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1. Introduction

Linear models are frequently used for economic predictions.
They are popular for their simplicity, computational efficiency,
easy interpretation, and straightforwardness to impose prior
known constraints. Campbell and Thompson (2008) consider
applying sign restriction to the linear forecasting model of
stock returns. The sign restriction (monotonicity constraint)
is taken to alleviate parameter uncertainty and to reconcile
often contradicting in-sample and out-of-sample performance of
predictors. They show that once a sensible restriction on the
sign of a coefficient is imposed, the out-of-sample forecasting
performance of many predictors can be improved and sometimes

✩ The authors would like to thank three anonymous referees and seminar
participants at California Econometrics Conference at Stanford University, Midwest
Econometrics Group at Washington University St. Louis, Conference in Honor of
Halbert White at UC San Diego, Asian Meeting of the Econometric Society at Korea
University, Singapore Management University, Office of the Comptroller of the
Currency of US Department of Treasury, UCR, USC, Chinese Academy of Sciences,
Shanghai University of Finance and Economics, and University of Tasmania, for
valuable suggestions.
∗ Corresponding author. Tel.: +86 10 62760219.

E-mail addresses: taelee@ucr.edu (T.-H. Lee), yundong.tu@gsm.pku.edu.cn
(Y. Tu), aman.ullah@ucr.edu (A. Ullah).

http://dx.doi.org/10.1016/j.jeconom.2014.04.018
0304-4076/© 2014 Elsevier B.V. All rights reserved.
beat the historical average return forecast. Hillebrand et al.
(2009) incorporate the bagging (bootstrap aggregating) approach
of Gordon and Hall (2009) to smooth sign restrictions in linear
forecasting models and show that the bagging sign restriction
approach has more predictive power than the simple sign
restriction of Campbell and Thompson (2008).

However, possible misspecification of a linear model can un-
dermine its forecasts compared to those produced via nonlinear
models. In this paper we extend this literature by considering
nonlinearmodels, in particular, nonparametric (NP) and semipara-
metric (SP) kernel regressions with imposing the local monotonic-
ity constraints on the local coefficients of a predictor and with
applying bagging to the constraints. Chen and Hong (2009) find
that, in the prediction of asset returns, nonparametric kernel re-
gression model has a better forecasting power than the histor-
ical mean, due to the higher signal-to-noise ratio resulted from
nonparametric models. However, Chen and Hong (2009) do not
consider the monotonicity restriction as well as bagging in their
nonlinear forecasting exercise. This paper is to consider nonlinear
models subject to local monotonicity constraint and their bagging
versions.

Nonparametric estimation with constraints has long history
that dates back to the work of Brunk (1955). Classical references
on estimation under restriction include Barlow et al. (1972),
Ramsay (1988), Mammen (1991), Matzkin (1994) and Chen
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(2007), to name a few. Recent work on imposing monotonicity
on nonparametric regression function includes Hall and Huang
(2001), Dette et al. (2006) and Chernozhukov et al. (2007), among
others. Hall andHuang (2001) propose a novelmethod of imposing
the monotonicity constraint on a class of nonparametric kernel
estimations. Their estimator is constructed by re-weighting the
kernel for each response data point so that the impact of each
observation on the estimated regression function can be controlled
to satisfy a constraint. Their method is rooted in a conventional
kernel framework and is extended by Du et al. (2013) and
Henderson and Parmeter (2009) to allow for a broader class of
conventional constraints and to develop tests for these constraints.

Our contributions are as given below. First, we consider NP and
SP models to generalize the linear models considered in Goyal and
Welch (2008), Campbell andThompson (2008) andHillebrand et al.
(2009). These NP/SP regressions can capture possibly neglected
nonlinearity in linear models and could improve the predictive
ability of the predictors, as demonstrated in our Monte Carlo
simulation and application to the equity premium prediction.
Second, we consider a new method of imposing the monotonicity
constraint on the NP and SP regressions. This is to make
the prediction more accurate as we employ more information
than Chen and Hong (2009). Our monotonicity constraint is
a local restriction while it is global monotonicity in Campbell
and Thompson (2008). Third, we use bagging to smooth the
monotonicity constraint in NP and SP regressions as Hillebrand
et al. (2009) do in linear regressions. It has been shown in
Bühlmann andYu (2002) that bagging can reduce asymptoticmean
squared error in linear regressions. We obtain the similar results
that hold locally in NP and SP regressions. Fourth, we conduct
a simulation study to demonstrate how the asymptotic results
work in finite samples. We also conduct an empirical study in
predicting equity premium using the same data from Campbell
and Thompson (2008) to demonstrate the practical merit of the
bagging monotonicity constrained NP and SP regression models.
Fifth, in our simulation and empirical application, we find that,
despite its simplicity to implement, our bagging constrained NP
regression almost always and clearly outperforms the constrained
NP regression of Hall and Huang (2001). Sixth, we introduce
a new forecast evaluation measure based on the second order
stochastic dominance (SOSD) of the squared forecast errors, by
which we can compare forecasting models in entire predictive
distribution of squared forecast errors rather than just in mean
of squared forecast errors. The new SOSD criterion enables us to
compare forecasting models over different parts of the predictive
distributions of squared forecast errors, e.g., over small size errors
vs big size errors, as demonstrated using our empirical results
for the equity premium prediction application. We show that
imposing sensible constraints reduces the chance ofmaking the big
size forecast errors and thereby improves the forecasting ability of
models.

The paper is organized as follows. Section 2 presents the
NP and SP methods with local monotonicity constraints and
with bagging. Sections 3–5 establish the asymptotic properties
of each of parametric, nonparametric, semiparametric bagging
constrained estimators and forecasts. Section 6 conducts Monte
Carlo simulation to compare our proposed bagging constrained
NP and SP forecasts with forecasts from linear models and from
the constrained NP method of Hall and Huang (2001). Section 7
presents empirical results on the equity premium prediction.
Section 8 concludes.

2. Estimation with constraints

Many economic models try to establish a relationship between
a variable of interest yt and a scalar or vector predictor variable
xt . For the maximum clarity of presentation, we consider the case
that xt is a scalar. All the results in this paper would follow when
xt is a vector, except that such extensions would raise issues such
as the curse of dimensionality or what notion of monotonicity to
impose that deserve further effort to explore. In forecasting, the
s-step ahead forecast of yn+s at time t = n given that xn = x is
defined as

mn,s(x) = E(yn+s|xn = x). (1)

Sometimes a priori constraint may be suggested from economic
theory, often in the form of bounds. For example, the marginal
propensity to consume is less than 1; production technology is
concave; the regression function mn,s(x) is positive, monotonic,
homogeneous, homothetic, etc. To this end, estimators or forecasts
may be subject to constraints. In this paper, we focus on slope
constraint (i.e., monotonicity) of a curve that relates y and x, while
constraints of other type like curvature may be possible as well
within our framework.

2.1. Parametric estimation with constraints

First, consider a parametric linearmodel with a single regressor
x:

mn,s(x) = α + βx (2)

Goyal and Welch (2008) use the unconstrained ordinary least
squares (OLS) estimators α̃, β̃ in the prediction of stock returns
using a predictor x. Note that α̃ and β̃ satisfy

α̃ = ȳn − β̃ x̄n (3)

where ȳn =
1
n

n
t=1 yt and x̄n =

1
n

n
t=1 xt .

If a monotonicity constraint (positive slope) is considered
as sensible, one can estimate β through thresholding using an
indicator function as done by Campbell and Thompson (2008),

β̄ = 1{β̃>0} · β̃, (4)

ᾱ = 1{β̃>0} · α̃ + 1{β̃≤0} · ȳn.

Note that the relationship between ᾱ and β̄ remains as in (3)

ᾱ = ȳn − β̄ x̄n, (5)

since ᾱ = 1{β̃>0} · α̃ +1{β̃≤0} · ȳn = 1{β̃>0} ·


ȳn − β̃ x̄n


+1{β̃≤0} ·

ȳn = ȳn − 1{β̃>0} · β̃ x̄n.
As the constraint is imposed using a hard-thresholding

indicator function, it can introduce significant bias and variance.
Gordon and Hall (2009) propose a bagging constrained estimator

β̂ =
1
J

J
j=1

β̄∗(j)
≡ E∗β̄∗, (6)

where β̄∗(j)
= 1{β̃∗(j)>0} · β̃∗(j) and here β̃∗(j) is the unconstrained

OLS estimator from the jth bootstrap sample (j = 1, . . . , J).We use
E∗(·) to denote the bootstrap average. It can be shown that

α̂ ≡ ȳn − β̂ x̄n = E∗ᾱ∗. (7)

Bühlmann and Yu (2002) show that this bagging constrained
estimator can have smaller asymptotic mean squared error
(AMSE), notwithstanding the larger asymptotic bias.
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2.2. Nonparametric estimation with constraints

Despite its simplicity a parametric linear model like yt = α +

βxt + ut may be subject to misspecification because it may be
that E(ut |xt) ≠ 0 due to possible neglected nonlinearity. This is
to be avoided via a nonparametric regression, yt = m (xt) + ut ,
where m (xt) = E (yt |xt) and ut = yt − E (yt |xt). Kernel
estimators of m (xt) such as Nadaraya–Watson or local linear
estimators are common practice in the nonparametric literature.
Yet, in the face of information derived from economic theory,
we may wish to impose some constraints (e.g., monotonicity,
positivity) on the nonparametric kernel regression models. Hall
and Huang (2001) propose a re-weighted kernel method to
impose constraints on a general class of kernel estimators, which
is followed by Du et al. (2013) and Henderson and Parmeter
(2009). Alternatively, we propose here to use bagging to impose
constraints in nonparametric kernel regression models.

2.2.1. Nonparametric estimation with constraints: Hall and Huang
(2001)

Consider a general class of kernel estimatorwritten asweighted
average of y’s

m̂n,s(x) =
1

n − s

n−s
t=1

At(x)yt+s, (8)

where At (x) is the weighting function. For example, At (x) =

k
 xt−x

h


/
n−s

t=1 k
 xt−x

h


for the Nadaraya–Watson estimator. Hall

and Huang (2001) suggested an estimator

m̂n,s(x|p) =

n−s
t=1

ptAt(x)yt+s, (9)

where p = (p1, . . . , pn−s)
′. Note that (8) is a special case of (9)with

the uniform weights p0 = ( 1
n−s , . . . ,

1
n−s )

′. p is to be estimated
by p̂ = argminp D(p) subject to the constraints and additional
conditions such as

n−s
t=1 pt = 1 andp ≥ 0, with a distance function

D(p) between p and p0. For example, D(p) = (p − p0)
′(p − p0),

or D(p) = (p1/2
− p1/2

0 )′(p1/2
− p1/2

0 ) if the elements of p and
p0 are on the unit interval, e.g., probability weights. In the case of
monotonicity, the constraint is ∂m̂n,s(x|p)/∂x > 0.

