
Author's personal copy

Granger-causality in quantiles between financial markets: Using
copula approach☆

Tae-Hwy Lee a,⁎, Weiping Yang b,1

a Department of Economics, University of California, Riverside, CA 92521-0427, USA
b Capital One Financial Research, 15000 Capital One Drive, Richmond, VA 23233, USA

a b s t r a c ta r t i c l e i n f o

Available online 4 September 2013

JEL classification:
C5

Keywords:
Contagion in financial markets
Copula functions
Inverting conditional copula
Granger-causality in conditional quantiles

This paper considers the Granger-causality in conditional quantile and examines the potential of improving con-
ditional quantile forecasting by accounting for such a causal relationship between financialmarkets.We consider
Granger-causality in distributions by testingwhether the copula function of a pair of two financial markets is the
independent copula. Among returns on stock markets in the US, Japan and U.K., we find significant Granger-
causality in distribution. For a pair of the financial markets where the dependent (conditional) copula is found,
we invert the conditional copula to obtain the conditional quantiles. Dependence between returns of two finan-
cial markets is modeled using a parametric copula. Different copula functions are compared to test for Granger-
causality in distribution and in quantiles. We find significant Granger-causality in the different quantiles of the
conditional distributions between foreign stockmarkets and the US stockmarket. Granger-causality from foreign
stock markets to the US stock market is more significant from UK than from Japan, while causality from the US
stock market to UK and Japan stock markets is almost equally significant.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A causal relationship in a system of economic or financial time series
has been widely studied. Following a series of seminal papers by
Granger (1969, 1980, 1988), Granger-causality (GC) test becomes a
standard tool to detect causal relationship. Granger-causality in mean
(GCM) is widely analyzed between macroeconomic variables, such as
between money and income, consumption and output, etc. cf. Sims
(1972, 1980), Stock andWatson (1989). In financial markets, a growing
interest in volatility spill-over promotes the development of Granger-
causality tests in volatility. cf. Granger, Robins, and Engle (1986), Lin,
Engle, and Ito (1994), Cheung and Ng (1996), Comte and Lieberman
(2000). Most tests of Granger-causality assume a bivariate Gaussian
distribution and focus on Granger-causality in mean or variance.

A Gaussian distribution cannot capture asymmetric dependence be-
tweenfinancialmarkets. For instance, co-movements between different
financial markets behave differently in a bull market and in a bear mar-
ket. Ang and Chen (2002) assert that non-Gaussian dependence

between economic variables or financial variables is prevalent. Associ-
ated with the non-elliptical distribution, causality maymatter in higher
moments or in the dependence structure in a joint density. Thus, it is
more informative to test Granger-causality in distribution (GCD) to
explore a causal relationship between two financial time series.

We apply a copula-based approach to model the causality and de-
pendence between a pair of two financial time series. Using copula
density functions, we construct two tests for GCD. The first test is non-
parametric, following Hong and Li (2005), to compare the copula densi-
ty in quadratic distance with the independent copula density. The
second test is parametric; noting that different parametric copula func-
tions imply different dependence structures, we design a method to
compare them in an entropy with the independent copula density.
Both tests compare out-of-sample predictive ability of copula functions
relative to the benchmark independent copula density.

GCD implies Granger-causality in some quantiles. In financial risk
management and portfolio management, it is useful to know which
quantile leads to theGCD. In particular, Value-at-Risk (VaR) is a quantile
in tail that is widely used in capital budgeting and risk control. We are
interested in exploring the potential of improving quantile forecasting
of a trailing variable Y using information of a preceding variable X. We
define Granger-causality in quantile (GCQ), for which quantile forecasts
are computed from inverting a conditional copula distribution, and we
develop a test for GCQ.

In our empirical application, these copula-basedmethods are applied
to analyze the pair-wiseGCD from the Japan stockmarket to theUS stock
market (Japan–US), from the UK stock market to the US stock market
(UK–US), from the US stock market to the Japan stock market (US–
Japan), and from the US stock market to the UK stock market (US–UK).
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We find significant GCD in these four data sets and all sample periods
considered (seven different subsample periods), as the benchmark
independent copula is clearly rejected in all data sets and subsamples.
ForGCQ,we compare predictive performance of various copula functions
with the benchmark independent copula function over different
quantiles of the conditional distribution of onemarket conditional on an-
other market. It is found that GCQ is significant from US to foreign stock
markets and from UK to the US stock market, but not from Japan to
US. The result is robust over the seven subsamples.

The rest of the paper is organized as follows. Section 2 introduces
two tests of GCD based on copula density functions. Both tests are
based on the distance measures and thus measure the strength of
GCD. Section 3 defines GCQ and develops a method to test for GCQ.
Section 4 reports empirical findings on GCD and GCQ. Section 5 con-
cludes. Appendix A reviews some basic results on copula functions.

2. Granger-causality in distribution

In this section,we defineGCD and introduce two statistics (based on
the information entropy) which measure the strength of the GCD. The
data used in our empirical applications are the daily return on the
S&P500 stock index (S&P500), the NIKKEI 225 stock index (NIKKEI)
and FTSE 100 stock index (FTSE). On the same trading day t, trading in
the Tokyo Stock Exchange and London Stock Exchange precedes that
in the New York Stock Exchange. To explore the causality between
two financial markets, we use {Xt} to denote the preceding variable
and {Yt} as the trailing variable. For instance, {Xt} denotes stock returns
on the NIKKEI and {Yt} denotes stock returns on the S&P500. See Table 1
(Panel A). We are only interested in causality in the same day or in the
next day. Causality may occur in a longer time horizon. However,
Dufour and Renault (1998) and Dufour, Pelletier, and Renault (2006)
show that in the financial market, if there is non-causality between Xt
and Yt, it will be difficult to explore Granger-causality in a longer hori-
zon. With the development of information technology, impact of infor-
mation in one market has the most significant effects in a short period,
and we focus on causality in daily frequency.

Using a copula-based approach, various dependence structures can
beflexiblymodeled by a copula andmarginal distribution functions. De-
pendence measures, such as Kendall's τ and Spearman's ρ, can also be
easily computed using a copula function. Therefore, recently copula
models have been widely used to model dependence between financial
time series. Some recent research includes Li (2000), Scaillet and
Fermanian (2003), Embrechts, Hoing, and Juri (2003), Patton (2006a,
b), Granger, Teräsvitra, and Patton (2006), and Chen and Fan (2006a,
2006b), among others. We refer to Appendix A for more details. In
this paper, we show how to use copula functions to test for GCD, how

to measure the degree of GCD from using the log-likelihood of the cop-
ula density functions, and how to invert the conditional copula distribu-
tion functions to forecast the conditional quantiles which enable us to
test for GCQ.

