999 0.998
t-bill 1.013 0.986 0.983 1.002 0.996 0.993
lty 1.017 0.997 0.989 0.977 0.973 0.971
ts 1.071 1.031 1.017 0.923 0.929 0.932
ds 0.965 0.907 0.899 0.907 0.879 0.871
inf 0.990 0.975 0.979 1.044 1.013 1.008
nei 0.963 0.962 0.962 0.850 0.851 0.848
index 1.006 0.998 0.985 1.033 1.028 1.003

(b) Forecasting monthly equity premium Qt (k = 1) at month t

Forecast begins Forecast begins
from 1960:01 from 1980:01

LHA LHAp LHApb LHA LHAp LHApb

/GHA /GHA /GHA /GHA /GHA /GHA

d/p 1.015 0.993 0.991 0.996 0.994 0.990
e/p 1.028 0.992 0.991 0.993 0.992 0.989
se/p 1.035 1.007 1.003 1.002 1.000 0.996
b/m 1.008 1.004 0.998 0.999 0.999 0.995
roe 1.043 1.021 1.025 1.002 1.000 0.995
t-bill 1.047 1.026 1.015 1.017 1.024 1.002
lty 1.029 1.022 1.008 1.011 1.008 0.998
ts 1.025 1.011 1.024 1.090 1.053 1.046
ds 1.012 1.005 1.009 1.034 1.021 1.022
inf 1.011 0.999 0.997 1.034 1.025 1.023
nei 1.030 1.012 1.007 1.048 1.023 1.008
index 1.023 1.011 1.002 1.024 1.012 1.003

is defined as Rt (1) ≡ Pt+1/Pt − 1, and one-month excess return
is Qt (1) ≡ Rt (1) − rt with rt being the risk-free interest rate.

Following Campbell, Lo, and MacKinlay (1997, p. 10), we
define the k-period return from month t to month t + k as

Rt (k) ≡ Pt+k

Pt

− 1

=
(

Pt+k

Pt+k−1

)
× · · · ×

(
Pt+1

Pt

)
− 1

= (1 + Rt+k−1(1)) × · · · × (1 + Rt (1)) − 1 (17)

and following CT (2008) we define the k-period excess return
as

Qt (k) ≡ (1 + Rt+k−1(1) − rt+k−1) × · · · × (1 + Rt (1) − rt ) − 1

= Qt+k−1(1) × · · · × Qt (1) − 1

=
⎡
⎣ k∏

j=1

Qt+k−j (1)

⎤
⎦ − 1. (18)

We let yt+1 = Qt (k), and consider k = 1, 12 as reported in CT
(2008). The results presented in Table 4 are with this definition
of the equity premium in (18). We have conducted the same
analysis with k = 3, 6 but their results turn out to be what may
be easily expected from k = 1, 12, and thus we do not report
them for space.

We use 11 predictors including dividend price ratio (d/p),
earning price ratio (e/p), smooth earning price ratio (se/p), book-
to-market ratio (b/m), return on equity (roe), Treasury bill (t-
bill), long-term yield (lty), term spread (ts), default spread (ds),
inflation (inf ) and net equity issuance (nei). We thank John
Campbell and Sam Thompson for sharing their data used in CT
(2008). It is found that d/p, e/p, se/p, b/m, roe, t-bill, and lty are
unit root processes, while the equity premium (Qt (1),Qt (12)),
ts, ds, inf , and nei are not. To save space, we use the first-
order difference of the unit root variables when they are used
as predictor. The results using the unit root variables (not their
differences) as predictors are quite similar and are available
from the authors upon request.

We follow CT (2008) to impose a constraint that the eq-
uity premium should be positive. We consider the annualized
monthly equity premium Qt (12) and monthly equity premium
Qt (1), with forecasts starting from 1960:01 and 1980:01 and
rolling till 2005:12. The in-sample size for model estimation is
kept fixed as R = 120. We report the results for mean squared
forecast errors (MSFE) relative to the global historical average
(GHA) forecast in Table 4.

In Table 4(a) with k = 12, we are forecasting the annual-
ized equity premium Qt (12) at month t. We first see that non-
parametric LHA forecasts α̃(x) outperform the global histori-
cal average GHA α̃, for the predictor d/p, e/p, ds, and nei in
both forecasting periods. Second, for these predictors, we ob-
serve that imposing the positivity constraint generally reduces
the MSFE, which may be further reduced after the bagging
procedure. The largest reduction for imposing the constrain oc-
curs for ds when forecasts begins at 1960:01, and it achieves
more than 5%. Third, bagging works for annualized equity pre-
mium forecasts for almost all predictors in both forecasting
periods, though the improvement is often small. However, this
is consistent with the theory in Section 3 as summarized in
Figure 1. Compared to local GHA, the bagging constrained
forecasts are better, except for one case. The maximum gain
in MSFE is over 16%, for the predictor ds, in the forecasting
sample 1960:01. Fourth, for the semiparametric single index
model that uses all the 11 predictors, the positivity constraint
improves the MSFE from 1.006 to 0.998, which is further im-
proved by the bagging procedure that achieves a relative MSFE
0.985 when forecasts begins at 1960:01. The similar result in
improvement direction is also seen when forecasts begins at
1980:01.