2.2.2. Nonparametric estimation with constraints: bagging
Take the first order Taylor series expansion ofm(xt) around x so

that

yt = m(xt) + ut = m(x) + (xt − x)m(1)(x) + vt

= α(x) + xtβ(x) + vt = Xtδ(x) + vt (10)

where Xt = (1 xt) and δ(x) = [α(x) β(x)′]′ with α(x) =

m(x) − xβ(x) and β(x) = m(1)(x). The local linear least square
(LLLS) estimator of δ(x) is then obtained by minimizing

n
t=1

v2
t Kh(xt , x) =

n
t=1

(yt − Xtδ(x))2Kh(xt , x), (11)

where Kh(xt , x) = K
 xt−x

h


is a decreasing function of the distance

of the regressor xt from the evaluation point x, and h → 0 as
n → ∞ is the bandwidth which determines how rapidly the
weights decrease as the distance of xt from x increases. The LLLS
estimator is given by

δ̃(x) = (X′K(x)X)−1X′K(x)y, (12)

whereX is an n×(k+1)matrixwith the tth rowXt(t = 1, . . . , n), y
is an n × 1 vector with elements yt (t = 1, . . . , n), and K(x) is the
n × n diagonal matrix with the diagonal elements Kh(xt , x)(t =
1, . . . , n). Then we have LLLS estimators α̃(x) = (1 0)δ̃(x) and
β̃(x) = (0 1)δ̃(x).

Using the constrained LLLS estimator β̄(x)

β̄(x) = 1{β̃(x)>0} · β̃(x), (13)

we get the bagging constrained LLLS estimator β̂(x)

β̂(x) =
1
J

J
j=1

β̄(x)∗(j)
= E∗β̄(x)∗. (14)

Observing (3) and (5), the unconstrained LLLS estimator is

α̃(x) = ȳ(x) − β̃(x)x̄(x), (15)

where

ȳ(x) =

n
t=1

Kh(xt , x)yt

n
t=1

Kh(xt , x)
= (i′K(x)i)−1i′K(x)y, (16)

x̄(x) =

n
t=1

Kh(xt , x)xt

n
t=1

Kh(xt , x)
= (i′K(x)i)−1i′K(x)x,

with i being an n × 1 vector of unit elements and x being an n × 1
vector with elements xt (t = 1, . . . , n). Following the same steps
as for β̄(x) and β̂(x), the two constrained LLLS estimators for α(x)
are obtained as

ᾱ(x) = ȳ(x) − β̄(x)x̄(x), (17)

α̂(x) = ȳ(x) − β̂(x)x̄(x), (18)

or equivalently α̂(x) =
1
J

J
j=1 ᾱ(x)∗(j)

= E∗ᾱ(x)∗.
We derive explicit formula for the NP forecast from the above.

Note that from (10) we have the unconstrained NP forecast,

m̃ (x) = α̃(x) + xβ̃(x) = ȳ(x) − β̃(x)x̄(x) + xβ̃(x)

= ȳ(x) − β̃(x) [x̄(x) − x] . (19)

Similarly, we get the constrained NP forecast

m̄ (x) = ȳ(x) − β̄(x) [x̄(x) − x] , (20)

and the bagged constrained NP forecast

m̂ (x) = ȳ(x) − β̂(x) [x̄(x) − x] . (21)

2.3. Semiparametric estimation with constraints

Let us consider the model

y = α + βx + u
= α + βx + E(u|x) + [u − E(u|x)]
= α + βx + E(u|x) + v

= m(x) + v (22)

where m(x) = α + βx + E(u|x), E(u|x) ≠ 0, and v = u − E(u|x)
such that E(v|x) = 0. In model (22) the linear component in
many cases plays the guiding role, like the benchmark linear
model in the forecasting of equity premium (Section 7), while
the nonparametric component of x, E(u|x), behaves like a type
of unknown departure or correction for the misspecified linear
model. Since such departure is unknown, it is not unreasonable
to treat E(u|x) as a nonparametrically unknown function, and
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the model m(x) in (22) as semiparametric. In recent literature,
Glad (1998) and Martins-Filho et al. (2008) have discussed the
issue of reducing estimation biases through using a potentially
misspecified parametric form in the first step rather than simply
nonparametrically estimating the conditional mean function
m(x) = E(y|x). The function of interest,m(x), is then estimated by
a two step procedure. This two step estimator ofm(x) is consistent
and asymptotically normal, see Martins-Filho et al. (2008). In the
first step α and β are obtained by the OLS estimation, and the
second step involves an LLLS estimation of E(u|x) by using NP
regression of ũ = y − α̃ − β̃x on x. Let ξ̃ (x) be the intercept
and η̃ (x) be the slope function of the NP regression. Thus the LLLS
estimator can be represented by ξ̃ (x)− η̃ (x) (x̄ (x) − x). This two-
step algorithm leads to an unconstrained SP estimator ofm (·) as

m̃sp(x) = α̃ + β̃x + ξ̃ (x) − η̃ (x) (x̄ (x) − x)

= α̃ + ξ̃ (x) − η̃ (x) x̄ (x) +


β̃ + η̃ (x)


x, (23)

the slope of which is estimated by

β̃ (x) ≡ β̃ + η̃ (x) . (24)

To impose the local monotonicity constraint, we define our
constrained SP estimator as

β̄ (x) = 1{β̃(x)>0} · β̃ (x) . (25)

When β̃ (x) ≤ 0, the slope of the regression function is zero,
i.e., β̄ (x) = 0. In this case, instead of fitting a semiparametric
model, local constant kernel estimator should be adopted. This
observation leads to the following local monotonicity constrained
SP forecast

m̄sp(x) = m̃sp(x) · 1{β̃(x)>0} + m̃lc(x) · 1{β̃(x)≤0}, (26)

where m̃lc(x) = ȳ(x) is the local constant kernel estimator ofm (x)
as in (16).

With having m̄sp(x) obtained, similarly to (6), we get the
bagging constrained SP forecast from

m̂sp(x) =
1
J

J
j=1

m̄∗(j)
sp (x) = E∗m̄∗

sp(x), (27)

with m̄∗(j)
sp (x) obtained from the jth bootstrap sample.

3. Sampling properties of parametric estimators

Sampling properties of parametric estimators, including con-
strained parametric estimator and bagging constrained estima-
tor, are presented in this section, while NP and SP estimators are
treated in the two subsequent sections. Sampling properties of
constrained parametric estimator have been established by Judge
and Yancey (1986) under normality distribution. With general dis-
tribution condition of the unconstrained estimator, we prove the
superiority of the constrained estimator (in terms of MSE) if the
constraint is correctly specified. We also present the local asymp-
totic theory for the constrained estimator and its bagging version.

3.1. Constrained parametric estimator

Theorem 1. Let the unconstrained estimator β̃ of β have a
cumulative distribution function (CDF) denoted by Fβ̃ (·). Then we
have the following for the constrained estimator β̄ = max{β̃, β1},
for some given constant β1, (1) Fβ̄ (z) = Fβ̃ (z) · 1{z≥β1}. (2) biasβ̄ ≥

biasβ̃ . (3) Var

β̄


≤ Var

β̃


if biasβ̃ ≥ 0 and β1 ≤ β

and (4) MSE

β̄


≤ MSE

β̃

if β1 ≤ β .
Remark 1. Theorem 1 establishes that the constrained estimator,
β̄ , has a condensed density and it is biased upward, compared to its
unconstrained counterpart, β̃ . Part 1 depicts its CDF in terms of that
of Fβ̃ (·). The indicator function compresses all the mass for β̃ that
lie below β1 to β1. Part 2 states that β̄ is biased upward compared
to β̃ . This upward bias is due to the max operator in its definition.
If the constraint is an upper bound instead of a lower bound, then
the min operator will incur downward bias. Part 3 shows that
β̄ would have smaller variance, provided that the constraint is
correctly specified and β̃ is biased upward, while part 4 dictates
the superiority of β̄ in terms of MSEwhen the constraint is correct.
It is yet clear that, even if the constraint is wrongly specified, there
could still be reduction in MSE and variance for β̄ . However, this
will require further conditions on Fβ̃ (·). These conditions are not
informative, therefore we do not proceed in that direction.

Lovell and Prescott (1970) and Judge and Yancey (1986)
consider the case in which β̃ has a normal distribution. Judge and
Yancey (1986, p. 50), depict a figure showing that, the performance
of β̄ relative to that of β̃ depends on δ ≡ β1 − β . The
constrained estimator is superior for a large range values of δ,
and when δ → ∞, MSE


β̄

is equal to the mean squared error

of an equality constrained estimator, i.e. β̄ = β1. Under the
normality assumption, Var


β̄


≤ Var

β̃

over the whole range

of parameter space and the former will approach the variance of
the equality constrained estimator as δ → ∞. �

Next, we consider asymptotic distribution of β̄ under suitable
assumptions as stated in the following theorem.

Theorem 2. Consider an unconstrained parametric estimator β̃ of
β with

γ (n) σ−1
β


β̃ − β


d

→ Z (28)

γ (n) σ−1
m


m̃ (x) − m (x)

 d
→ Z

and Z is a random variable with CDF F (·), where σβ is the asymptotic
standard deviation of β̃ and σm is that of m̃ (x), and limn→∞ γ (n) =

∞. Then for β̄ = max{β̃, β1} and some given constant β1, we have,

1. when β > β1, γ (n) σ−1
β


β̄ − β

 d
→ Z.

2. when β = β1, Pr

γ (n) σ−1

β


β̄ − β


< z


→ F (z) · 1{z≥0}.

3. when β > β1, γ (n) σ−1
m (m̄ (x) − m (x))

d
→ Z.

If we further assume that

γ (n) σ−1
β (β − β1) = b, (29)

for some constant b, and that F is standard normal CDF Φ (with its
PDF ϕ) and Zb = Z + b, then

4. limn→∞ γ (n) σ−1
β


β̄ − β


= Zb1{Zb>0} − b.

5. limn→∞ γ (n) σ−1
β E


β̄ − β


= ϕ (b) + bΦ (b) − b.

6. limn→∞ Var


γ (n) σ−1
β

1/2
β̄


= Φ (b) + bϕ (b) − ϕ2 (b) −

2bϕ (b) Φ (b) + b2Φ (b) [1 − Φ (b)].

Remark 2(a). Theorem 2 states the limiting distribution of β̄ .
Parts 1 and 2 present the usual asymptotic distribution when the
constraint is strict (i.e., β > β1) and when the parameter is on the
boundary (i.e.,β = β1). Part 1 confirms the intuition that, as long as
the constraint is strict, it will not be violated by the unconstrained
estimator β̃ when the sample size is large enough. This leads to
the conclusion that β̄ would be asymptotically equivalent to β̃
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(a) Asymptotic variance. (b) Asymptotic squared bias. (c) Asymptotic MSE.