We use the following notation. Let R denote the sample size for
estimation (for which we use a rolling scheme), P the size of the out-
of-sample period for forecast evaluation, and T = R + P. Suppose the
stock market X closes before the stock market Y closes. Let Gt be the
information set before the stock market X closes and let F t be the infor-
mation set after the stock market X closes but before the stock market Y
closes, i.e., F t ¼ Gt∪ xtf g. Consider the conditional distribution functions,
FX xjGtð Þ ¼ Pr Xt b xjGtð Þ , FY yjGtð Þ ¼ Pr Yt b yjGtð Þ , and FXY x; yjGtð Þ ¼ Pr
Xt b x and Yt b yjGtð Þ . Let f X xjGtð Þ , f Y yjGtð Þ; and f XY x; yjGtð Þ be the
corresponding densities. Let Ut ¼ FX Xt jGtð Þ and Vt ¼ FY Yt jGtð Þ be the
(conditional) probability integral transforms (PIT) of Xt and Yt. Let C(u,v)
and c(u,v) be the conditional copula function and the conditional copula
density function respectively. See Appendix A for a brief introduction to
the copula theory. We define GCD as follows.

Definition 1. (Non-Granger-causality in distribution, NGCD): {Xt}
does not Granger-cause {Yt} in distribution if and only if Pr Yt b y F tj Þ ¼ð
Pr Yt b y Gtj Þð a.s. for all y.

There is GCD if Pr Yt b y F tj Þ≠ Pr Yt b y Gtj Þðð for some y. {Xt} does not
Granger-cause {Yt} in distribution if FY y F tj Þ ¼ FY y Gtj Þðð a.s. This implies
that testing for NGCD can be based on the null hypothesis

H1
0 : f Y y F tj Þ ¼ f Y yjGtð Þ:ð ð1Þ

Note that the joint density is a product of the conditional density and
the marginal density

f XY x; yjGtð Þ ¼ f Y y F tj Þ � f X xjGtð Þð ð2Þ

and a joint density can be written from the decomposition theorem in
Eq. (43) as

f XY x; y Gtj Þ ¼ f X x Gtj Þ � f Y y Gtj Þ � c u; vð Þ:ððð ð3Þ

From Eqs. (2) and (3), we obtain

f Y y F tj Þ ¼ f Y y Gtj Þ � c u; vð Þ:ðð ð4Þ

Hence, the null hypothesis of NGCD, H0
1 in Eq. (1), can be stated as the

null hypothesis that the copula density is the independent copula,

H2
0 : c u; vð Þ ¼ 1: ð5Þ

Table 1
Description of data sets and subsamples.

Panel A. Data sets

X Y Observations

Data Set 1A (Japan–US) Returns on NIKKEI 225 Returns on S&P500 2566
Data Set 1B (US–Japan) Returns on S&P500 Returns on NIKKEI 225 for next day 2566
Data Set 2A (UK–US) Returns on FTSE 100 Returns on S&P501 2566
Data Set 2B (US–UK) Returns on S&P500 Returns on FTSE 100 for next day 2566

Panel B. Subsamples in each date set

Starting date Ending date T R P

Subsample 1 Jan-95 Dec-99 1172 706 466
Subsample 2 Jan-96 Dec-00 1171 702 469
Subsample 3 Jan-97 Dec-01 1164 699 465
Subsample 4 Jan-98 Dec-02 1163 703 460
Subsample 5 Jan-99 Dec-03 1162 697 465
Subsample 6 Jan-00 Dec-04 1162 697 465
Subsample 7 Jan-01 Dec-05 1157 693 464
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The test of GCD in Eq. (1) is equivalent to a test of measuring the
distance between a copula density function conditional on xt and the
independent copula.

We test for H0
2 in Eq. (5) by estimating c(u,v) using a nonparametric

predictive copula density

bcP u; vð Þ ¼ 1
P

XT−1

t¼R

Kh u; butþ1
� �

Kh v;bvtþ1
� �

; ð6Þ

where Kh(⋅) is a kernel function and

butþ1 ¼ bFX xtþ1
� � ¼ 1

R

Xt
s¼t−Rþ1

1 xs ≤ xtþ1
� �

; ð7Þ

bvtþ1 ¼ bFY ytþ1
� � ¼ 1

R

Xt
s¼t−Rþ1

1 ys ≤ ytþ1
� �

; ð8Þ

are the out-of-sample PIT values for {xt + 1}t = R
T − 1 and {yt + 1}t = R

T − 1 calcu-
lated with respect to the marginal empirical distribution functions
(EDFs) that have been estimated using the rolling samples of the most
recent R observations at each time t (=R,…,T − 1). To circumvent the
boundary problem (as the PITs are bounded on [0 1]), we apply the
boundary-modified kernel used by Hong and Li (2005):

Kh a; a′
� � ¼

h−1k
a−a′

h

� �Z 1

− a=hð Þ
k uð Þdu; if a∈½0; hÞ;

h−1k
a−a′

h

 !
; if a∈½h;1−hÞ;

h−1k
a−a′

h

� �Z 1−að Þ=h

−1
k uð Þdu; if a∈ð1−h;1�;

8>>>>>>>><>>>>>>>>:
ð9Þ

where k(⋅) is a symmetric kernel function and h is the bandwidth.
For the null hypothesis H0

2 in Eq. (5), the test statistic is based on a
quadratic form

bMP ¼
Z 1

0

Z 1

0
bcP u; vð Þ−1
� �2dudv: ð10Þ

Instead of the quadratic distance between bcP u; vð Þ and the indepen-
dent copula c(u,v) = 1, the distance can be based on other measure
such as Hellinger entropy. See Hong and Li (2005, footnote 12) on the
comments on their test using the Hellinger entropy. See also Granger
(2003, p. 695) for a similar but different statistic based on the Hellinger
entropy between two densities. The statistic bMP based on the quadratic
distance or based on theHellinger entropywill provide ameasure of the
strength of GCD. The test statistic bMP is pivotalized by being centered
and scaled as

bQP ¼ Ph bMP−A0
h

h i
=V1=2

0 ; ð11Þ

where Ah0 is the nonstochastic centering factor and V0 is the nonstochastic
scale factor,

A0
h ≡ h−1−2

� 	Z 1

−1
k2 uð Þduþ 2

Z 1

0

Z b

−1
k2b uð Þdudb


 �2
−1; ð12Þ

V0 ≡ 2
Z 1

−1

Z 1

−1
k uþ vð Þk vð Þdv


 �2
du

" #2
; ð13Þ

in which kb(⋅) = k(⋅)/∫−1
b k(v)dv. Hong and Li (2005) show that, under

some regularity conditions, bQP follows the standard normal distribution
asymptotically as P → ∞ under H0

2 in Eq. (5). For the empirical analysis
in Section 4, bQP and its asymptotic p-values are reported in Table 2. LargerbQP and smaller p-values are evidence of stronger GCD.

