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Abstract: Thispapermakes a simple but previously neglectedpointwith regard to an
empirical application of the test of White (1989) and Lee, White, and Granger
(LWG, 1993), for neglected nonlinearity in conditional mean, using the feedforward
single layer artificial neural network (ANN). Because the activation parameters in the
hidden layer are not identified under the null hypothesis of linearity, LWG suggested
to activate the ANN hidden units based on the randomly generated activation para-
meters. Their Monte Carlo experiments demonstrated the excellent performance
(good size and power), even if LWG considered a fairly small number (10 or 20) of
random hidden unit activations. However, in this paper, we note that the good size
and power of Monte Carlo experiments are the average frequencies of rejecting the
null hypothsis overmultiple replications of the data generating process. The average
over many simulations in Monte Carlo smooths out the randomness of the activa-
tions. In anempirical study, unlike inaMonteCarlo study,multiple realizationsof the
data are not possible or available. In this case, the ANN test is sensitive to the
randomly generated activation parameters. One solution is the use of Bonferroni
bounds as suggested by LWG (1993), which however still exhibits some excessive
dependence on the random activations (as shown in this paper). Another solution is
to integrate the test statistic over the nuisance parameter space, for which however,
bootstrap or simulation should be used to obtain the null distribution of the inte-
grated statistic. In this paper, we consider a much simpler solution that is shown to
work very well. That is, we simply increase the number of randomized hidden unit
activations to a (very) large number (e.g. 1,000).We show that usingmany randomly
generated activation parameters can robustify the performance of the ANN test when
it is applied to a real empirical data. This robustification is reliable and useful
in practice and can be achieved at no cost as increasing the number of random
activations is almost costless given today’s computer technology.
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1 Introduction

This paper revisits the test of White (1989) and Lee, White and Granger (LWG, 1993),
for neglected nonlinearity in conditional mean using the feedforward single-layer
artificial neural network (ANN). The advantage to use ANNmodel to test nonlinearity
is that theANNmodel inherits the flexibility as a universal approximator of unknown
functional form. The ANN test is designed to use the predictive ability of the ANN
hidden layer activations, which may be neglected in linear models. Because the
estimation of the ANN model is often difficult and the activation parameters in the
hidden layer are not identified under the null hypothesis of linearity, LWG suggested
to activate the ANN hidden units based on the randomly generated neural network
activation parameters. LWG considered only a small set of random activation para-
meters (limited by the computing power two decades ago). Nevertheless, their Monte
Carlo experiment demonstrated the excellent performance of theANN test in size and
power. The ANN test has been cited in numerous papers as a benchmark method in
the literature for testing neglected nonlinearity.

However, in this paper, we note that the size and power of any Monte
Carlo experiments are the empirical average frequencies of rejecting the null hypoth-
esis, when the null hypothesis is true (size) or when the null is not true (power), over
many Monte Carlo replications of the data generating process (DGP). Unlike in a
Monte Carlo study where the data are replicated multiple times, an empirical study
has only one realized sample. When the ANN test is applied to one realized sample,
its performance is largely affected by the randomly generated activation parameters.
Applying the test to a particular real data amounts to one single Monte Carlo
replication. In this paper, we show that a small set of random activation parameters
will make the performance of the ANN test quite random. This was not noticed in
LWG (1993) and any other papers that have studied the ANN test, perhaps because
most of these studies compare the performance in Monte Carlo where the perfor-
mance ismeasured in average rejection over many replications. We show that, when
real data are tested by the ANN test, a small number of randomactivationsmakes the
ANN test quite unstable and sensitive to the random activations. Interestingly,
however, we also show that increasing the number of the randomly generated
activation parameters can robustify the performance of the ANN test when it is
applied to a single real data set. This robustification is important and useful in
practice, which can be achieved at no cost as increasing the number of random
activations is almost costless, given the computer technology available today.
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The rest of the paper is organized as follows: Section 2 reviews the ANN test
with randomized hidden unit activations. In Section 3, we examine the ANN test
with Monte Carlo to confirm the LWG’s results on the excellent size and power of
the randomly activated ANN test. In Section 4, for each simulated series, we
point out a problem of the randomized ANN test when the number of rando-
mized activations is small, and then show that this problem can be easily
resolved by simply increasing it to a very large number of randomized activa-
tions. In Section 5, we repeat what we have done in Section 4 using actual
economic data. Section 6 concludes.