Fig. 1. Asymptotic variance, asymptotic squared bias, and asymptotic mean squared error of constrained estimator (CE) and bagging constrained estimator (BCE).
in this case. On the other hand, when β is on the boundary, the
limiting CDF compresses all the mass of negative values at 0. Part
4 establishes the local asymptotic distribution of β̄ that depends
on the drift parameter b with asymptotic bias and variance given
in parts 5 and 6. It is easy to see that, if b is allowed to grow as n,
Zb1{Zb>0} − b will collapse to Z , and result in part 4 becomes that
in part 1. Similarly, part 2 is reproduced with part 4 when b = 0.
Part 3 presents the limiting distribution of m̄ (x), the constrained
estimator of m (x) = E (y|x) = α + βx. The local asymptotic
result for m̄ (x) (and other estimators of m(x) in the following
sections) with local drift parameter b is complicated to establish
and requires further conditions. We did not explore this in this
paper.

Remark 2(b). Theorem 2 only requires β̃ satisfy some limiting
theorem with asymptotic standard deviation σβ . This is a very
weak condition that is met by a large class of estimators. We
do not specify the convergence rate γ (n) but simply let it
explode as n increases. This general setting accommodates both
estimators with standard convergence rate

√
n and estimators

with nonstandard convergence rate, e.g., n1/3 or n3/2. The condition
γ (n) σ−1

β (β − β1) = b can be stated alternatively as β = β1 +

γ −1 (n) σβb for some constant b. It dictates that the true parameter
β is a Pitman type drift to the specified bound β1, with a drift
parameter b. The local drift rate is the same as the convergence
rate of β̃ . Extensions to higher or lower rate than this convergence
rate (γ −1 (n)) can bemade by letting b = bn go to either infinity or
zero as n increases. We do not explore this issue here. �

3.2. Bagged constrained parametric estimator

Theorem 3. Let an unconstrained estimator β̃ of β and its bootstrap
version β̃∗ have the following asymptotics,

γ (n) σ−1
β


β̃ − β


d

→ Z,

γ (n) σ−1
β


β̃∗

− β̃


d
→ Z, (30)

with Z being a standard normal random variable, where σβ is the
asymptotic standard deviation of β̃ and limn→∞ γ (n) = ∞. Further
the constrained estimator is β̄ = max

β̃, β1


, where β1 satisfies

γ (n) σ−1
β (β − β1) = b, (31)

for some constant b and denote Zb = Z + b. Then, for the bagged
version of β̄ , β̂ ≡ E∗β̄∗, we have

1. γ (n) σ−1
β


β̂ − β


d

→ Z − ZbΦ (−b − Z) + ϕ (−b − Z).

2. limn→∞ γ (n) σ−1
β E


β̂ − β


= 2ϕ ∗ ϕ (−b) − bΦ ∗ ϕ (−b).

3. limn→∞ Var


γ (n) σ−1
β

1/2
β̂


= 1 + Φ2

∗ ϕ′′ (−b) + Φ2
∗

ϕ (−b)−2bΦ2
∗ϕ′ (−b)+b2Φ2

∗ϕ (−b)+ϕ2
∗ϕ (−b)−2Φ ∗

ϕ′′ (−b)−2Φ∗ϕ (−b)+2bΦ∗ϕ′ (−b)−2ϕ∗ϕ′ (−b)+2 (Φ · ϕ)∗
ϕ′ (−b)−2b (Φ · ϕ)∗ϕ (−b)− [2ϕ ∗ ϕ (−b) − bΦ ∗ ϕ (−b)]2.

4. If γ (n) σ−1
m


m̃ (x) − m (x)

 d
→ Z andβ > β1, then γ (n) σ−1

m (m̄

(x) − m (x))
d

→ Z.

Remark 3(a). We adopted the notation f ∗ g to denote the
convolution of two functions f and g , which is defined as f ∗g (s) =
f (t) × g (s − t) ds.

Remark 3(b). It is clear from part 2 of Theorem 3 that both bias
and variance of the bagging constrained estimator depend on the
parameter b, which measures how accurate β1, the lower bound
of β , is. We compare the AMSE of bagging constrained estimator
with that without bagging, and numerical calculation reveals the
superiority of bagging when b > 0.392. Fig. 1 plots the asymptotic
variance, asymptotic squared bias and asymptotic mean squared
error of β̂ together with those of β̄ , against values of b in the
range of [−1, 5]. It is seen that our bagging estimator enjoys a
large reduction in asymptotic mean squared error for values of
b ∈ [1, 3].

Remark 3(c). (30) requires that bootstrap work for β̃ , i.e., β̃∗ has
the same asymptotic distribution as β̃ . The necessary and sufficient
conditions for this bootstrap consistency can be found inMammen
(1992). We emphasize that we do not require that bootstrap work
for β̄ . In fact, the bootstrap fails for β̄ as noted in Andrews (2000,
p. 401). It is this bootstrap failure for β̄ that leads to Theorem 3.
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Theorem 3 shows that the asymptotic distribution of β̂ ≡ E∗β̄∗ is
different from the asymptotic distribution of β̄ which is shown in
Theorem 2. The difference is depicted in Fig. 1. �

4. Sampling properties of nonparametric estimators

We consider sampling properties of NP estimators under
constraint and their bagging versions.

4.1. Constrained nonparametric estimator

Theorem 4. Let the nonparametric estimator β̃ (x) of β (x) with

γ1 (n, h) σ−1
β (x)


β̃ (x) − β (x)


d

→ Z, (32)

γ2 (n, h) σ−1
m (x)


m̃ (x) − m (x) − Bm (x)

 d
→ Z,

where limn→∞ γi (n, h) = ∞, i = 1, 2, h is the bandwidth satisfying
h = cnτ for some c > 0, τ < 0, Z is a standard normal
random variable, σβ (x) is the asymptotic standard deviation of β̃ (x),
σm (x) is the asymptotic standard deviation of m̃ (x), Bm (x) =
1
2h

2m(2) (x)


v2k (v) dv + op

h2


is the asymptotic bias m̃ (x). Then

the following limiting statements hold for the constrained estimator
β̄ (x) = max{β̃ (x) , β1 (x)}, for some given β1 (x),

1. when β (x) > β1 (x), γ1 (n, h) σ−1
β (x)


β̄ (x) − β (x)

 d
→ Z.

2. when β (x) = β1 (x), Pr(γ1 (n, h) σ−1
β (x)


β̄ (x) − β (x)


< z) → Φ (z) · 1{z≥0}.

3. when β (x) > β1 (x), γ2 (n, h) σ−1
m (x) [m̄(x) − m (x)

− Bm (x)]
d

→ Z.

If we further assume that γ1 (n, h) σ−1
β (β(x) − β1(x)) = b(x), for

some real function b(x), and denote Zb(x) = Z + b(x), then

4. limn→∞ γ1 (n, h) σ−1
β (x)


β̄(x) − β(x)


= Zb(x)1{Zb(x)>0}−b(x).

5. limn→∞ γ1 (n, h) σ−1
β (x) E


β̄(x) − β(x)


= ϕ (b(x)) + b(x)Φ (b(x)) − b(x).

6. limn→∞ Var


γ1 (n, h) σ−1
β (x)

1/2
β̄(x)


= Φ (b(x)) + b(x)ϕ

(b(x)) − ϕ2 (b(x)) − 2b(x)ϕ (b(x)) Φ (b(x)) + b2(x)Φ (b(x))
[1 − Φ (b(x))] .

Remark 4(a). The above theorem shows the results for NP
estimators with constraints. The implications are similar to the
previous theorem on constrained parametric estimators. Note that
the constraint bound β1 (x) can vary for different values of x. As
a special case in which β1 (x) = β1, a constant, it is efficient to
adopt the restriction if it is correctly specified via the constrained
estimator. However, when the constraint is invalid, β̄ (x) will be
inconsistent.

Remark 4(b). The constrained estimator of m (x), m̄(x), has the
same asymptotic property as the unconstrained nonparametric
estimator, when the constraint is strict, as established in part 3
of Theorem 4. This first order equivalence agrees with that of
the estimators of Mammen (1991). The implication for bandwidth
selection for the constrained estimator m̄(x) is that the classical
cross-validation approach shall apply. The bias term Bm (x) goes
to zero if γ2 (n, h) h2 tends to zero as n tends to infinity.
However, when the constraint is invalid, the constraint estimator
is generally inconsistent.1 Thus, a test based on the difference

1 One exception is when both the constraint is invalid and β1 (x) = 0. In this
case, the constrained estimator is the Nadaraya–Watson estimator that remains
consistent.
between the constrained estimator and unconstrained estimator
could be developed to check the validity of the constraint. Other
distribution-free tests could also be applied for this purpose, see,
e.g., Lee et al. (2009), and Delgado and Escanciano (2012).

4.2. Bagged constrained nonparametric estimator

Theorem 5. Let an estimator β̃ (x) of β (x) and its bootstrap version
β̃∗ (x) have the following asymptotic,

γ1 (n, h) σ−1
β (x)


β̃ (x) − β (x)


d

→ Z,

γ1 (n, h) σ−1
β (x)


β̃∗ (x) − β̃ (x)


d

→ Z, (33)

where Z is a standard normal random variable, limn→∞ γ1 (n, h) =

∞, h is the bandwidth satisfying h = cnτ for some c > 0, τ < 0,
σβ (x) is the asymptotic standard deviation of β̃ (x). Define β̄ (x) =

max

β̃ (x) , β1 (x)


, with some known β1 (x) < β (x) that satisfies

γ1 (n, h) σ−1
β (x) (β (x) − β1 (x)) = b (x) , (34)

where b (·) is some real function and denote Zb(x) = Z + b(x). For the
bagged version of β̄ (x), β̂ (x) ≡ E∗β̄∗ (x), we have

1. γ1 (n, h) σ−1
β (x)


β̂ (x) − β (x)


d

→ Z − Zb(x)Φ (−b (x) − Z) +

ϕ (−b (x) − Z) .

2. limn→∞ γ1 (n, h) σ−1
β E


β̂ (x) − β (x)


= 2ϕ ∗ ϕ (−b (x)) − b

(x) Φ ∗ ϕ (−b (x)) .

3. limn→∞ Var


γ1 (n, h) σ−1
β (x)

1/2
β̂ (x)


= 1 + Φ2

∗ ϕ′′

(−b (x)) + Φ2
∗ ϕ (−b (x)) − 2bΦ2

∗ ϕ′ (−b (x)) + b2 (x) Φ2
∗

ϕ (−b (x)) + ϕ2
∗ ϕ (−b (x)) − 2Φ ∗ ϕ′′ (−b (x)) − 2Φ ∗

ϕ (−b (x)) + 2b (x) Φ ∗ ϕ′ (−b (x)) − 2ϕ ∗ ϕ′ (−b (x)) +

2 (Φ · ϕ) ∗ ϕ′ (−b (x)) − 2b (x) (Φ · ϕ) ∗ ϕ (−b (x)) − [2ϕ ∗ ϕ
(−b (x)) − b (x) Φ ∗ ϕ (−b (x))]2.