As remarked above, while the statistic bQP measures the distance be-
tween the nonparametric copula bcP u; vð Þ and the independent copula
c(u,v) = 1 using the quadratic distance in Eq. (10) or Hellinger entropy,
we now consider another statistic based on the Kullback and Leibler
(1951) information criterion (KLIC). KLIC is also known as the cross-
entropy, relative entropy, or discrimination entropy. Rejection of the
null hypothesis H0

2 in Eq. (5) indicates that the copula is not the inde-
pendent copula and there exists GCD. In such case, we want to model
the GCD and measure the strength of the GCD. While this can be done
by the nonparametric copula function bcP u; vð Þ, parametric copula func-
tions are widely used in the literature and in practice. Noting that
there are numerous parametric copula functions, we now compare var-
ious parametric copula functions in their predictive ability (i.e., GCD). In
the copula literature, most of the existing methods merely evaluate a
parametric copula function — for instance using the Kolmogorov–
Smirnov goodness of fit test, theχ2 goodness of fit test and the bivariate
hit test.Whenwe fail to rejectmore than one copula, we need amethod
to compare copula functions. We use the KLIC of a parametric copula
density function ck relative to the true (unknown) copula function c0

KLIC ckð Þ ¼ ∫∫log c0 u; vð Þ=ck u; vð Þ½ �c0 u; vð Þdudv ¼ Ec0 logc0 u; vð Þ−logck u; vð Þ½ �:
ð14Þ

A parametric copula density function ck is a better model if the KLIC
distance is smaller. We use the word “distance” loosely because KLIC
does not satisfy a triangle inequality. However, in this paper, as we
will use the KLIC in comparing various competing parametric copula
densitymodels with a fixed benchmark copulamodel (i.e., the indepen-
dent copula), the KLIC can serve as a distancemetric with respect to the
fixed benchmark. To compare copula model 1 (benchmark) and model
k(=2, …, l), consider their KLIC-differential

Dk ¼ KLIC c1ð Þ−KLIC ckð Þ
¼ Ec0 logc0 u; vð Þ−logc1 u; vð Þ½ �−Ec0 logc0 u; vð Þ−logck u; vð Þ½ �
¼ Ec0 logck u; vð Þ−logc1 u; vð Þ½ �:

ð15Þ

If Dk N 0, ck is better than c1 because ck is closer to c0.
Taking model 1 (benchmark) as the independent copula with logc1(ut,
vt) = log(1) = 0, we get

Dk ¼ Ec0 logck u; vð Þ½ �: ð16Þ

We estimate Dk by

Dk;P ¼ P−1XT−1

t¼R

logck butþ1;bvtþ1
� �

; ð17Þ

which is the out-of-sample log-likelihood of the predictive copula den-
sity. The PITs butþ1;bvtþ1

� 

are estimated as discussed above in Eqs. (7)

and (8). In the empirical section, Dk;P will be reported in Table 3. The

Table 2
Testing for GCD.

Data Set 1A Data Set 1B Data Set 2A Data Set 2B

Subsample 1 3.68 (0.000) 4.59 (0.000) 15.47 (0.000) 7.46 (0.000)
Subsample 2 1.68 (0.093) 10.11 (0.000) 12.80 (0.000) 5.14 (0.000)
Subsample 3 0.71 (0.478) 11.57 (0.000) 18.51 (0.000) 4.64 (0.000)
Subsample 4 2.07 (0.039) 11.46 (0.000) 24.70 (0.000) 7.25 (0.000)
Subsample 5 2.83 (0.005) 13.16 (0.000) 15.63 (0.000) 4.97 (0.000)
Subsample 6 4.41 (0.000) 12.50 (0.000) 13.53 (0.000) 4.36 (0.000)
Subsample 7 3.82 (0.000) 11.53 (0.000) 12.01 (0.000) 5.98 (0.000)

Notes: Reported are the Hong and Li (2005) test statistics for the null hypothesis of non-
GCD. The null hypothesis is that the copula density function is the independent copula,
i.e., c(u,v) = 1. The test is an out-of-sample test. The asymptotic p-values calculated
from the standard normal distribution are shown in brackets.
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copula density model ck (k = 2,…, l) with the largest valueDk;P will be
preferred (which is shown in bold font in each row of Table 3).

To statistically compare the copula functions ck (k = 2,…, l) and to
test for GCD based on themultiple parametric copula functions, we con-
sider the null hypothesis that none of the copula models k = 2, …, l is
better than the benchmark independent copula model k = 1

H3
0 : E Dkð Þ ≤ 0; k ¼ 2;…; l: ð18Þ

Following White (2000), we consider the following null hypothesis

H4
0 : max

k¼2;…;l
E Dkð Þ ≤ 0; ð19Þ

under which the benchmark copula function is at least as good as all
alternative copulas with regard to predictive ability. The test statistic
for the null hypothesis H0

4 is constructed as:

Vl ¼ max
k¼2;…;l

P1=2Dk;P ; ð20Þ

and its bootstrap distribution is obtained from

V� bð Þ
l ¼ max

k¼2;…;l
P1=2 D� bð Þ

k;P −Dk;P

� 	
; b ¼ 1;…;B: ð21Þ

where D∗ bð Þ
k;P

n oB

b¼1
is computed from using stationary bootstrap of Politis

and Romano (1994). Under some regularity conditions, the bootstrap
distribution of V ∗ bð Þ

l approximates the true distribution of Vl . In the

empirical section, we have l = 7 (seven copula models including the
benchmark independent copula). The last column of Table 3 reports
the bootstrap p-values to compare the benchmark independent copula
with the other six copulamodels. A small p-value indicates that the null
hypothesis of NGCD in Eq. (19) is rejected and that some parametric
copula functions capture GCD.

3. Granger-causality in quantile

Conditional quantile forecasting is more and more widely used in
economic forecasting and finance. For example, a Value-at-Risk (VaR)
is widely used in portfolio analysis and risk management. Our objective
is to forecast the conditional quantile, qα Yt F tj Þð , where α is the left tail
probability. The conditional quantile qα Yt F tj Þð is derived from the in-
verse function of a conditional distribution function

qαðYt F tj Þ ¼ F−1
Y

a F tj Þ;ð ð22Þ

where FY y F tj Þð is the predicted conditional distribution function of Yt.
The inversion is to compute qα Yt F tj Þð from

Z qα yjF tð Þ

−∞
f Y y F tj Þdy ¼ α;ð ð23Þ

where f Y y F tj Þð is the predicted conditional density function. We now
define GCQ for out-of-sample test.