2 The ANN test

The linear-augmented single hidden-layer feedforward ANN model has the
following architecture:

½1�

where t = 1, . . . , n, xt = (x1t, . . . xk,t)′ , θ = (α′, β′, γ′1, . . . , γ′q)′, α = ( α1, . . . , αk)′ ,
β = (β1, . . . , βq)′, and γj = ( γj1, . . . , γj,k)′ for j = 1, . . . , q, and ψ(·) is an activation
function.1 An example of the activation function is the logistic function
ψ(z) = (1 + exp(z))−1. α is a column vector of connection strength from the input
layer to the output layer; γj is a conformable column vector of connection strength
from the input layer to the hidden units, j = 1, . . . , q; βj is a (scalar) connection
strength from the hidden unit j to the output unit, j = 1, . . . , q; and ψ is a squashing
function (e.g., the logistic squasher) or a radial basis function. Input units x send
signals to intermediate hidden units, then each of the hidden unit produces an
activation ψ that then sends signals toward the output unit. The integer q denotes
the number of hidden units added to the affine (linear) network.

Hornik, Stinchcombe and White (1989, 1990) show that neural network
model in eq. [1] is a nonlinear flexible functional form being capable of repre-
senting arbitrarily accurate approximations to any mappings. White (1990)
and White and Wooldridge (1991) show that these approximations are learnable
(i.e., consistently estimable) by proper control of the growth of network com-
plexity q, as network experience accumulates (i.e., the sample size n grows).
While they give theoretical results for controlling the growth rate of q as a

1 “a := b” means that a is defined by b; while “a =: b” means that b is defined by a.
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function of n, the proper rate depends critically on the dependence properties of
(yt x′t)′ which makes a choice of the growth rate for network complexity not
immediately obvious. As a referee pointed out it would be desirable if we could
give some guidance on the adaptive choice of q. Unfortunately, to date there is
no unified theory on this rate. See Chen (2007, p. 5575) for more discussion.
While White (1990, p. 538) gave some guidelines on the choice of q for different
n and different dependence properties, he recommended to use cross-validation
to choose q in estimating ANN models in practice. This paper, however, deals
with testing for neglected nonlinearity in a linear model without having to
estimate the nonlinear ANN model. The main purpose of this paper is about
the choice of q in using the ANN model for testing whether βj’s are all zero. As
we do this with the randomization of γj’s and then take a small number of their
principal components, a very large q, even larger than n, may be used and may
be more desirable as examined in Sections 4 and 5.

To test whether the process yt is linear in mean conditional on xt, we
consider the following null and alternative hypotheses

When the null hypothesis is rejected, a linear model is said to suffer from
neglected nonlinearity. White (1989) and LWG (1993) developed a test for
neglected nonlinearity likely to have power against a range of alternatives
based on ANN models. See also Teräsvirta, Lin, and Granger (1993) and
Teräsvirta (1996) on the neural network test and its comparison with other
specification tests. The neural network test is based on the activations of
‘phantom’ hidden units ψ(x′t γj), j = 1, . . . , q. That is,

½2�

or

½3�

where is a phantom hidden unit activation

vector and εt is the error term from the two layer affine network

(with q = 0). Evidence of correlation of εt with Ψt is evidence against the null
hypothesis that yt is linear in conditional mean. If correlation exists, augmenting

the linear network by including an additional hidden unit with activations Ψt would
permit an improvement in network performance. Thus, the tests are based on the
sample correlation of affine network errors with phantom hidden unit activations,
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½4�

where α̂ is least squares estimator of α. Under suitable regularity conditions it

follows from a central limit theorem that as

n → ∞, and if one has a consistent estimator for its asymptotic covariance
matrix, say Ŵn, then an asymptotic chi-squared statistic can be formed as