4. If γ2 (n, h) σ−1
m (x)


m̃ (x) − m (x) − Bm (x)

 d
→ Z, where Bm (x)

=
1
2h

2m(2) (x)


v2k (v) dv+op

h2


is the asymptotic bias m̃ (x),

σm (x) is the asymptotic standard deviation of m̃ (x), and γ2 (n, h)
follows similar conditions as γ1 (n, h), then

γ2 (n, h) σ−1
m (x)


m̂(x) − m (x) − Bm (x)

 d
→ Z . (35)

Remark 5(a). Condition (33) requires that bootstrap works for
the slope estimator β̃ (x). See Hall (1992) or Horowitz (2001) for
validity of bootstrap for local nonparametric estimators. Note that
this condition may rule out some range of bandwidths, which is
an important issue that deserves separate studies. For this paper,
we consider the use of cross-validation to select the optimal
bandwidth for the unconstrained estimator and use that same
bandwidth for the bagged estimator. The choice of the bandwidth
for bagging estimator is left for future research.

Remark 5(b). When b (·) admits a constant function, the limiting
distribution in part 1 is the same as in the parametric case. That
is, for all possible values of x, γ1 (n, h) σ−1

β (x)

β̂ (x) − β (x)


converges to the same random variable as γ1 (n) σ−1

β


β̂ − β


does in the parametric case. �

5. Sampling properties of semiparametric estimators

SP estimators and their bagging versions are considered in this
section. We present, in sequence, their sampling properties in the
following two theorems.
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5.1. Constrained semiparametric estimator

Theorem 6. Consider an estimator β̃ (x) of β (x) with

γ1 (n, h) σ−1
β (x)


β̃ (x) − β (x)


d

→ Z, (36)

where Z is a standard normal random variable, σβ (x) is the
asymptotic standard deviation of β̃ (x), limn→∞ γ1 (n, h) = ∞, h
is the bandwidth satisfying h = cnτ for some c > 0, τ < 0. Then the
constrained estimators β̄ (x) and m̄sp (x) as defined earlier, for some
given constant β1 (x) satisfying β (x) ≥ β1 (x), have the following
properties,

1. when β (x) > β1 (x), γ1 (n, h) σ−1
β (x)


β̄ (x) − β (x)

 d
→ Z .

2. when β (x) = β1 (x), Pr

γ1 (n, h) σ−1

β (x)

β̄ (x) − β (x)


< z


→ Φ (z) · 1{z≥0}.

3. when β (x) > β1 (x), the semiparametric estimator has

γ2 (n, h) σ−1
m (x)


m̄sp (x) − m (x) − Bm (x)

 d
→ Z, (37)

for some γ2 (n, h)with similar properties as that in Theorem 4 and
σm (x) > 0, where

Bm (x) =
1
2
h2m(2) (x)


v2k (v) dv + op


h2 , (38)

the same as the asymptotic bias of m̃sp (x).
If we further assume that γ1 (n, h) σ−1

β (β(x) − β1(x)) =

b(x), for some real function b(x), and denote Zb(x) = Z + b(x),
then

4. limn→∞ γ1 (n, h) σ−1
β


β̄(x) − β(x)


= Zb(x)1[Zb(x)>0] − b(x).

5. limn→∞ γ1 (n, h) σ−1
β E


β̄(x) − β(x)


= ϕ (b(x)) + b(x)Φ (b(x)) − b(x).

6. limn→∞ Var


γ1 (n, h) σ−1
β (x)

1/2
β̄(x)


= Φ (b(x))+b(x)ϕ (b(x))−ϕ2 (b(x))−2b(x)ϕ (b(x)) Φ (b(x))+
b2(x)Φ (b(x)) [1 − Φ (b(x))] .

Remark 6. The result shows that the estimation of m (x) via the
SP method is a consistent estimator of the true function m (x),
the same property that is possessed by the NP estimator but not
by the parametric estimator under misspecification. Parts 1 and
2 establish the asymptotic properties of the constrained slope
estimator when the constraint is strict and when the equality
constraint holds. Part 3 shows the asymptotic equivalence between
constrained SP estimator and unconstrained SP estimator. The
result for unconstrained estimator is first proved by Martins-
Filho et al. (2008). Part 4 considers the local asymptotics for the
constrained slope estimator, with asymptotic bias and variance
given in parts 5 and 6.

5.2. Bagged constrained semiparametric estimator

Theorem 7. Let an unconstrained estimator β̃ (x) of β (x) and its
bootstrap version β̃∗ (x) have the following asymptotic,

γ1 (n, h) σ−1
β (x)


β̃ (x) − β (x)


d

→ Z, (39)

γ1 (n, h) σ−1
β (x)


β̃∗ (x) − β̃ (x)


d

→ Z,

where Z is a standard normal random variable, limn→∞ γ1 (n, h) =

∞, h is the bandwidth satisfying h = cnτ for some c > 0, τ < 0. Let
β1 (x) satisfy

γ1 (n, h) σ−1
β (x) (β (x) − β1 (x)) = b (x) , (40)
where b (·) is some real function. For the bagged version of β̄ (x),
β̂ (x) ≡ E∗β̄∗ (x), as defined earlier we have

1. γ1 (n, h) σ−1
β (x)


β̂ (x) − β (x)


d

→ Z [1 − Φ (−b (x) − Z)]
+ ϕ (−b (x) − Z) .

2. limn→∞ γ1 (n, h) σ−1
β E


β̂ (x) − β (x)


= 2ϕ ∗ ϕ (−b (x)) −

b (x) Φ ∗ ϕ (−b (x)) .

3. limn→∞ Var


γ1 (n, h) σ−1
β (x)

1/2
β̂ (x)


= 1 + Φ2

∗

ϕ′′ (−b (x))+Φ2
∗ϕ (−b (x))−2bΦ2

∗ϕ′ (−b (x))+b2 (x) Φ2
∗

ϕ (−b (x)) + ϕ2
∗ ϕ (−b (x)) − 2Φ ∗ ϕ′′ (−b (x)) − 2Φ ∗

ϕ (−b (x)) + 2b (x) Φ ∗ ϕ′ (−b (x)) − 2ϕ ∗ ϕ′ (−b (x)) +

2 (Φ · ϕ) ∗ ϕ′ (−b (x)) − 2b (x) (Φ · ϕ) ∗ ϕ (−b (x)) − [2ϕ ∗ ϕ
(−b (x)) − b (x) Φ ∗ ϕ (−b (x))]2.

4. If γ2 (n, h) σ−1
m (x)


m̃sp (x) − m (x) − Bm (x)

 d
→ Z, where

Bm (x) =
1
2
h2m(2) (x)


v2k (v) dv + op


h2 (41)

is the asymptotic bias m̃sp (x), and γ2 (n, h) follows similar
conditions as γ1 (n, h), then

γ2 (n, h) σ−1
m (x)


m̂sp(x) − m (x) − Bm (x)

 d
→ Z . (42)

Remark 7. Theorem 7 shows that the bagging constrained semi-
parametric estimator m̂sp(x) is asymptotically equivalent to its un-
constrained counterpart. The dependence of the asymptotic dis-
tribution on the drift function b (·) remains the same as those in
Theorem 5. Thus Remark 5 applies here, which we do not intend to
repeat.

6. Simulation

We perform Monte Carlo simulation to examine the finite
sample properties of our proposed bagging NP and SP estimators.
We consider the following data generating process (DGP) that
features monotonicity in the conditional mean of yt given xt

DGP : yt+1 = ax3t + et+1, (43)

where et ∼ i.i.d.N (0, 1), xt ∼ i.i.d.N
 1
2 , σ

2
x


, with σ 2

x = 2, 3, 4, 5
and a = 0.0128. We replicate the process for 100 times, with
J = 100 bootstrap samples taken for bagging in each replication.
We take n = 200 observations for in-sample estimation. The 1000
out-of-sample forecast values of ŷ from the various forecasting
models presented in the next subsection are computed over the
1000 equidistant evaluation points on the realized support of
{xt}nt=1 generated from N

 1
2 , σ

2
x


. For the NP and SP estimators,

we use cross-validation to select a bandwidth that minimizes the
integrated mean squared error and use this same bandwidth for
the 100 bootstrap samples generated within each replication.

Consider a forecasting model

Model : yt+s = m (xt) + ut+s. (44)

For a given evaluation predictor value x, we are interested
in forming a forecast ŷn+s = mn,s (x|In), where In =
xn0 , . . . , xn, yn0 , . . . , yn


is used to estimate amodel. In theMonte

Carlo simulation of this section, s = 1 and we fix both n0 = 1 and
n = 200, and estimate various models using the R ≡ n − n0 +

1 observations. Then we take 1000 equidistant fixed evaluation
points {x}10001 on a range of N

 1
2 , σ

2
x


. The same 1000 equidistant

evaluation points are used for all 100 Monte Carlo replications. In
each Monte Carlo replication i (i = 1, . . . , 100), 1000 values of
m̂(i)(x)


are computed at each of 1000 x values, and also 1000

values of

û(i)(x) ≡ 0.0128x3 − m̂(i)(x)


are computed in each
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replication i. We compute the Monte Carlo average of the squared
û(i)(x) over i for each evaluation point x, 1

100

100
i=1 û

(i)2(x) ≡

û2(x). Then we use the 1000 values of the squared forecast errors
û2(x)

1000
1 to compute the evaluation criteria discussed later in

Section 6.2. The number of observations for in-sample estimation
is R ≡ n − n0 + 1 = 200, and the number of the out-of-sample
evaluation points is P = 1000. The simulation takes 90 min to run
on a quad-core laptop. The computer codes are available on the
authors’ websites.

In the empirical application of Section 7, s = 1, 6, 12, and we
move the time t = n at which a pseudo out-of-sample forecast is
made. We use a rolling window of fixed size R = 120months from
t = n0 (≡ n − R + 1) to t = n for in-sample estimation of amodel.
We then compute smonths ahead forecasts of the equity premium
yn+s, with n moving forward from 1960M1 to 2005M12, resulting
in the total of P = (552 − s) evaluation points over the 46 years.
Once ŷn+s is obtained, we define the forecast error ûn+s ≡ yn+s −

ŷn+s. We use the (552 − s) squared forecast errors

û2
n+s

2005M12−s
n=1960M1

to compute the evaluation measures discussed later. The number
of observations for in-sample estimation is R ≡ n− n0 + 1 = 120,
and the number of the out-of-sample evaluation points is P =

552 − s.