Table 3
Testing for GCD and comparing parametric copula functions.

Gaussian Frank Clayton Clayton Survival Gumbel Gumbel Survival P-value

Panel A. Data Set 1A (Japan–US)
Subsample 1 0.0094 0.0082 0.0130 0.0042 0.0081 0.0121 0.007
Subsample 2 0.0036 0.0036 0.0047 −0.0006 −0.0007 0.0032 0.327
Subsample 3 0.0110 0.0113 0.0124 0.0050 0.0070 0.0153 0.058
Subsample 4 0.0255 0.0245 0.0308 0.0145 0.0199 0.0353 0.000
Subsample 5 0.0151 0.0162 0.0175 0.0082 0.0107 0.0176 0.025
Subsample 6 0.0106 0.0108 0.0079 0.0061 0.0069 0.0065 0.096
Subsample 7 0.0077 0.0065 0.0034 0.0049 0.0055 0.0040 0.272

Panel B. Data Set 1B (US–Japan)
Subsample 1 0.0424 0.0341 0.0429 0.0240 0.0310 0.0437 0.002
Subsample 2 0.0892 0.0739 0.0756 0.0616 0.0729 0.0858 0.000
Subsample 3 0.0756 0.0685 0.0633 0.0475 0.0554 0.0716 0.000
Subsample 4 0.0638 0.0636 0.0445 0.0478 0.0547 0.0536 0.000
Subsample 5 0.0950 0.0912 0.0636 0.0748 0.0829 0.0742 0.000
Subsample 6 0.1068 0.0982 0.0749 0.0791 0.0908 0.0840 0.000
Subsample 7 0.0891 0.0763 0.0715 0.0579 0.0734 0.0774 0.000

Panel C. Data Set 2A (UK–US)
Subsample 1 0.1198 0.1035 0.1095 0.0826 0.1044 0.1225 0.000
Subsample 2 0.1054 0.0904 0.1002 0.0685 0.0874 0.1113 0.000
Subsample 3 0.1369 0.1273 0.1135 0.0976 0.1228 0.1283 0.000
Subsample 4 0.1698 0.1501 0.1289 0.1387 0.1658 0.1564 0.000
Subsample 5 0.1391 0.1133 0.1021 0.1235 0.1371 0.1285 0.000
Subsample 6 0.0937 0.0861 0.0581 0.0937 0.1014 0.0848 0.000
Subsample 7 0.0728 0.0686 0.0324 0.0947 0.0987 0.0603 0.000

Panel D. Data Set 2B (US–UK)
Subsample 1 0.0436 0.0376 0.0535 0.0166 0.0254 0.0523 0.000
Subsample 2 0.0452 0.0471 0.0422 0.0230 0.0274 0.0444 0.000
Subsample 3 0.0433 0.0402 0.0421 0.0193 0.0256 0.0408 0.002
Subsample 4 0.0360 0.0371 0.0349 0.0187 0.0263 0.0358 0.013
Subsample 5 0.0356 0.0388 0.0270 0.0253 0.0288 0.0325 0.005
Subsample 6 0.0383 0.0312 0.0467 0.0123 0.0184 0.0452 0.001
Subsample 7 0.0398 0.0308 0.0657 0.0051 0.0176 0.0571 0.000

Notes: Reported are the out-of-sample averages of the logarithmof thepredictive copuladensity function, log c(u,v) for each copulamodel for each subsample. For the independent copula,
log c(u,v) is zero. Positive values of the out-of-sample average of the logarithm of the predictive copula density function indicate the presence of GCD. The larger the value is, the better is
the copula function. The largest value in each row is shown in bold font to indicate the best copulamodel. To statistically compare these copula functions, we take the independence copula
(non-GCD) as the benchmark and compare it with other copula functions. The last column reports the Reality-Check (White, 2000) p-values to compare the 6 copula models with the
benchmark independent copula. P-values reported are Hansen's p-values (Hansen, 2005). The null hypothesis of the reality check test is that none of the six copula functions is better
than the independent copula. Almost all p-values are very small, rejecting the null hypothesis of no-GCD, indicating that some parametric copula functions capture GCD.
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Definition 2. (Non-Granger-causality in quantile, NGCQ): {Xt} does not
Granger-cause {Yt} in α-quantile if and only if qα Yt F tj Þ ¼ qα Yt Gtj Þðð a.s.

GC in conditional quantile refers to the case that qα Yt F tj Þ≠ð qα
Yt jGtð Þ. If Xt does not Granger-cause yt + 1 in distribution, qα Yt F tj Þ ¼ð
qα Yt jGtð Þ since gtþ1 yjXt ;Gtð Þ ¼ gtþ1 yjGtð Þ . Therefore, non-Granger-
causality in distribution (NGCD) implies non-Granger-causality in con-
ditional quantile (NGCQ). However, GCD does not necessarily imply GC
in eachquantile, while significantGC in any conditional quantile implies
significant GC in distribution. For some quantiles, XtmayGranger-cause
Yt, while for other quantiles it may not. Granger (2003, p. 700) notes
that some quantiles may differ from other quantiles in time series be-
havior (such as long memory and stationarity). For example, different
parts of the distribution can have different time series properties; one
tail could be stationary and the other tail may have a unit root. See
also Granger (2010) for insightful vision of a pioneer on the importance
of conditional quantiles.

The conditional quantiles can be obtained by an analytical approach,
a historical approach or by a simulation-based approach. In practice an
analytical approach using a parametric copula function is the most
widely used approach, cf. Bouye and Salmon (2009). In this approach
we set up quantitative models and derives close-form solutions for
quantile forecasts as follows:

Pr Y≤yjX ¼ xð Þ ¼ lim
ε→0

Pr Y≤yjx≤X≤xþ εð Þ

¼ lim
ε→0

FXY xþ ε; yð Þ−FXY x; yð Þ
FX xþ εð Þ−FX xð Þ

¼ lim
ε→0

C FX xþ εð Þ; FY yð Þð Þ−C FX xð Þ; FY yð Þð Þ
FX xþ εð Þ−FX xð Þ

¼ ∂
∂uC u; vð Þ;

ð24Þ

where ∂
∂uC u; vð Þ is the conditional copula distribution of v givenu. Denote

∂
∂uC u; vð Þ as Cu(u,v). qα Yt F tj Þð is computed by solving the equation

Cu FX xtþ1
� �

; FY ðqα Yt F tj Þð Þ ¼ α:
� ð25Þ

To evaluate predictive ability of those quantile forecastingmodels
qα Yt F tj Þð obtained from seven (l = 7) copula functions for C(u,v), we
use the “check” loss function of Koenker and Basset (1978). The check
loss function is a special case in a family of quasi-likelihood functions
(Komunjer, 2005), and can be used to measure the lack-of-fit of a
quantile forecasting model. The expected check loss for a quantile fore-
cast qα Yt jF tð Þ at a given α is