½5�

It is well known that the ANN models are generally hard to estimate and
suffer from possibly large estimation errors which can adversely affect their ability
as a general approximator. To alleviate the estimation errors of the ANN, it is
useful to note that, for given values of γjs, the ANN is linear in x and the activation
functions Ψ and therefore (α′, β′) can be estimated from the linear regression once
(γ1, . . . , γq) have been given. The LWG’s (1993) approach is to use a set of
randomly generated (γ1, . . . , γq). The additional hidden unit activation functions
Ψt (γ1, . . . , γq) are hidden (or phantom) because they do not exist under the null
hypothesis. The (γ1, . . . , γq) are randomly generated in testing because they are
nuisance parameters not identified under the null hypothesis.

This approach is shown to have excellent size and power properties from
Monte Carlo simulation and has been used in many subsequent nonlinear testing
papers as a benchmark method in comparison. However, it is not noted in the
literature that the LWG’s excellent performance even with a small number (q = 10,
20) of the randomized phantom activations is in terms of the Monte Carlo size and
power. The good size and power in Monte Carlo experiments are the average
frequencies of rejecting the null hypothesis over multiple replications of the DGP.
The averaging in Monte Carlo smooths out the randomness of the test result in
each replication. However, in an empirical application, unlike in a Monte Carlo
study, multiple realizations of the data are not possible or available. In this case,
the ANN test is sensitive to the randomly generated activation parameters and its
performance is generally unstable. When applying to real data, this randomness
problem resulted from using different sets of randomized activation parameters
(γ1, . . . , γq) may lead to inconsistent conclusions.

One solution is the use of Bonferroni bounds of the p-values of the test
statistics that are computed from m randomizations of the activation parameters
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, as suggested by LWG (1993). However, the Bonferroni bounds

still exhibit dependence on the randomized activations when q is small (as
shown later in Table 3 of Section 5).

Another solution is to integrate the test statistic over the nuisance parameter
space of (γ1, . . . , γq) . However, this approach requires bootstrap or simulation to
obtain the null distribution of the integrated statistic (more on this in Section 4).

In this paper, we show a much simpler solution. That is to increase the
number of randomized hidden unit activations to a (very) large number (e.g.
1,000). We show that “many” randomly generated activation parameters can
robustify the performance of the ANN test when it is applied to a real empirical
data. It also makes the Bonferroni bounds tighter (as shown in Section 5). We
will demonstrate this in the remaining sections of the paper in Monte Carlo and
in empirical applications. While this proposal may sound trivial, no previous
papers have noted this problem. It is partly because all studies were able to
show the excellent performance via Monte Carlo simulations with a small q, and
also because it was difficult to compute the singular value decomposition of a
q × q matrix for a large q (to compute the principal components). It was 1989
when LWG (1993) conducted their Monte Carlo experiment on an IBM 286 PC.
The set of randomly selected parameters (γ1, . . . , γq) should be large enough so
that it can be dense and make the ANN, a universal approximator. A large set of
γs (i.e., large q) enables to capture the maximal nonlinear
structure. We will show that the proposal of increasing q, in fact, provides a
practically useful, powerful, and cheap solution to the randomness of random
activations. The robustification is stable and reliable and thus enables the ANN
test to be employed in autopilot in its applications.

A large number q of random activation parameters (γ1, . . . , γq) will make the
activation functions collinear with each other over j = 1, . . . , q and
with xt. Thus, LWG (1993) conducted a test on q* < q principal components of Ψt

not collinear with xt, denoted . The key to the success with the large number
of randomized network activations is the regularization of the network perfor-
mance by principal components for dimensionality reduction. The ANN test
takes two steps, randomization and regularization.