In Table 4(b) with k = 1, we are forecasting the monthly eq-
uity premium Qt (1) at month t. We hardly see much gain using
unconstrained nonparametric methods over the GHA. The best
that nonparametric MSFE gains, with 0.7% reduction, is for the
predictor e/p when forecasts start from 1980:01. However, im-
posing the positivity constraint LHAp almost always improves
MSFE. We observe that bagging works most of the time. Es-
pecially for the predictors d/p, e/p, b/m, bagging even help the
nonparametric LHApb forecast to beat the “unbeatable” global
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historical average GHA in both forecast samples. This gain is as
large as 1.1% for e/p when forecasts start from 1980:01, which is
economically significant according to Campbell and Thompson
(2008).

7. CONCLUSIONS

In this article, we investigate the use of nonparametric lo-
cal historical average and semiparametric single index local
historical average in forecasting of equity premium, compared
to the global historical average which is traditionally used. In
addition, we consider imposing a local constraint that the eq-
uity premium is expected to be positive. We define the con-
strained local historical average forecast and its bagging ver-
sion. Asymptotic properties of these constrained/bagged fore-
casts are established. We show that the constrained local his-
torical average forecast operates as model-selection between
the local historical average and zero equity premium, and that
the bagged constrained local historical average forecast yields
a locally shrunken combined forecast of the local historical
average forecast and the zero equity premium forecast. The lo-
cal combining weights are determined by the probability that

the local constraint is binding. Significant gains in MSE can
be achieved by using a local model, a local constraint, and
bagging as shown in our simulation. In predicting U.S. equity
premium, we show that substantial nonlinearity is present which
can be captured by the nonparametric local historical average
and that the local positivity constraint of the equity premium
provides valuable prior information in improving its out-of-
sample prediction.

The article studies the role of constrained estimation and that
of bagging under the condition that the nonparametric estimator
is asymptotically normal. In the case of structural change, this
condition is often violated. Thus the comparison becomes quite
challenging and needs further detailed investigation, which is
beyond the scope of this article. Such a potential research topic
is left for future study.

APPENDIX

Proof of Theorem 1. We first prove (i). For any z ∈ R,

Pr
(
γ (n, h)σ−1

α (x)(ᾱ(x) − α(x)) < z
)

= Pr
(
γ (n, h)σ−1

α (x)(max{α̃(x), α1(x)} − α(x))

< z|α̃(x) < α1(x)
)

× Pr(α̃(x) < α1(x))

+ Pr
(
γ (n, h)σ−1

α (x)(max{α̃(x), α1(x)} − α(x))

< z|α̃(x) ≥ α1(x)
)

× Pr(α̃(x) ≥ α1(x))

= Pr
(
γ (n, h)σ−1

α (x)(α1(x) − α(x)) < z
) × Pr(α̃(x)

< α1(x)) + Pr(γ (n)σ−1(α̃(x) − α(x)) < z|α̃(x)

≥ α1(x)) × Pr(α̃(x) ≥ α1(x)). (A.1)

First term in (A.1): When α(x) > α1(x),

Pr
(
γ (n, h)σ−1

α (x)(α1(x) − α(x)) < z
) → Pr(−∞ < z) = 1.

When α(x) = α1(x),

Pr
(
γ (n, h)σ−1

α (x)(α1(x) − α(x)) < z
) →

{
1, if z > 0
0, if z ≤ 0 .

Second term in (A.1):

Pr(α̃(x) < α1(x))

= Pr
(
γ (n, h)σ−1

α (x)σ−1(α̃(x) − α(x))

< γ (n, h)σ−1
α (x)σ−1(α1(x) − α(x))

)

→
{

Pr(Z < −∞) = 0, if α(x) > α1(x)
Pr(Z < 0) = �(0), if α(x) = α1(x) .

Third term in (A.1): When α(x) = α1(x),

Pr(γ (n, h)σ−1
α (x)(α̃(x) − α(x)) < z|α̃(x) ≥ α1(x))

= Pr(γ (n, h)σ−1
α (x)(α̃(x) − α(x)) < z, γ (n, h)σ−1

α (x)(α̃(x) − α1(x)) ≥ 0)

Pr(γ (n, h)σ−1
α (x)(α̃(x) − α1(x)) ≥ 0)

= Pr(γ (n, h)σ−1
α (x)(α̃(x) − α(x)) < z, γ (n, h)σ−1

α (x)(α̃(x) − α(x)) ≥ γ (n, h)σ−1
α (x)(α1(x) − α(x)))

Pr(γ (n, h)σ−1
α (x)(α̃(x) − α(x)) ≥ γ (n)(α1(x) − α(x)))

→
{

�(z)−�(0)
1−�(0) , if z > 0

0, otherwise
.