Q αð Þ ¼ E α−1 Yt−qα Yt F tj Þ b 0ð Þð � Yt−qα Yt F tj Þð Þ:ð½ ð26Þ

As seven copula functions are considered for C(u,v), denote them as
Ck(u,v) (k = 1,…, l = 7). For each copula distribution function Ck(u,v),
denote also the corresponding quantile forecast as qα;k Yt jF tð Þ and its
expected check loss as Qk(α). To compare copula model 1 (benchmark)
and model k (=2, …, l), consider their check loss-differential

Dk ¼ Q1 αð Þ−Qk αð Þ: ð27Þ

We estimate Dk by

Dk;P ¼ bQ1;P αð Þ−bQk;P αð Þ; ð28Þ

where

bQk;P αð Þ ¼ 1
P

XT−1

t¼R

α−1 Yt−qα Yt F tj Þb0ð Þð � Yt−qα Yt F tj Þð Þ; k ¼ 1;…; l:ð½

ð29Þ

The conditional quantile forecasts fromusing the copula distribution
function Ck (k = 2, …, l) with the largest value Dk;P that will be
preferred.

To statistically compare the conditional quantile forecast qα;k Yt jF tð Þ
(k = 2, …, l) and to test for GCQ based on the multiple parametric
copula functions, we consider the null hypothesis of NGCQ that none
of the conditional quantile forecasts computed from copula Ck (k = 2,
…, l) is better than the benchmark quantile forecast computed from
the independent copula distribution C1

H5
0 : E Dkð Þ ≤ 0; k ¼ 2;…; l: ð30Þ

Following White (2000), we consider the following null hypothesis

H6
0 : max

k¼2;…;l
E Dkð Þ ≤ 0; ð31Þ

underwhich the benchmark quantile forecast is at least as good as all al-
ternative conditional forecasts with regard to the check loss. The test
statistic for the null hypothesis H0

6 is constructed as:

Vl ¼ max
k¼2;…;l

P1=2Dk;P : ð32Þ

The bootstrap p-value of this statistic is computed in the same way
thatwe discussed for theKLIC based test for GCD in theprevious section.
Compute

V� bð Þ
l ¼ max

k¼2;…;l
P1=2 D� bð Þ

k;P −Dk;P

� 	
; b ¼ 1;…;B: ð33Þ

where D∗ bð Þ
k;P

n oB

b¼1
is computed from using the stationary bootstrap of

Politis and Romano (1994). Under some regularity conditions, the boot-

strap distribution ofV ∗ bð Þ
l approximates the true distribution ofVl. In the

empirical section, we have l = 7 (seven copula models including
the benchmark independent copula). The null hypothesis of NGCQ in
Eq. (31) is that none of the six copulamodels (for GCQ) can produce bet-
ter quantile forecasts than the independent copula (for NGCQ). Each cell
of Table 4 reports the bootstrap p-values to compare the benchmark
quantile forecast with the other six quantile forecasts for a value of α
and for a subsample. A small p-value indicates that the null hypothesis
is rejected and that some parametric copula functions capture GCQ
with better quantile forecast of Y by conditioning on X.

4. Empirical analysis

We investigate the causality and dependence between a pair of two
financialmarkets using a copula-based approach.We focus on pair-wise
causal relationships between three major stock markets of US, Japan,
and UK. In particular, we compare multiple copula functions with inde-
pendent copula function, in order to test GCD and GCQ, of one market's
return conditional on another market's return.

The data used in our empirical applications are the daily return on
the S&P500 stock index (S&P500), the NIKKEI 225 stock index (NIKKEI)
and FTSE 100 stock index (FTSE) from Jan. 3, 1995 to Dec. 31, 2005. The
source of the data is Yahoo Finance. To analyze the causal effects, we
only keep the observations of the date when all three markets were
open. The total observations in the data sets are 2566. Approximately,
there are 230–240 observations per year and 20 observations per
month.

On the same trading day, trading in the Tokyo Stock Exchange and
London Stock Exchange precedes that in the New York Stock Exchange.
To explore the causality among those financial markets, we use four
data sets, which include stock returns on NIKKEI and S&P500 (same
day) (referred to as “Japan–US”), stock returns on FTSE and S&P500
(same day) (referred to as “UK–US”), returns on S&P500 and next
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day's NIKKEI (referred to as “US–Japan”), and returns on S&P500 and
next day's FTSE (referred to as “US–UK”), respectively.

To simplify the notation, in all four data sets, we use {Xt} to denote
the preceding variable and {Yt} as the trailing variable. For instance, in
the data set of same day's stock returns on NIKKEI and S&P500, {Xt} de-
notes stock returns on the NIKKEI and {Yt} denotes stock returns on the
S&P500. Panel A of Table 1 reports detailed information of variables in
those data sets.2

The focus of empirical study is out-of-sample forecasting. Hence, for
each subsample, we choose 5 years (about T = 1170 observations), in
which 3 year data (about R = 700 observations) are used for in-
sample estimation of themodels and 2 year data (about P = 470 obser-
vations) are used for out-of-sample forecasting, of daily series. To con-
duct a robustness check and to explore the causality over time, the
subsample shifts forward by 1 year. Therefore, there are altogether 7
subsamples. Details on the subsamples are listed in Panel B of Table 1.

In recent years, multivariate GARCH models are widely applied to
model and forecast the temporal dependence and correlation between
financial markets. Rather than assuming the bivariate normal distribu-
tion as in most multivariate models, we use a copula distribution. Be-
cause we are interested in testing GCD and GCQ instead of modeling
the correlation between financial returns, we apply a relatively simple

model in which the two univariate processes are modeled by a GARCH
model and the dependence structure is modeled by a copula.

Let {Xt} and {Yt} be stock returnswith zeromean (or demeaned). The
estimation procedure is in two-steps following Chen and Fan (2006b).
In the first step the univariate conditional variance for {Xt} and {Yt} re-
spectively is modeled by a univariate GARCH process, i.e.,

h−1=2
x;t Xt ∼N 0;1ð Þ

hx;t ¼ βx0 þ βx1x
2
t−1 þ βx2hx;t−1;

ð34Þ

h−1=2
y;t Yt ∼N 0;1ð Þ

hy;t ¼ βy0 þ βy1y
2
t−1 þ βy2hy;t−1:

ð35Þ

In the second step the joint distribution is modeled by a copula
function

h−1=2
x;t Xt ;h

−1=2
y;t Yt

� 	
∼ C u; vð Þ: ð36Þ

By choosing different copula functions and marginal distributions,
this model can capture various dependence structures between finan-
cial time series. The model is estimated by a two-stage quasi maximum
likelihood (QML)method. In thefirst stage, we estimate the two univar-
iate GARCHmodels by QML method. With the estimated parameters in
the GARCH model, the PIT values of the two marginal processes {ut,vt}
are estimated by the EDFs as in Eqs. (7) and (8). In the second stage,
we estimate the copula parameters following Chen and Fan (2006b).