Then, LWG employed the asymptotically equivalent test statistic (under
conditional homoskedasticity) which avoids explicit computation of Ŵn

½6�

where R2 is an uncentered squared multiple correlation from a standard linear
regression of on and xt. This test is to determine whether or not there
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exists some advantage to be gained by adding hidden units to the affine net-
work. In this paper, while we consider two values of q (small and very large), we
fix q* = 3 to simplify our presentation. Different values of q* do not affect the
conclusions of this paper. Therefore, the test statistic will be henceforth denoted
as Tn (q, 3 | γ1, . . . , γq) =: Tn (q | γ1, . . . , γq) or simply Tn(q).

In Section 3, we conduct a Monte Carlo to show the ANN test has good size
and power even with a small q = 20. The size and power from Monte Carlo do not
tell the problem discussed earlier by using a small q. To see the problem,

we conduct a different Monte Carlo experiment, in Section 4. Only one
realization (to mimic an empirical study) of which is linear in mean is

generated, for which the ANN statistic and its p-value Pi are

computed from m different randomly generated activation parameters

We show that the ANN statistic with a small number (q = 20) of

randomized phantom activations exhibits large variation over i = 1, . . . , m, while
it becomes stable with a very large number (q = 1,000) of randomized phantom
activations. Hence, we can improve and robustify the ANN test by simply
increasing q (say, from 20 to 1,000). Section 5 demonstrates this with the five
US monthly economic time series. In practice, we suggest to choose q as large as

possible, provided the computational ability permits. This is because a larger q
will stabilize the p-values. Since we take the principle components of the
activation functions, we can allow q to be even larger than the number of
observations n. In our simulations and empirical experiments, for a moderately
large data (with n around 200), choosing q to be 1,000 leads to good results.

3 Small q vs. large q in Monte Carlo size
and power

The purpose of this section is to confirm the result of LWG (1993) that Monte
Carlo studies will show excellent performance of the ANN test in terms of size
and power, computed from 1,000 Monte Carlo replications. To generate data, we
use the following DGPs, all of which have been used in the related literature.
Two blocks of DGP are considered in this section: the first block has DGPs using
the univariate autoregressive (AR) time series of yt, with one lagged endogenous
input yt−1; the second block includes cross-sectional networks with two exogen-
ous inputs x1t and x2t which follow a bivariate normal distribution. To see the
sensitivity of the test statistic under conditional heteroskedasticity, we also
consider ARCH(1) and GARCH(1,1) processes for AR in Block 1. All DGPs below
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fulfill the conditions for the investigated testing procedures. For those regularity
conditions and moment conditions, see White (1994, Chapter 9) for the ANN
tests. All the error terms εt below are i.i.d. N(0, 4). 1(·) is an indicator function
which takes one if its argument is true and zero otherwise. The index t = 1, . . . , n
with n = 200 being the sample size.

Block 1 (Time-series DGPs):
1. Autoregressive (AR)

2. Threshold autoregressive (TAR)

3. Sign autoregressive (SGN)

;

where sgn

4. Nonlinear autoregressive (NAR)

5. Markov regime-switching (MRS)

,

where St follows a two-state Markov chain with transition probabilities
Pr(St = 1|St−1 = 0) = Pr(St = 0|St−1 = 1) = 0.3.

Block 2 (Cross-sectional DGPs):
Assume x1t, x2t follow a bivariate normal distribution of
with μ1 = μ2 = 0, σ1 = σ2 = 1, and ρ = 0 or 0.7. We have the following three
cases:
1. Linear
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2. Interaction

3. Squared

In the simulations of the ANN test, LWG chose q equal to 10 or 20 and q* equal
to 2 or 3 in different DGPs, and the sample size of 50, 100, and 200. Moreover, they
dropped the first largest principle component of to avoid the multi-
collinearity problem. In our paper, for the simulation results, we tried both the case
with dropping the first principle component and the case without dropping the first
principle component, and the results were similar. So, we keep the original LWG
method to drop the first principal component for the LWG test in this paper. The
information set is xt = yt−1 for Block 1 and xt = (xt1 xt2)′ for Block 2.