When α(x) > α1(x),

Pr(γ (n, h)σ−1
α (x)(α̃(x) − α(x)) < z|α̃(x) ≥ α1(x)) = �(z).

Fourth term in (A.1):

Pr(α̃(x) ≥ α1(x))

= 1 − Pr(γ (n, h)σ−1
α (x)σ−1(α̃(x) − α(x))

< γ (n, h)σ−1
α (x)(α1(x) − α(x)))

→
{

1 − Pr(Z < −∞) = 1, if α(x) > α1(x)
1 − Pr(Z < 0) = 1 − �(0), if α(x) = α1(x) .

Therefore, combining the four terms leads to, (i.a) when α(x) >
α1(x), Pr(γ (n, h)σ−1

α (x)(ᾱ(x) − α(x)) < z) → �(z) and (i.b) when
α(x) = α1(x), for z > 0, Pr(γ (n, h)σ−1

α (x)(ᾱ(x) − α(x) − Bm(x)) <
z) → �(z); for z = 0, Pr(γ (n, h)σ−1

α (x)(ᾱ(x) − α(x)) < z) → �(0);
for z < 0, Pr(γ (n, h)σ−1

α (x)(ᾱ(x) − α(x)) < z) → 0. Written com-
pactly, we have Pr(γ (n, h)σ−1

α (x)(ᾱ(x) − α(x)) < z) = �(z)1{z>0}.
To prove (ii), note that

γ (n, h)σ−1
α (x)(ᾱ(x) − α(x))

= γ (n, h)σ−1
α (x)(α1(x) − α(x)) + γ (n, h)σ−1

α (x)(α̃(x)

−α1(x))1[γ (n,h)σ−1
α (x)(α̃(x)−α1(x))>0]

= γ (n, h)σ−1
α (x)(α1(x) − α(x)) + γ (n, h)σ−1

α (x)(α̃(x)

−α(x) + α(x) − α1(x))1[γ (n,h)σ−1
α (x)(α̃(x)−α1(x))>0]

d→ Zb(x)1[Zb(x)>0] − b(x)

by Assumption (A.1) and (A.2).

Proof of Corollary 1. For a standard normal random variable Z and
a constant b, we can easily show that E1[Zb>0] = �(b), E[Z1[Zb>0]] =
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ϕ(b), E[Z21[Zb>0]] = −bϕ(b) + �(b), E[Zb1[Zb>0]] = ϕ(b) + b�(b)
and E[Z2

b1[Zb>0]] = �(b) + bϕ(b) + b2�(b). Therefore, we have

E[Zb(x)1[Zb(x)>0] − b(x)]

= EZ1[Zb(x)>0] + b(x)E1[Zb(x)>0] − b(x)

= ϕ(b(x)) + b(x)�(b(x)) − b(x),

and

var[Zb(x)1[Zb(x)>0] − b(x)]

= var[Zb(x)1[Zb(x)>0]]

= E{[Zb(x)1[Zb(x)>0]]
2} − {E[Zb(x)1[Zb(x)>0]]}2

= �(b(x)) + b(x)ϕ(b(x)) + b2(x)�(b(x))

−[ϕ(b(x)) + b�(b(x))]2.

Proof of Theorem 2. Write

γ (n, h)σ−1
α (x)(α̂(x) − α(x))

= γ (n, h)σ−1
α (x)(E∗[α̃∗(x)1[α̃∗(x)≥α1(x)]]

+α1(x)E∗[1[α̃∗(x)<α1(x)]] − α(x))

= γ (n, h)σ−1
α (x)(E∗[(α̃∗(x) − α(x))1[α̃∗(x)≥α1(x)]]

+(α1(x) − α(x))E∗[1[α̃∗(x)<α1(x)]]). (A.2)

For the first term in (A.2) we have

γ (n, h)σ−1
α (x)(E∗[(α̃∗(x) − α(x))1[α̃∗(x)≥α1(x)]])

= E∗[γ (n, h)σ−1
α (x)(α̃∗(x) − α(x))1[α̃∗(x)≥α1(x)]]

= E∗[γ (n, h)σ−1
α (x)(α̃∗(x) − α(x))

×1[γ (n,h)σ−1
α (x)(α̃∗(x)−α(x))≥γ (n,h)σ−1

α (x)(α1(x)−α(x))]]

d→ EW [W1[W≥−b(x)]|Z], (A.3)

where W |Z ∼ N (Z, 1). Note that

EW [W1[W≥−b(x)]|Z]

= EW [W |Z] − EW [W1[W<−b(x)]|Z]

= Z −
∫ −b(x)

−∞
wϕ(w − Z)dw

= Z −
∫ −b(x)−Z

−∞
(s + Z)ϕ(s)ds

= Z − Z�(−b(x) − Z) −
∫ −b(x)−Z

−∞
sϕ(s)ds

= Z − Z�(−Zb(x)) + ϕ(−Zb(x)).