2 Exchange ratefluctuationswould influence stockmarket returns dominated by theUS
dollar in Japan and Britain. To remove the possible influence of such impacts, we also an-
alyze causality between different financial markets using foreign exchange rate adjusted
returns. We also study the same four data sets, but with USD dominated returns. The data
source of the daily exchange rate of the Yen/USD and USD/GBP is the FERD database of
Federal Reserve of St. Luis. As the results were basically the same, we do not report these
FX-adjusted results but they are available upon request.

Table 4
Testing for GCQ.

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99%

Panel A. Data Set 1A (Japan–US)
Subsample 1 0.285 0.314 0.205 0.098 0.054 0.124 0.105 0.313 0.344 0.406 0.407 0.144 0.233
Subsample 2 0.041 0.610 0.308 0.190 0.321 0.474 0.775 0.833 0.928 0.824 0.920 0.789 0.442
Subsample 3 0.091 0.707 0.581 0.440 0.404 0.373 0.422 0.437 0.479 0.357 0.802 0.482 0.821
Subsample 4 0.310 0.227 0.112 0.266 0.257 0.053 0.372 0.368 0.407 0.320 0.209 0.137 0.699
Subsample 5 0.187 0.264 0.170 0.527 0.060 0.037 0.015 0.206 0.491 0.724 0.493 0.636 0.793
Subsample 6 0.093 0.020 0.006 0.025 0.078 0.052 0.122 0.672 0.788 0.784 0.291 0.573 0.449
Subsample 7 0.534 0.421 0.315 0.021 0.181 0.276 0.772 0.824 0.777 0.460 0.554 0.621 0.061

Panel B. Data Set 1B (US–Japan)
Subsample 1 0.010 0.213 0.165 0.059 0.022 0.030 0.133 0.129 0.147 0.279 0.197 0.323 0.533
Subsample 2 0.099 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.004 0.044 0.266 0.323 0.211
Subsample 3 0.337 0.010 0.001 0.002 0.001 0.000 0.000 0.000 0.017 0.029 0.062 0.171 0.020
Subsample 4 0.570 0.103 0.005 0.000 0.000 0.000 0.003 0.018 0.032 0.031 0.068 0.009 0.052
Subsample 5 0.269 0.016 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.002 0.001 0.239
Subsample 6 0.097 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.156
Subsample 7 0.086 0.007 0.000 0.000 0.000 0.007 0.001 0.001 0.005 0.010 0.033 0.025 0.060

Panel C. Data Set 2A (UK–US)
Subsample 1 0.040 0.373 0.352 0.276 0.155 0.079 0.006 0.006 0.016 0.019 0.039 0.054 0.032
Subsample 2 0.091 0.004 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.013 0.046 0.072
Subsample 3 0.043 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.138 0.408
Subsample 4 0.376 0.339 0.193 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.122
Subsample 5 0.438 0.389 0.332 0.193 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.373
Subsample 6 0.421 0.174 0.167 0.008 0.000 0.002 0.002 0.011 0.008 0.002 0.005 0.014 0.065
Subsample 7 0.751 0.176 0.082 0.009 0.005 0.012 0.012 0.006 0.000 0.000 0.001 0.004 0.392

Panel D. Data Set 2B (US–UK)
Subsample 1 0.104 0.236 0.040 0.005 0.001 0.001 0.001 0.016 0.039 0.080 0.417 0.813 0.613
Subsample 2 0.588 0.194 0.053 0.008 0.009 0.003 0.003 0.008 0.005 0.012 0.188 0.690 0.796
Subsample 3 0.281 0.188 0.019 0.000 0.005 0.020 0.016 0.035 0.043 0.059 0.082 0.209 0.369
Subsample 4 0.225 0.032 0.016 0.021 0.030 0.056 0.055 0.098 0.117 0.055 0.104 0.172 0.751
Subsample 5 0.416 0.039 0.137 0.046 0.065 0.042 0.051 0.087 0.093 0.071 0.054 0.077 0.552
Subsample 6 0.051 0.065 0.031 0.024 0.021 0.011 0.014 0.209 0.343 0.233 0.137 0.183 0.502
Subsample 7 0.048 0.000 0.000 0.004 0.002 0.001 0.000 0.012 0.115 0.070 0.135 0.517 0.741

Notes:We compute the quantile forecasts by inverting the parametric conditional copula distribution.We use six copulas (Gaussian, Frank, Clayton, Clayton Survival, Gumbel and Gumbel
Survival copulas). The check loss functions are compared to evaluate predictive ability of the different quantile forecasting using different copulamodels. The benchmark quantile forecasts
are computed using the independent copula, so that there is no GCQ. Reported are the bootstrap p-values for testing the null hypothesis that none of these six copula models (which
models GCQ) makes better quantile forecast than the independent copula (which gives no GCQ). The small p-values of the Reality Check indicate the rejection of the null hypothesis, in-
dicating that there exists a copula function to model GCQ and makes better quantile forecast.
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4.1. Granger-causality in distribution

We apply the proposed out-of-sample test for GCD following
Hong and Li (2005). As discussed in Section 2, we actually test
H0 : c(u,v) = 1. The forecasted conditional variance for {Xt} and {Yt},bhx;tþ1 and bhy;tþ1, are computed by

bhx;tþ1 ¼ bβx0 þ bβx1x
2
t þ bβx2

bht;x; ð37Þ

bhy;tþ1 ¼ bβy0 þ bβy1y
2
t þ bβy2

bht;y: ð38Þ

Thus forecasted CDF values butþ1 and bvtþ1 for xt + 1 and yt + 1 are cal-
culated by the empirical distribution function (EDF). A nonparametric
copula function is estimated with paired EDF values butþ1;bvtþ1

� 
T−1
t¼R

using product kernel functions.We use a quartic kernel in the boundary
kernel function specified in Section 2, which is specified as

k uð Þ ¼ 15
16

1−u2
� 	2

1 juj ≤ 1ð Þ: ð39Þ

For simplicity, bandwidths for u and v are assumed to be the same.
Following Hong and Li (2005), we set h ¼ bσR−1=6, where bσ is the stan-
dard error ofbutþ1. This assumption can be relaxed and the results are not
greatly affected.