In practice, we need to generate γs carefully so that x0tγj is within a suitable
range. If γs are chosen to be too small, then activation functions ψs are
approximately linear in x, and we want to avoid this situation since they cannot
capture much nonlinearity; if γs are too large, the activation functions ψs will
take values close to 0 or 1 (their minimum or maximum values), and we want to
avoid this situation as well. The logistic squasher ψ(x′ γj) = [1 + exp (−x′ γj)]−1 is
used, with γj being generated from the uniform distribution on [‒2, 2] and yt, xt
being rescaled onto [0, 1].

Bierens (1990) suggested an alternative randomization method for obtaining a
χ2 limiting distribution. Following theorem 4 in Bierens (1990) and applying to our
context, suppose γ0 is a point in the q-dimensional Γ space. Let

where is a consistent estimator of the statistic in
eq. (5). For some real numbers λ > 0 and ,

has a χ2 distri-
bution. However, this result has some drawbacks. Firstly, the choice of γ~may be
sensitive to the real numbers λ and ρ. Secondly and more importantly, the choice
of depends on a q-dimensional maximization problem. If we choose q to be too
small, say 3, then the activation functions may not perform well as a universal
approximator. If we choose q to be moderately large like 10, then it will be very
diffi cult to find the global maximum. Although theorem 5 in Bierens (1990) is
more practical, it still requires the chosen sequence to be dense in the Γ space and
the required number of γs in the chosen sequence will explode exponentially as q
increases. This motivates us to use the principle components of the activation
functions rather than the activation functions themselves in our statistics, and just
simply generating a large number of γs randomly from uniform distribution.
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In generating γj randomly from the uniform distribution on [ −2, 2], we did it
in two different ways in our Monte Carlo experiment, namely by newly generat-
ing them for each replication or by fixing one same set of randomly generated γj
for all replications. To compare the test results using randomized and fixed
hidden units across replications, we report the Monte Carlo results using two
methods to generate the γs in Panels A and B of Table 1.

Table 1 (Panel A) reports the size and power for the ANN test with q = 20 and
q = 1,000 using uniformly randomized generated hidden units across replica-
tions. The numbers in the tables are the rejection frequencies under the null
hypothesis at 5% and 10% levels. It is shown that both Tn(20) and Tn(1000) have
good size. The power for both are similar. Hence, Tn(q) with small q and large
q behaves equally well in size and power.

Figure 1 shows the Monte Carlo distribution of the test statistic Tn(q)
from the 1,000 Monte Carlo replications with the sample size n = 200. The
three figures in the left panel are for Tn(20), and the three figures in the right
panel are for Tn(1000). The solid line shows the asymptotic distribution, .
All three DGPs in Figure 1 are linear in mean. Figure 1 confirms the size result
of Table 1, showing that both Tn(20) and Tn(1000), despite the very different
numbers of phantom activations, have the finite sample distributions very
close to the asymptotic distribution. These findings hold for all three
DGPs under the null – AR, Linear (ρ = 0), and Linear (ρ = 0.7), that are linear
in mean.

Panel B of Table 1 repeats Panel A using fixed hidden unit activations. In
Table 1 (Panel B), we generate γj from U[‒2, 2] and fix it across all 1,000
replications. The results are similar to those in Table 1 (Panel A) – the size
and power of Tn(20) and Tn(1000) are equally good. From Panels A and B of
Table 1, and, we see that both randomly generated and fixed γs provide good
size. For power, when γs are fixed, we see increasing power as we increase q
from 20 to 1,000 for Block 1. But for Block 2, the performance is similar. In
general, fixed γs cannot beat randomly generated γs in terms of power.

We also examine the possible effect of the conditional heteroskedasticity on
the test. The AR in Block 1 is modified to have conditionally heteroskedastic
errors as follows:

½7�

½8�

In the cases when the errors are conditionally heteroskedastic, the test statistic
in eq. [6] is not valid. We use the test statistic in eq. [5] with Ψt replaced by
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and a corresponding consistent covariance matrix used. The test statistic has a
valid asymptotic distribution of . Table 1 (Panel C) reports the size of the test
statistic, which is very close to the nominal size. The good size and good power
of the randomized ANN tests under conditional homoskedasticity presented in

Table 1: Monte Carlo: size and power of the ANN test.