6.1. Forecasting models

We consider the historical mean model (HM) as a benchmark

mHM
n,s (x|In) =

1
R

n
t=n0

yt

and three linear regression models denoted as L, L-P, and L-P-B:

mL
n,s (x|In) = α̃ + β̃x,

mL-P
n,s (x|In) = ᾱ + β̄x,

mL-P-B
n,s (x|In) = α̂ + β̂x,

where

α̃, β̃


is the unconstrained OLS estimators, β̄ =

max

β̃, 0


, ᾱ = ȳn − β̄ x̄n, β̂ =

1
J

J
j=1 β̄∗(j) with β̄∗

=

max

β̃∗, 0


, and α̂ = ȳn − β̂ x̄n. Nonparametric models include

LLLS forecast (NP), LLLS forecastwith positive slope constraint (NP-
P), the bagged LLLS forecastwith positive slope constraint (NP-P-B)

mNP
n,s (x|In) = ȳ(x) − β̃(x) [x̄(x) − x] ,

mNP-P
n,s (x|In) = ȳ(x) − β̄(x) [x̄(x) − x] ,

mNP-P-B
n,s (x|In) = ȳ(x) − β̂(x) [x̄(x) − x] ,

and the monotonicity-constrained NPmodel proposed by Hall and
Huang (2001) (NP-HH)

mNP-HH
n,s (x|In) =

n−s
t=1

p̂tAt(x)yt+s.

Semiparametric models include SP, SP-P, and SP-P-B

mSP
n,s (x|In) = m̃sp (x) as defined in (23),

mSP-P
n,s (x|In) = m̄sp (x) as defined in (26),

mSP-P-B
n,s (x|In) = m̂sp (x) as defined in (27).
6.2. Evaluation criteria

As discussed earlier, the Monte Carlo mean (averaged over 100
replications) of squared errors


û2(x)

P
1 for each of P evaluation

pointswill be used to compute the evaluation criteria.We consider
two such criteria. The first criterion is based on the mean of the
squared errors (averaged over P = 1000 evaluating x points) of
model M

MSEM =
1
P


∀x

û2(x). (45)

Further we compute the percentage reduction in the MSE of a
model M (MSEM) relative to that of the historical mean model
(MSEHM) by the following formula,

100R2
= 100 ×


1 −

MSEM

MSEHM


. (46)

This is the out-of-sample R2 (multiplied by 100) as reported in
Campbell and Thompson (2008).We also report the decomposition
of MSE into squared bias and variance (averaged over 1000
evaluation points) for the conditional mean estimators.

The second criterion is new. It provides a better view of
the whole predictive distribution of the squared forecast errors
û2(x)

P
1 . Statistical criteria such as MSE, R2 and likelihood values

are based on a summary statistic (e.g., mean) of

û2(x)

P
1 . Instead,

as suggested in Granger (1999), a more desirable procedure is
to associate an economic value with


û2(x)

P
1 rather than just

a summary statistic. The economic value of a model can be
associated with a cost or a utility, which can then be compared
using the second order stochastic dominance (SOSD) of the
predictive distributions of


û2(x)

P
1 for competing models. Denote

the CDF of squared forecast errors

û2(x)

P
1 fromModelMas FM (·).

We define the SOSD criterion as

SOSDM (r) =

 r

0


FM (s) − FHM (s)


ds, r > 0, (47)

where HM is taken as the benchmark model and the CDFs are
estimated by their empirical distributions F (s) =

1
P


∀x 1{û2(x)≤s}.

We can show (not presented here for space but available
from the authors) that, if SOSDM (r) > 0 for all r > 0,
then E


û2
M


< E


û2
HM


. Therefore, the second-order-stochastic

dominance implies the mean-squared-error dominance (but not
vice versa). Hence SOSDwould also imply the dominance in 100R2.

Compared to 100R2 which measures the percentage gain in
the mean of squared forecast errors, SOSDM (r) delivers more
information on the entire distribution of the squared forecast
errors from Model M. For example, when SOSDM (r) is positive for
all positive r , it implies that Model M produces squared forecast
errors that are relatively smaller than those of the benchmark
model. The role of SOSD (r) becomes more significant when 100R2

cannot differentiate the relative performances of themodels under
comparison. Following McFadden (1989), Granger (1999), and
Linton et al. (2005), we report the average (avg) and the maximum
(max) of SOSD (r) over r (1000 equidistant evaluation points in the
range of squared forecast errors) in Tables 2 and 3, in addition to
100R2.

While we have compared the empirical distribution of squared
forecast errors


û2(x)

P
1 , the SOSD measure will be identical if we

compare the empirical distributions of the absolute forecast errorsû(x)P
1 . We can also show that, if SOSDM (r) > 0 for all r > 0,

then E
ûM

 < E
ûHM

. Therefore, the second-order-stochastic
dominance implies the mean-absolute-error dominance (but not
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vice versa). In fact, we can show that, if SOSDM (r) > 0 for all r > 0,
then E


c

ûM


< E


c

ûHM


for any symmetric convex function

c (·). For asymmetric convex loss functions, convex loss stochastic
dominance criterion could be adopted.Wedonot explore this issue
here but direct interested readers to Granger (1999, Chapter 3) for
more details. We will demonstrate the use of our new forecasting
evaluation criterion using ‘‘the SOSD plots’’ (as shown Fig. 2) in the
empirical application in Section 7.

6.3. Simulation results

The simulation results are presented in Tables 1 and 2. Table 1
presents the variance, squared bias and MSE of the estimators of
the conditional mean m (x). It is clear from Table 1 that bagging
estimators generally have larger bias compared to the constrained
estimators. For example, when σ 2

x = 2, the squared bias of NP-P
is 0.282 while that for NP-P-B is 0.431. However, the reduction in
variance is substantial via bagging, as can be seen that the variance
for NP-P is 8.471 and it is reduced to be 7.434 for NP-P-B. This leads
to an improvement in MSE for the bagging constrained estimators.
Thus, we see similar properties of the conditional mean estimator
as those of the slope estimators, as depicted in Fig. 1, although the
constraint is imposed on the slope β (x) but not on the conditional
mean m (x).

We summarize the findings in Table 2 as follows:
First, note the varying slope of the cubic curve in the DGP in

(43). A larger value of σ 2
x would expand the range of the evaluation

points {x} to the steeper area of the cubic curve. When σ 2
x = 2

(small), the evaluation points will be mostly in the flat area of
the cubic curve. That corresponds to the area with small values
of b near zero in Fig. 1(c). The reduction in AMSE (hence the gain
in 100R2) would be large as shown in Fig. 1(c). Table 2 confirms
this by showing that the gains from imposing the monotonicity
constraints and from bagging is large in this case. 100R2 is 42.0,
52.8, 58.2 for each of SP, SP-P, SP-P-B. The increase of these values is
substantial. Similar observation can be made for avgrSOSD(r) and
maxr SOSD(r). When σ 2

x = 4 (large), the evaluation points will
be in a wider range of the cubic curve including the areas with
steeper slope. That corresponds to the area with large values of b
in Fig. 1(c), where the reduction in AMSE (hence the gain in 100R2)
is small. Table 2 again confirms that by showing the small gains
from imposing the monotonicity constraints and from bagging.
For example, 100R2 is 91.8, 92.1, 92.5 for each of SP, SP-P, SP-P-B.
The increase of these values is negligible. Similar observation can
be made for avgrSOSD(r) and maxr SOSD(r). The same pattern is
observed for NP, NP-P, NP-P-B when they are comparedwith small
and large values of σ 2

x .

Second, note also the varying curvature of the cubic curve in
DGP, which exhibits stronger nonlinearity as we move further
away from the inflection point. Therefore the nonlinearity is
strongerwith a larger value ofσ 2

x .When the range of the evaluation
x points expands to the stronger nonlinear part of the cubic curve,
there are larger gains by using nonlinear models (NP and SP) over
the linear model (L). When σ 2

x = 5 (large), 100R2 is about 63
for L, while it is much larger, nearly 96 for NP and SP. Similar
observation can bemade for avgrSOSD(r) andmaxr SOSD(r).When
σ 2
x = 2 (small), the evaluation points will be near the flat part of

the curve where nonlinearity is weak. And there, L is even better
than the nonlinear NP/SP forecasts in all three criteria, 100R2,
avgrSOSD(r) and maxr SOSD(r). Interestingly though, as remarked
in the previous paragraph, the improvement by imposing the
monotonicity constraint and by using bagging is much stronger for
the nonlinear NP/SPmodels than for the linearmodel. There is little
gain from L to L-P to L-P-B, while the gains are substantial from NP
to NP-P to NP-P-B and also from SP to SP-P to SP-P-B.
Fig. 2. SOSD for lty.

Third, the constraint helps with NP and SP models, as seen that
R2 gets larger in NP-P, NP-HH and SP-P. This improvement in R2 is
due to the accuracy gain in estimation that is achieved at points
where monotonicity is violated. At points where monotonicity
is met, constrained model and unconstrained model perform
the same since the constraint is not binding. The extent of the
improvement from imposing the constraint depends on (i) the
frequency of points where violations of constraints occur and (ii)
the magnitude of the violations at these points. Monotonicity is
satisfied in the estimated linear models (when σ 2

x is not too small)
so that L and L-P perform more or less the same.

Fourth, the simple monotonicity constrained NP-P model is
generally better than NP-HH of Hall and Huang (2001). When
bagging is added, NP-P-B is even better than NP-HH (unless σ 2

x is
too large).

Fifth, bagging enhances the performance of the constrained
NP/SP models (unless σ 2

x is too large). It is also found that, with
bagging, our constrained models, NP-P-B and SP-P-B, outperform
NP-HH. Note that bagging does not improve for the linear model
as much, because the monotonicity constraint is more likely to be
met for L and because the constraint is less likely to be violated
globally than locally.

Sixth, a positive value of 100R2 for a model indicates that the
benchmark HM is dominated by the model. It is clear that all
models are better than HM for all values of σ 2

x . However, this may
be due to the design in our simulation. In empirical application to
predicting equity premium in the next section, it will be shown
(Table 3) that HM is indeed very hard to be beaten by a linear
model even with the monotonicity constraint and bagging. This
is reflected in the paper title of Campbell and Thompson (2008),
and is a reason that HM has been taken as a benchmark in the vast
literature on financial return predictability. Nevertheless, we will
see in the next section that NP and SP can easily beat the HM, and
even more easily with the monotonicity constraint and bagging.

Seventh, the nonlinear models, NP and SP, are substantially
better than L when σ 2

x is not too small. This signals the serious
nonlinearity in the DGP. NP and SP are quite competing, with NP
possibly slightly better than SP, due to the fact that the linear guide
for SP is not present in the DGP. However, it is interesting to see
that, once the monotonicity constraint is imposed, SP-P is always
better than NP-P and also SP-P-B is always better than NP-P-B. It
seems the constraint and bagging help SP more than NP.