In Table 2, we report the GCD results using the Hong and Li test statis-
tic for {xt + 1,yt + 1}t = R

T − 1, computed by themethod discussed in Section 2.
Wefind significant GCDbetween all pairs of threefinancialmarkets.With
the shift of subsamples, the GCD remains significant for all subsamples
and data sets. Not only the foreign stock markets Granger-cause the US
stockmarket, but also the information of theUSmarket affects the foreign
markets in the following day. This finding is consistent with the literature
on Granger-causality in variance between financial markets, e.g., Cheung
and Ng (1996), Hong (2001), and Sensier and van Dijk (2004).

The rejection of the null hypothesis that the copula is independent,
H0 : c(u,v) = 1, leads us to consider various parametric copula density
functions. In the literature, Gaussian copulas, Frank copulas, Clayton
copulas, Clayton Survival copulas, Gumbel copulas and Gumbel Survival
copulas are the most commonly used copula functions. We use these
copula functions (see Appendix A). Specifically, we form the forecasted
copula density functionbc u; vð Þ. Based on the decomposition theorem of
a bivariate density in Eq. (43), the log-likelihood of a bivariate density is
decomposed as

log f XY x; yð Þ ¼ log f X xð Þ þ log f Y yð Þ þ logc FX xð Þ; FY yð Þð Þ; ð40Þ

Noting that we use the same marginal processes for all copula
models, to compare predictive log-likelihood is equivalent to compare
logbc butþ1;bvtþ1

� �
, wherebutþ1 andbvtþ1 are computed using empirical distri-

bution functions. Results are reported in Table 3. The independent copula
is clearly rejected for all seven subsamples and all four data sets. Thisfind-
ing is consistent with the Hong-Li test results for GCD in Table 2.

For Data Set 1A (Japan–US), the Clayton copula and the Gumbel Sur-
vival copula are the best two copulas, both of which exhibit increasing
dependence in the lower tails. See Appendix A on some properties of
copulas. These two copulas clearly dominate the mirror counterparts,
Clayton Survival copula and Gumbel copula, which have much smaller
log-likelihood. The other data sets show a similar pattern. In general,
the best copula functions are Clayton or Gumbel Survival (both capture
the left tail dependence). Even when the Gaussian copula is the best for
some subsamples, Clayton or Gumbel Survival still dominate Clayton
Survival or Gumbel in almost all cases (of the seven subsamples and
four data sets).

This comparison of the copula only tells that left (lower) tail depen-
dence is stronger than the right (upper) tail dependence. It does not
mean that the upper tail dependence does not exist. In fact many cases
show that the symmetric copula, namely Gaussian copula and the Frank

copula are selected as the best copula function. The comparison of the
copulas simply show that the bad news are generally more contagious
than good news, but it does not show whether or not good news may
Granger-cause the other market. In order to examine this, we need to ex-
amine the Granger-causality in various quantiles, GCQ,whichwe do next.

4.2. Granger-causality in quantiles

As discussed in Section 3, significant GCD does not imply Granger-
causality in each conditional quantile. In our empirical study, we focus
on three regions of the distribution — the left tail (1% quantile, 5%
quantile and 10% quantile), the central region (40% quantile, median
and 60% quantile) and the right tail (90% quantile, 95% quantile and
99% quantile). We compare the Granger-causality in those quantiles.
To forecast the conditional quantile for yt + 1, because xt + 1 precedes
yt + 1, xt + 1 is a realized value thus can be used in forecasting condition-
al quantile qα(yt + 1|xt + 1). For instance, before the New York Stock
Exchange opens, the Tokyo Stock Exchange has closed.

We compute the quantile forecasts by inverting the conditional copula
distribution, as described in Section 3. We use six copulas — Gaussian,
Frank, Clayton, Clayton Survival, Gumbel and Gumbel Survival copulas.
These copula functions represent different dependence structures. We
compare the check loss functions to evaluate predictive ability of different
quantile forecasting copulamodels relative to the quantile forecastswith-
out GCQ.3 The quantile forecasts without GCQ are computed from the
marginal distribution of y, which is equivalent to the quantile forecast
from using the independent copula. The null hypothesis of the Reality
Check test is that none of these six copula models (which models GCQ)
makes better quantile forecast than the independent copula (without
GCQ). The results of testing GCQ in p-values are reported in Table 4. The
small p-values of the Reality Check in Table 4 indicate the rejection of
the null hypothesis, indicating that there exists a copula function to
model GCQ and makes better quantile forecast of Y by conditioning on X.

We report several interesting findings.

1. First, in every data set, a quantile forecastingmodel with noGranger-
causality in quantile is rejected in many α quantiles, verifying the
finding of significant GCD between financial markets. Meanwhile,
for some regions, the quantile forecast model with non-Granger-
causality cannot be rejected. This in part verifies that GCD does not
necessarily imply Granger-causality in every quantile.

2. TheGCQbetweenUS and Japan showsdifferent patterns inData Set 1A
(Japan–US) than Data Set 1B (US–Japan). Data Set 1A (Japan–US) does
not show many small p-values, indicating that the Japanese stock
market does not Granger-cause the US market in most quantiles. The
Reality Checkp-values forData Set 1B (US–Japan) are very small across
almost the entire quantiles for all subsamples, indicating that the US
stock market strongly Granger-causes the Japanese stock market in
all quantiles, left tail (bad performance), center (usual performance),
and right tail (good performance) of the distribution of the NIKKEI
returns conditional on the yesterday's S&P500 returns. So there is a
clear asymmetry between US and Japan stock markets in GCQ.

3. It is interesting to see that the same asymmetry is not found between
US andUK stockmarkets in GCQ. Looking at Panels C andD of Table 4,
it is seen that there are small p-values all over the places (across the
quantiles and over different subsamples). GCQ is clear in both direc-
tions, from UK to US and also from US to UKmarkets, in all quantiles.
GCQ is asymmetric between US and Japan financial markets, but
more symmetric between US and UK markets. However, the results
of Tables 2–4 suggest that the causality is even stronger from UK to

3 We also use the loss functions proposed by Komunjer (2005) with p = 1, 3, and 5 re-
spectively. Results using loss functions byKomunjer (2005)mimic thoseusing a check loss
function. Therefore, we only report results using a check loss function.
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US than from US to UK, although it is statistically significant in both
directions.

5. Conclusions

Instead of testing Granger-causality in conditional mean or condi-
tional variance, we consider testing for GCD by checking for indepen-
dence in the copula function. Among the returns in three major stock
markets, we find a significant GCD. We also estimate several copula
functions to model the GCD between financial markets, and invert the
estimated conditional copula distribution function to obtain the condi-
tional quantile functions, which enable us to examine the Granger-
causality in various quantiles. We find that causality to the US stock
market is more significant from UK than from Japan, while causality
from the US stock market to UK and Japan stock markets is significant
almost equally or slightly more to Japan than to UK.