q = 20 q = 1000

5% 10% 5% 10%

Panel A. Using randomized hidden unit activations

AR 0.037 0.085 0.041 0.089
TAR 0.263 0.391 0.268 0.374
SGN 0.812 0.901 0.835 0.910
NAR 0.079 0.162 0.099 0.178
MRS 0.179 0.273 0.197 0.284
Linear (ρ = 0) 0.047 0.105 0.049 0.097
Linear (ρ = 0.7) 0.045 0.097 0.058 0.106
Interaction (ρ = 0) 0.112 0.183 0.082 0.141
Interaction (ρ = 0.7) 0.244 0.252 0.261 0.369
Squared (ρ = 0) 0.191 0.297 0.186 0.272
Squared (ρ = 0.7) 0.346 0.375 0.238 0.352

Panel B. Using fixed hidden unit activations

AR 0.055 0.095 0.047 0.103
TAR 0.197 0.285 0.318 0.402
SGN 0.838 0.846 0.908 0.915
NAR 0.081 0.115 0.151 0.184
MRS 0.134 0.166 0.201 0.254
Linear (ρ = 0) 0.055 0.115 0.043 0.100
Linear (ρ = 0.7) 0.040 0.101 0.035 0.093
Interaction (ρ = 0) 0.131 0.215 0.068 0.132
Interaction (ρ = 0.7) 0.190 0.280 0.213 0.334
Squared (ρ = 0) 0.130 0.230 0.160 0.265
Squared (ρ = 0.7) 0.193 0.284 0.245 0.367

Panel C. Size with conditional heteroskedasticity

AR-ARCH 0.048 0.112 0.058 0.107
AR-GARCH 0.058 0.122 0.055 0.113
AR 0.051 0.100 0.049 0.116

Notes: Sample size is n = 200. Reported values are the rejection frequencies of the Tn(q) tests out of
the total 1,000 Monte Carlo replications, at 5% and 10% levels. In Panels A and C, the hidden unit
activations γs are randomly generated for each replication. In Panel B, the hidden unit activations are
fixed to be one random draw from U[−2, 2] for all replications. The ANN test statistic in eq. [6] is used
in Panels A and B, while the heteroskedasticity robust statistic of the form in eq. [5] with the principal
components is used in Panel C.
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Table 1A and Table 1B are not affected under conditional heteroskedasticity
when the heteroskedasticity-robust statistics are employed as shown in Table 1
(Panel C).

Table 1 and Figure 1 are in line with the known results in the literature
showing outstanding properties of the ANN test even using a very small number

= 1,000

= 1,000

= 1,000

Figure 1: Monte Carlo Distribution of Tn(q) under H0.
Note: The histograms are the Monte Carlo distribution of the test statistic Tn(q) from the 1,000
Monte Carlo replications with the sample size n = 200. The solid line is the density. All DGPs
here are linear in mean.
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of randomized hidden activations. These results do not show any difference in
Tn(20) and Tn(1,000), and thus they do not reveal some hidden problem of using
a small number of randomized hidden activations.

In the next two sections, we show apparent difference in Tn(20) and
Tn(1,000). The main finding is that the ANN test with a small q, say Tn(20), is
not reliable to use in practice as it exhibits substantial variation to the random
activations, while the ANN test with a large q, say Tn(1,000), is quite robust to
the randomized activations as the large number of random activation is more
dense in the nonlinear function space and thus reduces the variation of the
statistic substantially.

To demonstrate the advantage of increasing q, we first conduct a Monte
Carlo experiment again, in Section 4, but with only five replications for each
DGP (rather than taking average over 1000 replications). We next apply Tn(20)
and Tn(1,000) to five monthly economic time series in Section 5 to show the
advantage of Tn(1000) over Tn(20).

4 Small q vs. large q in sensitivity to randomized
hidden unit activations

The simulation results reported in LWG (1993) and also in the previous section
show that the LWG has proper size and good power. However, there is a hidden
problem of the ANN test with small q. That is, when q is small, the statistic
and the corresponding p-value are sensitive to the randomized hidden unit
activations.