Eighth, the role of SOSD is expected to be more significant
when 100R2 cannot distinguish the relative performance ofmodels
under comparison because the SOSD looks at the entire predictive
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Table 1
Simulation results: variance, squared bias and mean squared error (×100).

σ 2
x = 2 σ 2

x = 3 σ 2
x = 4 σ 2

x = 5
var bias2 mse var bias2 mse var bias2 mse var bias2 mse

HM 0.467 17.960 18.428 0.507 54.510 55.017 0.510 122.963 123.472 0.397 232.513 232.910
L 1.996 6.561 8.558 1.660 20.222 21.882 1.688 43.049 44.737 1.554 85.397 86.951
L-P 1.954 6.540 8.494 1.660 20.222 21.882 1.688 43.049 44.737 1.554 85.397 86.951
L-P-B 1.843 6.458 8.301 1.697 20.166 21.863 1.765 43.196 44.961 1.572 86.140 87.712
NP 10.555 0.328 10.883 9.962 0.422 10.384 9.332 0.777 10.109 8.572 1.315 9.887
NP-P 8.471 0.282 8.752 9.243 0.364 9.607 8.981 0.733 9.713 8.594 1.302 9.896
NP-P-B 7.434 0.431 7.866 8.146 0.569 8.715 8.352 0.941 9.293 7.551 2.760 10.311
NP-HH 9.020 1.004 10.024 14.811 0.511 15.322 8.851 0.809 9.660 8.476 1.418 9.894
SP 10.339 0.336 10.674 9.790 0.417 10.207 9.340 0.777 10.117 8.580 1.300 9.880
SP-P 8.428 0.276 8.705 9.097 0.359 9.456 8.968 0.733 9.701 8.576 1.304 9.880
SP-P-B 7.310 0.388 7.698 7.956 0.539 8.495 8.355 0.922 9.277 7.560 2.676 10.237
Table 2
Simulation results: R2 and SOSD.

σ 2
x = 2 σ 2

x = 3 σ 2
x = 4 σ 2

x = 5
100R2 avga max 100R2 avg max 100R2 avg max 100R2 avg max

L 53.561 32.489 49.891 60.226 38.739 56.152 63.768 41.888 59.878 62.667 41.640 59.321
L-P 53.907 32.809 50.265 60.226 38.739 56.152 63.768 41.888 59.878 62.667 41.640 59.321
L-P-B 54.952 33.545 51.178 60.261 38.758 56.195 63.586 41.741 59.701 62.341 41.395 59.005
NP 40.941 21.253 38.133 81.126 53.981 75.646 91.813 64.038 86.217 95.755 68.268 90.584
NP-P 52.504 30.085 48.905 82.538 55.203 76.945 92.133 64.325 86.511 95.751 68.267 90.583
NP-P-B 57.315 33.633 53.408 84.159 56.589 78.445 92.474 64.648 86.845 95.573 68.096 90.408
NP-HH 45.604 24.683 42.506 72.151 46.698 67.247 92.177 64.376 86.563 95.752 68.265 90.581
SP 42.076 22.102 39.198 81.447 54.269 75.953 91.806 64.029 86.208 95.758 68.273 90.589
SP-P 52.764 30.310 49.148 82.812 55.446 77.203 92.143 64.336 86.523 95.758 68.273 90.589
SP-P-B 58.227 34.323 54.260 84.559 56.942 78.822 92.487 64.657 86.855 95.605 68.126 90.439
a avg is short for avg(SOSD), while max is max(SOSD).
Table 3
Equity premium forecasting results: R2 and SOSD.

se/p t-bill lty ds
100R2 avga max 100R2 avg max 100R2 avg max 100R2 avg max

L 2.559 0.773 1.987 −5.478 −3.841 0.000 −4.186 −3.521 0.000 −0.240 −0.214 0.662
L-P 2.567 0.838 2.002 −2.927 −2.532 0.000 −2.432 −2.008 0.000 −0.046 −0.445 0.336
L-P-B 2.637 0.887 2.079 −2.946 −2.531 0.002 −2.918 −2.349 0.002 −0.157 −0.523 0.323
NP 11.450 8.506 10.497 5.991 5.851 8.139 12.283 8.287 11.449 3.485 2.477 4.274
NP-P 11.472 8.524 10.514 5.932 5.762 8.043 12.312 8.321 11.492 3.529 2.509 4.309
NP-P-B 11.310 8.308 10.287 6.732 5.991 8.044 13.479 9.048 12.555 5.698 3.452 5.200
NP-HH 0.296 0.156 1.059 2.110 2.525 4.261 1.395 0.855 2.458 −6.649 −5.396 −0.002
SP 16.684 11.384 13.636 6.497 6.229 8.677 10.994 7.452 10.231 5.124 3.862 5.799
SP-P 16.735 11.426 13.680 6.636 6.264 8.699 12.584 8.533 11.738 4.111 3.058 4.893
SP-P-B 17.009 11.555 13.885 6.807 6.047 8.272 13.568 9.098 12.636 5.985 3.888 5.482
a avg is short for avg (SOSD), while max is max (SOSD).
distribution of the squared forecast errors rather than just their
mean. However, we do not see such a case yet from using the
current simulation design. In Table 2, SOSD generally tends to
convey the same signal about the forecasting models as 100R2

does. We will be able to discuss the advantage of the distribution
measure (SOSD) over the mean measure (100R2) using Fig. 2 for
our empirical application in the next section.

All of the above simulation results are consistent with the
asymptotic results of Sections 3–5. It would be interesting to
examine how the theory applies in practice in actual economic data
application where the DGP is not known. In the next section, we
examine this in forecasting the U.S. equity premium.

7. Application: predicting the equity premium

As noted by Fama and French (2002), equity premium (the
difference between the expected return on the market portfolio
of common stocks and the rate of return on risk-free assets such
as short term T-bills) plays an important role in decisions of
portfolio allocation, in estimating the cost of capital, in debate
of investing social security funds in stocks, and in many other
economic and financial applications. However, the predictability
of equity premium has been an unsettled issue in the financial
literature as reviewed by Campbell and Thompson (2008) and
many references therein.

Goyal and Welch (2008) examine various predictors that have
been suggested as good instruments in the equity premium
prediction literature but report their poor performance in both
in-sample and out-of-sample forecasts relative to the historical
mean of stock returns. Campbell and Thompson (2008) introduce
a perspective of a real-world investor who would use a prior
belief on the regression slope coefficient such that it must satisfy
the expected sign. This simple but sensible sign constraint leads
to a better out-of-sample performance of predictors that have
significant in-sample forecasting power. Chen and Hong (2009)
went further to argue that such sign restriction imposed by
Campbell and Thompson (2008) is a form of nonlinearity and
suggest to useNPmethods instead of linearmodels to form forecast
of stock returns. They confirm the conclusion of Campbell and
Thompson (2008).

As an alternative to these approaches, we impose the sign
restriction on the local slope coefficients in estimation of the
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NP and SP forecast models. In that sense, we combine the two
ideas of Campbell and Thompson (2008) and Chen and Hong
(2009), imposing monotonicity on NP/SP models. We compare
linearmodels of Goyal andWelch (2008), Campbell and Thompson
(2008), Hillebrand et al. (2009), with our proposed NP and
SP models with constraints imposed and also with bagging
implemented. The out-of-sample forecasting comparison is based
on 100R2 and SOSD, relative to the historical mean return forecast.
John Campbell and Sam Thompson kindly share their data in our
study. We consider using one predictor at a time and impose their
sign restrictions on the slope parameters, but locally for the NP and
SPmodels. For details on data description and the sign restrictions,
we refer to Campbell and Thompson (2008).

Our dependent variable y to be forecast is the annualized
(compounded for 12 months) equity premium on the S&P500
returns over the short term T-Bill rate, and the predictor variable
x is one of the following four predictors: smoothed earning-price
ratio (se/p), yields on 3-Month Treasury Bill on the secondary
market (t-bill), long termyields onU.S. government bonds (lty), and
default spread (ds). Both y and x series are in monthly frequency.

As discussed earlier in Section 6, the in-sample estimation
starts from 1950M1 and the first forecast begins in 1960M1.
We keep a fixed window of in-sample size of 120 observations
and roll the in-sample estimation window forward till the
last available observation on 2005M12. To evaluate various
HM/L/NP/SP models considered in this paper, we report out-
of-sample 100R2 together with avgrSOSD(r) and maxr SOSD(r)
measures defined in Section 6.2. In Table 3 and Fig. 2, we only
present the results for s = 1 as the results for s = 6, 12 (available
upon request) show the same patternswith respect to nonlinearity
andmonotonicity. For bagging estimators in time series setting, the
block bootstrapmethod is used.We consider the block length to be
1, 4 and 12 but themain results do not changemuch. Therefore, we
only report the result for block length equal to 4. See Härdle et al.
(2003) and references therein for details of block bootstrapmethod
for time series.

7.1. Empirical results

We summarize the findings from Table 3 as follows:
First, a salient feature of the results is the nonlinear predictabil-

ity of the equity premium, which confirms earlier results of Chen
and Hong (2009). For all four predictors, NP and SP models per-
form much better than L (and better than HM too!), with an im-
provement in R2 over 10% achieved by SP-P-B. The only exception
is NP-HH, which is worse than linear models for se/p and ds. The
impressive performance of parametrically guided SP models con-
firms the earlier conclusion by Martins-Filho et al. (2008). Except
with se/p, linear models are worse than HM, even though imposing
constraint enhances their performance.

Second, another salient feature is the monotonicity, which
improves the forecasting ability of NP and SP models although
the improvement is sometimes small. This small improvement
is due to mainly two facts: (1) the computed evaluation criteria
100R2 and SOSD, are aggregated (global) measures such that some
significant local improvement may be averaged down, and (2)
inherent uncertainty in the noise component of amodel dominates
the parameter estimation uncertainty in the signal component
of the model in order of γ (n, h) as presented in Theorems 2–7.
The first fact is that, at many of P out-of-sample months, the
monotonicity constraint is locally met (i.e., not binding) and thus
no improvement will be achieved by imposing such a constraint
for those months. It is at these (possibly many) data points that
the improvement of forecasts made over other data points is
offset, because our evaluation criteria are the averages over all P
points. The second fact dictates that parameter estimation error
vanishes at a rate γ (n, h) as sample size increases but innovation
uncertainty will not. The constraint and bagging can reduce the
parameter estimation error and improve forecasts for a finite
sample size, but their contribution vanishes as the sample size
increases.

Third, bagging improves the constrained NP and SP forecasts.
The improvement of R2 is around 1%–2%. For example, for ds, NP-
P-B improves 100R2 bymore than 2.1% compared to NP-P. Bagging
makes all constrained SP models work better.