The literature on GCQ is young and thin. The first paper on GCQ is Lee
and Yang (2012), who explore money-income Granger causality in the
conditional quantile and find that GCQ is significant in tail quantiles
whereas it is not significant near the middle quantiles of the conditional
distribution. Lee and Yang (2012) use the quantile regression to compute
the out-of-sample quantile forecasts. While not reported in the paper for
space, we have also computed the quantile forecasts from the quantile re-
gressions instead of inverting the conditional copula functions. The results
showed that the inverting conditional copula distribution is the superior
approach to the quantile regressions especially towards both tails. Even
in the middle of the distribution, the quantile regression was often dom-
inated by the copula approach. This resultwas robustwith all subsamples
and data sets. This indicates that using a copula based approach has great
potential to improve the quantile forecasting especially in the tails (such
as VaRs) and perhaps even in the center of the distribution. Another ad-
vantage of inverting the conditional copula functions to obtain quantile
forecasts instead of using the regression quantiles is that the former can
avoid entirely the quantile-crossing problem while the latter methods
require some correction or adjustment as studied by Chernozhukov,
Fernandez-Val, and Galichon (2009). Jeong, Härdle, and Song (2012)
consider a nonparametric test for in-sample GCQ and examine the causal
relations between the crude oil price, theUSD/GBP exchange rate, and the
gold price in the gold market.

The contribution of the current paper is two-fold. First, we show
how to test for GCD using the copula function and how to compare dif-
ferent parametric copula functions. These methods are based on qua-
dratic distance or Hellinger entropy, and on the KLIC cross-entropy.
The distance or entropy provides measures of the strength in GCD, as
shown in Section 2. Second, we then show how to invert the predictive
conditional copula functions to obtain conditional quantile forecasts
and how to test for the out-of-sample GCQ, as shown in Section 3.
Ashley, Granger, and Schmalensee (1980) advocate that a test for
Granger-causality of X for Y be conducted for out-of-sample predictive
content of the conditioning variable X for Y.

Appendix A. Copula

In the framework of time series, a conditional copula is more often
applied than an unconditional copula. As in Patton (2006b), we define
the conditional copula as follows.

Sklar's theorem for conditional copula: Let FXY(x,y) be a bivariate
conditional joint distribution function with conditional margin
distributions FX(x) and FY(y). Then there exists a conditional copula
function C such that for all x, y

FXY x; yð Þ ¼ C FX xð Þ; FY yð Þð Þ; ð41Þ

where FX xð Þ ¼ Pr X ≤ xjF tð Þ; FY yð Þ ¼ Pr Y ≤ yjF tð Þ:

There are two important corollaries to this theorem:

Representation of conditional copula functions: The bivariate conditional
copula function can be obtained from the bivariate conditional joint
distribution function FXY(x,y) by the following:

C u; vð Þ ¼ FXY F−1
X uð Þ; F−1

Y vð Þ
� 	

ð42Þ

where u = FX(x) and v = FY(y).
Decomposition of bivariate density: Let f XY x; yð Þ ¼ ∂2 FXY x;yð Þ

∂x∂y , f X xð Þ ¼ ∂ FX xð Þ
∂x ,

and f Y yð Þ ¼ ∂ FY yð Þ
∂y . Then

f XY x; yð Þ ¼ f X xð Þ � f Y yð Þ � c FX xð Þ; FY yð Þð Þ; ð43Þ

where c u; vð Þ ¼ ∂2C u;vð Þ
∂u∂v is the conditional copula density function.

Some parametric copula functions are widely used, such as Gaussian
copula, Student-t copula, Frank copula, Clayton copula, Gumbel copula,
Gumbel Survival copula and Clayton survival copula.We use the follow-
ing seven copula functions in this paper.

(1) Gaussian copula

CGaussian u; v;ρð Þ ¼
Z Φ−1 uð Þ

−∞

Z Φ−1 vð Þ

−∞

1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

p exp − r2 þ s2−2ρrs
2 1−ρ2
� � !

drds; ρ∈ −1;1ð Þ:

(2) Frank copula

CFrank u; v; θð Þ ¼ −1
θ
log 1þ

e−θu−1
� 	

e−θv−1
� 	

e−θ−1
� �

0@ 1A; θ∈ −∞;þ∞ð Þn 0f g;

cFrank u; v; θð Þ ¼
−θ e−θ−1
� 	

e−θ uþvð Þ

e−θ−1
� �þ e−θu−1

� �
e−θv−1
� �� �2 :

(3) Clayton copula

CClayton u; v; θð Þ ¼ u−θ þ v−θ−1
� 	−1=θ

; θ∈½−1;þ∞Þn 0f g;

cClayton u; v; θð Þ ¼
1þ θð Þ u−θ þ v−θ−1

� 	−1
θ−2

uvð Þθþ1 :

(4) Clayton Survival (CS) copula

CCS u; v; θð Þ ¼ uþ v−1þ 1−uð Þ−θ þ 1−vð Þ−θ−1
� 	−1=θ

; θ∈½−1;þ∞Þn 0f g;

cCS u; v; θð Þ ¼ cClayton 1−u;1−v; θð Þ:

(5) Gumbel copula

CGumbel u; v; θð Þ ¼ exp − −loguð Þθ þ −logvð Þθ
� 	1=θ� �

; θ∈½1;þ∞Þ;

cGumbel u; v; θð Þ

¼
CGumbel u; v; θð Þ log;u; log; vð Þθ−1 −loguð Þθ þ −logvð Þθ

h i1=θ þ θ−1
� �

u1u2 −loguð Þθ þ −logvð Þθ� �2−1=θ :

(6) Gumbel Survival (GS) copula

CGS u; v; θð Þ ¼ uþ v−1þ exp − −log 1−uð Þð Þθ þ −log 1−vð Þð Þθ
h i1=θ� �

; θ∈½1;þ∞Þ;

cGS u; v; θð Þ ¼ cGumbel 1−u;1−v; θð Þ:
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(7) Independent copula

CIndep u;υð Þ ¼ uυ;
cIndep u;υð Þ ¼ 1:

Gaussian copula, t copula and Frank copula are symmetric copulas,
while the others are asymmetric copula functions. Gumbel copula and
CS copula demonstrate upper tail dependence, while GS copula and
Clayton copula show lower tail dependence. With a Gaussian copula
and two marginal Gaussian distributions, we can construct a bivariate
Gaussian distribution. However, with non-Gaussian marginal distribu-
tions, even with a Gaussian copula, the constructed distribution will
be non-Gaussian.
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