Consider a sample for which the ANN statistic
and its p-value Pi are computed from m different randomly generated

activation parameters Even if we use one same sample, it is

possible that we sometimes get a small statistic and fail to reject the null for
some i, while other times we get a statistic large enough to reject the null
for other i. Thus, we may draw contradictory conclusions because of this sensitivity.
As a result, the ANN test with small q can not be applied to empirical data and we

need a solution to this problem.
We can deal with this problem in the following three ways. One approach is

Teräsvirta, Lin, and Granger (1993), who use a Taylor series expansion of the
ANN function f(xt,θ) in eq. [1] to write it into a parametric nonlinear approxima-
tion and compare the estimated model with a linear model by the Wald test or
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LR test. The second approach is to generate (γ1, . . . , γq) randomly from their
parameter space Γ and integrate the statistic Γ over with a certain weight
function ϕ (γ1, . . . , γq). This is to take a weighted average ANN statistic over
the nuisance parameter space. The asymptotic theory has been established. But
implementing this will require either the tabulation of the asymptotic distribu-
tion via simulation as it involves the integration of the Gaussian process or the
use of bootstrap. Bierens (1982), Bierens (1990), Bierens and Ploberger (1997),
and Härdle and Mammen (1993) take the statistics integrated over the nuisance
parameter space. Corradi and Swanson (2002) use this method to test for non-
linear Granger-causality in out of sample. Alternative to taking the average of
the statistic over nuisance parameter space Γ, Rossi and Inoue (2012) take the
maximum of the statistic over and Hansen and Timmermann (2011) take
the minimum p-value over Γ. Their methods are in essence the same because
of the one-to-one mapping between the statistic and the p-value. The asymptotic
distributions of these statistics are integrals of Brownian motion. To obtain the
correct critical value, we need to either use bootstrap or follow the conditional
p-value approach of Hansen (1996). Both methods are not easy to use so we turn
to seek a simple and practical solution to the nuisance parameter problem.

This paper considers an obvious approach, the third approach, which is to
increase q to a very large number. To compare how the ANN test works for small

q and large q, we simulate a sample using DGP “Linear” in Block 2

with x1 and x2 following a bivariate normal distribution with correlation ρ = 0.7.
Then, we generate m = 100 different randomly generated activation parameters

, with which the ANN test statistic and

its p-value Pi are computed. We plot the histogram of the p-values and statistics

with q = 20 or 1,000 in Figure 3.
When q = 20, the p-values range from 0.0806 to 0.6719 for i = 1, . . . , m = 100

(Figure 2a). We observe three of the 100 p-values are less than 0.10,
which means in these three cases we incorrectly reject the null hypothesis at
10% level. When we increase q to 1,000, the p-values range from 0.2784 to
0.4567, all above the 10% level (Figure 2b). From these experiments, we con-
jecture that if q is large enough, the p-value will be concentrated to a small area
or even converge to a point. The sample variances of the p-values are 0.0255 and
0.0013 for q = 20 and q = 1,000, respectively. We also plot histograms of the m

test statistics with q = 20 (Figure 2c) and q = 1,000

(Figure 2d). Since there is one-to-one mapping between the test statistic and
the p-value, we shall see the similar pattern in the test statistic when q
increases.
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Table 2 reports the range and standard deviation (SD) of the p-values of
Tn(q) for m = 100 randomized hidden unit activations. For each DGP, we report
the results for five replications. For each replication, we conduct testing with
m randomized hidden unit activations. Comparing the range and SD of the
p-values for q = 20 and q = 1,000, we find that when q increases the range of
p-value gets tighter and SD gets smaller, which makes the test outcome more
stable over the m randomizations of γjs. When the DGP has an ARCH error
tighter range and smaller SD are also found across all five replications as
q increases from 20 to 1,000. The results for AR-GARCH is not reported
here since it is similar to the AR-ARCH case. Hence, increasing q makes the
randomized ANN test more stable as well even under conditional
heteroskedasticity.