Fourth, the average SOSD and maximum SOSD measures in
Table 3 are consistent with 100R2. SOSD also favors constrained
models over unconstrained ones and shows that bagging helps to
improve the forecasting performance of constrained models.

We summarize the findings from Fig. 2 as follows:
Fig. 2 shows plots of SOSD(r) as a function of squared

forecasting errors r , and thus will be called ‘‘the SOSD plot’’. The x-
axis is r for the squared forecast errorwhile the y-axis is SOSD(r) as
defined in (47). The SOSD plots show where the forecast gains are
achieved for different sizes of forecast errors. The size of forecast
error is measured in square in Fig. 2, while it can be measured in
any norm such as modulus.

Fig. 2 reports the SOSD plots for lty. The SOSD plots for the
other three predictors are similar in pattern and in ranking and
so are not presented here. Fig. 2 shows that SP-P-B produces
many more moderately sized forecast errors than other models
because SOSD(r) increases steeply over the moderate values of r
(between 0.05 and 0.1) and then flattened for large values of r
(large size forecast errors). In other words, the SOSD plot reveals
that constrainedmodels performbetter by reducing themagnitude
of forecasting errors. Hence, the sensible constraints would help
avoiding big mistakes.

The SOSD plots in Fig. 2 show that SOSD(r) > 0 for all
r > 0 for all NP and SP models. That means, for lty, these
models stochastically dominate the HM model in any symmetric
convex cost (loss) functions. To the contrary, SOSD(r) < 0 for
all r > 0 for all three L models even with the monotonicity
constraint and bagging. That means, for lty, the L models are
stochastically dominated by HM in any symmetric convex cost
functions. Interestingly, for NP-HH, Fig. 2 shows that SOSD(r)
crosses zero once from below and stay above zero for large value
of r(> 0.07). This indicates that NP-HH is worse than HM when
the forecast error size can be small (likely when the stock market
is calm), but NP-HH becomes better than HM when the squared
forecast errors are large (likelywhen the stockmarket are volatile).
With this in mind, looking at the SOSD plots again for the linear
models (L, L-P, L-P-B), we note that, for all sizes of the forecast
errors, whether small or large, the linear models using lty make
poorer forecasts than HM.

This type of forecast evaluation and comparison is not possible
with the mean-based measure like 100R2. The novelty of the SOSD
plots is that we can examine the entire predictive distribution of
the squared forecast errors, through which we are enabled to see
how/whenmodels are performing in forecasting over the different
magnitude of the forecast errors and over different levels ofmarket
volatility.

8. Conclusions

Incorporating valuable economic information in economic
modeling and forecasting deserves more attention in both theo-
retical and applied research. This paper considers nonparametric
and semiparametric regression models with imposing such eco-
nomic constraints as monotonicity. Our approach is an alternative
approach to Hall and Huang (2001), Du et al. (2013), and Hen-
derson and Parmeter (2009). It is based on bagging, as in Hille-
brand et al. (2009), that improves the simple constrained linear
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regression model considered in Campbell and Thompson (2008).
It is based on nonparametric models so that possible model mis-
specification of neglecting nonlinearity may be avoided. It reduces
the computational time by eschewing the issue of solving weights
to training units through the optimization problem considered in
Hall and Huang (2001). Asymptotic properties of our bagging con-
strained NP and SP estimators and forecasts are established. Monte
Carlo simulations are conducted to show their finite sample perfor-
mance which demonstrates the practical merits of using our pro-
posed methods.

We introduce a new forecasting evaluation criterion based on
the second order stochastic dominance in the size of forecast
errors, which enables us to compare the competing forecasting
models over different sizes of forecast errors. The size of forecast
errors may bemeasured in square, inmodulus, or in any norm. The
new SOSD criterion can compare forecasting models via the entire
predictive distributions of a norm of the forecast errors, e.g., over
small size errors, moderate size errors, or big size errors, as
demonstrated using our empirical results for the equity premium
prediction application. With the use of new forecasting evaluation
criterion, it is seen that imposing monotonicity constraints can
mitigate the chance of making the large size forecast errors.

We apply the proposed approach for imposing economic
constraints to predict the U.S. equity premium and show its
usefulness likely under high market volatility. Although the
predictability of equity premium has been an unsettled issue, our
work together with those of Campbell and Thompson (2008) and
Hillebrand et al. (2009) reveal the value of constraints in economic
modeling and forecasts.

Our results also confirm Chen and Hong (2009) that SP
models usually outperform NP models, and thus should incite the
applications of the SP models in future economic and financial
research.

Appendix A. Proof of main theorems

Proof of Theorem 1. (1) By the definition of β̄ , it is clear that it
cannot take values less thanβ1, which implies that Fβ̄ (z) = 0 if z <
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where the third equality makes use of the property of Fβ̄ (z)
established in (1).
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where the inequality follows from β ≥ β1. �

Proof of Theorem 2. For any z ∈ R,
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β (β1 − β) < z


× Pr

β̃ < β1


+ Pr


γ (n) σ−1

β


β̃ − β


< z|β̃ ≥ β1


× Pr


β̃ ≥ β1


in which, (i) when β > β1,

Pr

γ (n) σ−1

β (β1 − β) < z


→ Pr (−∞ < z) = 1,

since limn→∞ γ (n) = ∞, and when β = β1,

Pr

γ (n) σ−1

β (β1 − β) < z


=


1, if z > 0
0, if z ≤ 0

(ii)

Pr

β̃ < β1


= Pr


γ (n) σ−1

β


β̃ − β


< γ (n) σ−1

β (β1 − β)


→


Pr (Z < −∞) = 0, if β > β1
Pr (Z < 0) = F (0) , if β = β1

(iii)

Pr

γ (n) σ−1

β


β̃ − β


< z|β̃ ≥ β1


=

Pr

γ (n) σ−1

β


β̃ − β


< z, γ (n) σ−1

β


β̃ − β1


≥ 0


Pr


γ (n) σ−1

β


β̃ − β1


≥ 0


=

Pr

γ (n) σ−1

β


β̃ − β


< z, γ (n) σ−1

β


β̃ − β


≥ γ (n) σ−1

β (β1 − β)


Pr

γ (n) σ−1

β


β̃ − β


≥ γ (n) σ−1

β (β1 − β)


=


F (z) − F (0)
1 − F (0)

, if z > 0;

0, otherwise.
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and (iv)

Pr

β̃ ≥ β1


= 1 − Pr


β̃ < β1


= 1 − Pr


γ (n) σ−1

β


β̃ − β


< γ (n) σ−1

β (β1 − β)


→


1 − Pr (Z < −∞) = 1, if β > β1
1 − Pr (Z < 0) = 1 − F (0) , if β = β1.

Therefore, combining (i)–(iv) leads to, (1) when β > β1,

Pr

γ (n) σ−1

β


β̄ − β


< z


→ 1 × 0 + F (z) × 1 = F (z)

and (2) when β = β1, for z > 0,

Pr

γ (n)


β̄ − β


< z


→ 1 × F (0) +

F (z) − F (0)
1 − F (0)

× (1 − F (0)) = F (z)

and for z = 0,

Pr

γ (n) σ−1

β


β̄ − β


< z


→ 1 × F (0) + 0 × (1 − F (0)) = F (0) .

When z < 0,

Pr

γ (n) σ−1

β


β̄ − β


< z


→ 0.

(3) is trivial to show thus omitted here.
To prove (4), note that

γ (n) σ−1
β


β̄ − β


= γ (n) σ−1

β (β1 − β) + γ (n) σ−1
β


β̃ − β1


1{γ (n)(β̃−β1)>0}

d
→ Zb1{Zb>0} − b.

Therefore, we have (5)

E

Zb1{Zb>0} − b


= EZ1{Zb>0} + bE1{Zb>0} − b
= φ (b) + bΦ (b) − b,

by Lemma 1, and (6)

Var

Zb1{Zb>0} − b


= Var


Zb1{Zb>0}


= E


Zb1{Zb>0}

2
−


E


Zb1{Zb>0}

2
.

We need to find

E


Zb1{Zb>0}
2

= E


(Z + b) 1{Zb>0}
2

= EZ21{Zb>0} + b2E1{Zb>0} + 2bE

Z1{Zb>0}


= Φ (b) − bφ (b) + b2Φ (b) + 2bφ (b)
= Φ (b) + bφ (b) + b2Φ (b) ,

where in the third equality we used (i) E1{Zb>0} = Φ (b) and (ii)
E


Z1{Zb>0}


= φ (b) and (iii) EZ21{Zb>0} = −bφ (b) + Φ (b) by

Lemma 1. Combining the results leads to (6). �

Proof of Theorem 3. (1) Note that we can write

β̂ = E∗β̄∗
= E∗


max


β̃∗, β1


= E∗


β̃∗1{β̃∗≥β1}

+ β11{β̃∗<β1}


= E∗


β̃∗1{β̃∗≥β1}


+ β1E∗


1{β̃∗<β1}


.

Therefore,

γ (n) σ−1
β


β̂ − β


= γ (n) σ−1

β


E∗


β̃∗1{β̃∗≥β1}


+ β1E∗


1{β̃∗<β1}


− β



= γ (n) σ−1
β


E∗


β̃∗

− β

1{β̃∗≥β1}


+ (β1 − β) E∗


1{β̃∗<β1}


.

We have (i)

γ (n) σ−1
β


E∗


β̃∗

− β

1{β̃∗≥β1}


= E∗


γ (n) σ−1

β


β̃∗

− β̃ + β̃ − β

1{β̃∗≥β1}


= E∗


γ (n) σ−1

β


β̃∗

− β̃ + β̃ − β


× 1
γ (n)σ−1

β (β̃∗−β̃)≥γ (n)σ−1
β (β1−β)+γ (n)σ−1

β (β−β̃)


d
→ EW


W1{W≥−b}|Z


,

whereW ∼ N (Z, 1).

EW

W1{W≥−b}|Z


= EW [W ] − EW


W1{W<−b}|Z


= Z −


−b

−∞

wϕ (w − Z) dw

= Z −


−b−Z

−∞

(s + Z) ϕ (s) ds

= Z − ZΦ (−b − Z) −


−b−Z

−∞

sϕ (s) ds

= Z − ZΦ (−b − Z) + ϕ (−b − Z) .

(ii) Similarly, we get γ (n) σ−1
β (β1 − β) E∗

[1{β̃∗<β1}
]

p
→ −bΦ (−b − Z), by Slutsky’s theorem. Putting together (i) and
(ii) gives the result in (1).