Similarly, for the second term in (A.2) we get

γ (n, h)σ−1
α (x)(α1(x) − α(x))E∗[1[α̃∗(x)<α1(x)]]

p→ −b(x)�Z(−Zb(x)), (A.4)

by Slutsky’s theorem.
Putting (A.3) and (A.4) together into (A.2) gives the desired result.

Proof of Corollary 2. We can first show that Eϕ(−Zb) = ϕ ∗ ϕ(−b),
Eϕ2(−Zb) = ϕ2 ∗ ϕ(−b), E[Zϕ(−Zb)] = −ϕ ∗ ϕ′(−b),
E[Z�(−Zb)] = −ϕ ∗ ϕ(b), E[Z2�(−Zb)] = � ∗ ϕ

′′
(−b) +

� ∗ ϕ(−b), E[Z2�2(−Zb)] = �2 ∗ ϕ
′′
(−b) + �2 ∗ ϕ(−b), and

E[Z�(−Zb)ϕ(−Zb)] = −(� · ϕ) ∗ ϕ′(−b). To complete the proof,
we only need to show that,

E[Z − Zb(x)�(−Zb(x)) + ϕ(−Zb(x))]

= 0 + ϕ ∗ ϕ(−b(x)) − b(x)� ∗ ϕ(−b(x)) + ϕ ∗ ϕ(−b(x))

= 2ϕ ∗ ϕ(−b(x)) − b(x)� ∗ ϕ(−b(x)),

and

E[Z − Zb(x)�(−Zb(x)) + ϕ(−Zb(x))]
2

= EZ2 + E[Zb(x)�(−Zb(x))] + E[ϕ(−Zb(x))]
2

−2E[ZZb(x)�(−Zb(x))]

+2E[Zϕ(−Zb(x))] − 2E[Zb(x)�(−Zb(x))ϕ(−Zb(x))]

= 1 + �2 ∗ ϕ′′(−b(x)) + �2 ∗ ϕ(−b(x))

− 2b�2 ∗ ϕ′(−b(x)) + b2(x)�2 ∗ ϕ(−b(x))

+ ϕ2 ∗ ϕ(−b(x))

− 2� ∗ ϕ′′(−b(x)) − 2� ∗ ϕ(−b(x))

+ 2b(x)� ∗ ϕ′(−b(x))

− 2ϕ ∗ ϕ′(−b(x)) + 2(� · ϕ) ∗ ϕ′(−b(x))

− 2b(x)(� · ϕ) ∗ ϕ(−b(x)).

Proof of Theorem 3. By definition,

α̂(x) = E∗ᾱ∗(x)

= E∗[α̃∗(x)1[α̃∗(x)≥α1(x)]] + E∗α1(x)[1[α̃∗(x)<α1(x)]]

≡ A1 + A2,

where

A2 = E∗[α1(x)1[α̃∗(x)<α1(x)]]

= α1(x)E∗[1[α̃∗(x)−α̃(x)<α1(x)−α̃(x)]]

= α1(x)EW [1[W<−b(x)]|Z] + Op

(
1

γ (n, h)

)

= α1(x)�(−Zb(x)) + Op

(
1

γ (n, h)

)
,

and

A1 = E∗[α̃∗(x)1[α̃∗(x)≥α1(x)]]

= E∗{[α̃∗(x) − α̃(x)]

× 1[α̃∗(x)≥α1(x)]} + E∗α̃(x)1[α̃∗(x)≥α1(x)]

≡ A11 + A12,

with

A11 = E∗{[α̃∗(x) − α̃(x)]1[α̃∗(x)≥α1(x)]}

= 1

γ (n, h)
E∗{γ (n, h)[α̃∗(x) − α̃(x)]

× 1[γ (n,h)(α̃∗(x)−α(x))≥γ (n,h)(α1(x)−α(x))]}

= 1

γ (n, h)
EW [W1[W≥−b(x)]|Z] + op

(
1

γ (n, h)

)

= op

(
1

γ (n, h)

)
,

and

A12 = α̃(x)E∗[1[α̃∗(x)≥α1(x)]]

= α̃(x)EW [1[W≥−b(x)]|Z]

= α̃(x)�(Zb(x)) + Op

(
1

γ (n, h)

)
.

Combining the results completes the proof.
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