(2) From (1), we get

lim
n→∞

E

γ (n) σ−1

β


β̂ − β


= E {Z − ZbΦ (−b − Z) + ϕ (−b − Z)}

= EZ − E [ZΦ (−b − Z)] − bE [Φ (−b − Z)] + Eϕ (−b − Z)

= 0 − [−ϕ ∗ ϕ (−b)] − bΦ ∗ ϕ (−b) + ϕ ∗ ϕ (−b)
= 2ϕ ∗ ϕ (−b) − bΦ ∗ ϕ (−b)

where we used Lemma 2.
(3) We need to prove that

lim
n→∞

E

γ (n) σ−1

β


β̂ − β

2

= E [Z − ZbΦ (−b − Z) + ϕ (−b − Z)]2

= EZ2
+ E


Z2
b Φ2 (−b − Z)


+ E


ϕ2 (−b − Z)


− 2E [ZZbΦ (−b − Z)] + 2E [Zϕ (−b − Z)]
− 2E [ZbΦ (−b − Z) ϕ (−b − Z)]

= 1 + Φ2
∗ ϕ′′ (−b) + Φ2

∗ ϕ (−b) − 2bΦ2
∗ ϕ′ (−b)

+ b2Φ2
∗ ϕ (−b) + ϕ2

∗ ϕ (−b)
− 2Φ ∗ ϕ′′ (−b) − 2Φ ∗ ϕ (−b) + 2bΦ ∗ ϕ′ (−b)
− 2ϕ ∗ ϕ′ (−b) + 2 (Φ · ϕ) ∗ ϕ′ (−b) − 2b (Φ · ϕ) ∗ ϕ (−b)

where we used Lemma 2.
The proof for part (4) is trivial. �

Proof of Theorem 4. The proofs for parts (1) and (2), (4), (5) and
(6) follow that in Theorem 2. We prove part (3). Note that m̄ (x) =

m̃LC (x) · 1{β̃(x)≤β1(x)}
+ m̃LL (x) · 1{β̃(x)>β1(x)}

.

γ2 (n, h) σ−1
m (x) [m̄(x) − m (x) − Bm (x)]

= γ2 (n, h) σ−1
m (x)


m̃LC (x) − m (x) − Bm (x)


· 1{β̃(x)≤β1(x)}
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+ γ2 (n, h) σ−1
m (x)


m̃LL (x) − m (x) − Bm (x)


· 1{β̃(x)>β1(x)}

≡ l1 · 1{β̃(x)≤β1(x)}
+ l2 · 1{β̃(x)>β1(x)}

,

where,

l1 = γ2 (n, h) σ−1
m (x)


m̃LC (x) − m (x) − Bm (x)


= Op (1) ,

and

l2 = γ2 (n, h) σ−1
m (x)


m̃LL (x) − m (x) − Bm (x)

 d
→ Z .

Note that

1{β̃(x)≤β1(x)}
= 1

γ1(n,h)σ
−1
β (x)[β̃(x)−β(x)]≤γ1(n,h)σ

−1
β (x)[β1(x)−β(x)]


→ 1{Z≤−∞} = op (1) .

Similarly, we can show that 1{β̃(x)>β1(x)}
= 1 − 1{β̃(x)≤β1(x)}

p
→ 1.

Combining these results leads to γ2 (n, h) σ−1
m (x) [m̄(x) − m (x)

− Bm (x)]
d

→ Z . �

Proof of Theorem 5. The proofs for parts (1–3) parallel those in
Theorem 3. We prove part (4). Note that

m̂ (x) = ȳ(x) − β̂(x) [x̄(x) − x]

m̃ (x) = ȳ(x) − β̃(x) [x̄(x) − x] .

Therefore, we have

m̂ (x) − m̃ (x) =


β̃(x) − β̂(x)


× [x̄(x) − x]

=


β̃(x) − β (x)] + [β (x) − β̂(x)


× [x̄(x) − x]

= O


1
γ1 (n, h)


× O


1

γ2 (n, h)


= o


1

γ2 (n, h)


.

Therefore, we have the equivalence of m̂ (x) and m̃ (x)
asymptotically. �

Proof of Theorem 6. The proofs for parts (1) and (2), (4), (5) and
(6) follow that in Theorem 2. We only need to prove part (3) of the
theorem. Since

m̄sp(x) = ᾱ + ξ̄ (x) + η̄ (x) x̄ (x) + β̄ (x) x,

m̃sp(x) = α̃ + ξ̃ (x) + η̃ (x) x̄ (x) + β̃ (x) x,

we know that

m̄sp (x) − m̃sp (x)

=

ᾱ − α̃


+


ξ̃ (x) − ξ̄ (x)


+


η̃ (x) − η̄ (x)


x̄ (x)

+


β̃ (x) − β̄ (x)


= 1{β̃(x)<β1(x)}


m̃lc (x) − m̃sp (x)


= 1{β̃(x)<β1(x)}


m̃lc (x) − m (x) + m (x) − m̃sp (x)


= 1{β̃(x)<β1(x)}

Op


1

γ2 (n, h)


= op (1) × Op


1

γ2 (n, h)


= op


1

γ2 (n, h)


that is, m̄sp (x) and m̃sp (x) share the same asymptotic distribution.
It is implied from Theorem 3 of Martins-Filho et al. (2008)
that γ2 (n, h) σ̄−1

m (x)

m̃sp (x) − m (x) − Bm (x)

 d
→ Z ∼ N (0, 1).

Combining the results completes the proof. �
Proof of Theorem 7. Parts (1–3) follow in steps similar to parts
(1–3) of Theorem 5. We prove part (4). Note that

m̄sp(x) = ᾱ + ξ̄ (x) + η̄ (x) x̄ (x) + β̄ (x) x,

m̂sp(x) = α̂ + ξ̂ (x) + η̂ (x) x̄ (x) + β̂ (x) x.

Therefore, we have

m̂sp (x) − m̄sp (x) = E∗m̄∗

sp (x) − m̄sp (x)

= E∗

m̃∗

sp (x) − m̃sp (x)


+ E∗


1{β̃(x)<β1(x)}


m̃∗

lc (x) − m̃lc (x) + m̃∗

sp (x) − m̃sp (x)


= op


1

γ2(n, h)


+ op (1) × op


1

γ2(n, h)


= op


1

γ2(n, h)


.

Therefore, we have the equivalence of m̂sp (x) and m̄sp (x)
asymptotically, which completes the proof. �

Appendix B. Lemmas

We collect useful lemmas that are used in the proof of the main
theorems. We use Z to denote a standard normal random variable
with CDF Φ (·) and PDF ϕ (·), b to denote some constant, and 1{·}

an indicator function. Define Zb = Z + b.

Lemma 1. (a) E1{Zb>0} = Φ (b). (b) E

Z1{Zb>0}


= ϕ (b). (c)

E

Z21{Zb>0}


= −bϕ (b) + Φ (b). (d) E


Zb1{Zb>0}


= ϕ (b) +

bΦ (b). (e) E

Z2
b 1{Zb>0}


= Φ (b) + bϕ (b) + b2Φ (b).

Proof of Lemma 1. (a) E1{Zb>0} = E1{Z>−b} =


∞

−b dΦ (z) = 1
− Φ (−b) = Φ (b). (b) EZ1{Zb>0} =


∞

−b zϕ (z) dz = −


∞

−b
ϕ′ (z) dz = −ϕ (z) |

∞

−b = ϕ (b). (c) EZ21{Zb>0} =


∞

−b z
2ϕ (z) dz =

−


∞

−b zϕ
′ (z) dz = −zϕ (z) |

∞

−b +


∞

−b ϕ (z) dz = −bϕ (b) + Φ (b).
(d) E


Zb1{Zb>0}


= EZ1{Zb>0} + bE1{Zb>0} = ϕ (b) + bΦ (b). (e)

E

Z2
b 1{Zb>0}


= E


(Z + b)2 1{Zb>0}


= EZ21{Zb>0} + b2E1{Zb>0} +

2bE

Z1{Zb>0}


= Φ (b) − bϕ (b) + b2Φ (b) + 2bϕ (b) = Φ (b) +

bϕ (b) + b2Φ (b).

Lemma 2. (a) Eϕ (−Zb) = ϕ ∗ ϕ (−b). (b) Eϕ2 (−Zb) = ϕ2
∗

ϕ (−b). (c) E [Zϕ (−Zb)] = −ϕ ∗ ϕ′ (−b). (d) E [ZΦ (−Zb)] =

−ϕ ∗ ϕ (b). (e) E

Z2Φ (−Zb)


= Φ ∗ ϕ

′′

(−b) + Φ ∗ ϕ (−b).
(f) E


Z2Φ2 (−Zb)


= Φ2

∗ϕ
′′

(−b)+Φ2
∗ϕ (−b). (g) E


ZΦ (−Zb)

ϕ (−Zb)


= − (Φ · ϕ) ∗ ϕ′ (−b).

Proof of Lemma 2. (a) Eϕ (−Zb) = Eϕ (−b−Z) =


∞

−∞
ϕ (−b− z)

ϕ (z) dz = ϕ ∗ ϕ (−b).
(b) Eϕ2 (−Zb) = Eϕ2 (−b − Z) =


∞

−∞
ϕ2 (−b − z) ϕ (z) dz =

ϕ2
∗ ϕ (−b).

(c) E [Zϕ (−Zb)] = E [Zϕ (−b − Z)]=


∞

−∞
zϕ (−b − z) ϕ (z) dz=

−


∞

−∞
ϕ (−b − z) ϕ′ (z) dz = −ϕ ∗ ϕ′ (−b).

(d) E [ZΦ (−Zb)] = E [ZΦ (−b − Z)] =


∞

−∞
zΦ (−b − z) ϕ (z) dz

= −


∞

−∞
Φ (−b − z) ϕ′ (z) dz = −


Φ (−b − z) ϕ (z) |

∞

z=−∞

−


∞

−∞
−ϕ (−b − z) ϕ (z) dz


= −ϕ ∗ ϕ (−b).

(e) E

Z2Φ (−Zb)


= E[Z2Φ (−b − Z)] =


∞

−∞
z2Φ (−b − z)

ϕ (z) dz =


∞

−∞
Φ (−b − z) [ϕ (z)+ϕ′′ (z)]dz = Φ∗ϕ

′′

(−b)+
Φ ∗ ϕ (−b).

(f) E

Z2Φ2 (−Zb)


= E


Z2Φ2 (−b − Z)


=


∞

−∞
z2Φ2 (−b − z)

ϕ (z) dz =


∞

−∞
Φ2 (−b − z)


ϕ (z) + ϕ′′ (z)


dz = Φ2

∗

ϕ′′ (−b) + Φ2
∗ ϕ (−b).

(g) E [ZΦ (−Zb) ϕ (−Zb)] = E [ZΦ (−b − Z) ϕ (−b − Z)] =
∞

−∞
zΦ (−b − z) ϕ (−b − Z) ϕ (z) dz = −


∞

−∞
Φ (−b − z)

ϕ (−b − Z) ϕ′ (z) dz = − (Φ · ϕ) ∗ ϕ′ (−b).
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