p p

= 1,000

= 1,000

s s

Figure 2: p-Values of Tn(q) under H0 with m = 100 randomizations of q hidden units.
Note: Sample size n = 200. The p-values and the test statistics Tn(q) are computed for a
simulated data from one replication of DGP, “Linear” with ρ = 0.7. For the same data, the
statistic Tn(q) is computed with m = 100 random draws of

m
from U[−2, 2]. The figures

are frequency histograms of the m p-values and the m statistics.
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Both Figure 2 and Table 2 show that increasing q is a good solution to the
problem caused by randomizing the activation parameters. While the ANN
statistic with a small number (q = 20) of randomized phantom activations
exhibits large variation over i = 1, . . . , m, it becomes stable with q = 1,000. We

Table 2: p-Values of Tn (q) with m = 100 randomizations of q hidden unit activations.

Range SD

q = 20 q = 1,000 q = 20 q = 1,000

Panel A. Block 1

AR 0.5540 0.0391 0.1315 0.0063
0.4582 0.0814 0.1030 0.0139
0.2468 0.0382 0.0686 0.0081
0.6711 0.0898 0.1435 0.0182
0.4973 0.1188 0.1353 0.0262

TAR 0.7319 0.0448 0.1691 0.0076
0.8275 0.2084 0.2567 0.0469
0.4369 0.0291 0.0943 0.0061
0.5807 0.1165 0.1389 0.0237
0.0485 0.0006 0.0092 0.0001

SGN 0.0010 0.0002 0.0002 0.0000
0.1525 0.0186 0.0262 0.0043
0.0280 0.0017 0.0062 0.0003
0.0004 0.0000 0.0000 0.0000
0.1791 0.0199 0.0361 0.0037

NAR 0.8330 0.2214 0.2415 0.0424
0.4501 0.0294 0.0812 0.0058
0.8446 0.0595 0.1806 0.0121
0.5092 0.1478 0.1435 0.0270
0.0869 0.0218 0.0198 0.0049

MRS 0.8610 0.2738 0.2090 0.0557
0.9992 0.1667 0.3300 0.0298
0.2210 0.0337 0.0529 0.0072
0.3194 0.0247 0.0557 0.0049
0.7001 0.2378 0.2062 0.0447

AR-ARCH 0.2754 0.1164 0.0784 0.0219
0.5257 0.0696 0.1998 0.0155
0.6207 0.0188 0.1695 0.0034
0.3866 0.0560 0.1281 0.0121
0.1530 0.0046 0.0424 0.0000

(Continued)
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Table 2: (Continued)

Range SD

q = 20 q = 1,000 q = 20 q = 1,000

Panel B. Block 2

Linear 0.3846 0.0855 0.0781 0.0149
(ρ = 0) 0.9793 0.5644 0.2943 0.1345

0.9389 0.1879 0.2807 0.0332
0.7879 0.1093 0.2289 0.0212
0.6020 0.0755 0.1425 0.0179

Linear 0.2470 0.0373 0.0490 0.0065
(ρ = 0.7) 0.4526 0.0120 0.0616 0.0027

0.9684 0.3642 0.3033 0.0819
0.3680 0.0322 0.0500 0.0067
0.5981 0.1580 0.1640 0.0361

Intersection 0.5982 0.1626 0.1646 0.0361
(ρ = 0) 0.8872 0.2460 0.2114 0.0510

0.9198 0.1641 0.2285 0.0284
0.4399 0.0914 0.0995 0.0215
0.8509 0.1895 0.2234 0.0332

Intersection 0.5417 0.0558 0.0819 0.0101
(ρ = 0.7) 0.4461 0.0606 0.0943 0.0116

0.9064 0.4364 0.2627 0.0889
0.4144 0.1015 0.0911 0.0213
0.1813 0.0205 0.0308 0.0042

Squared 0.5354 0.0481 0.1253 0.0095
(ρ = 0) 0.9339 0.4809 0.2538 0.1140

0.8627 0.4690 0.2661 0.1000
0.7223 0.1195 0.1503 0.0259
0.8681 0.0881 0.2040 0.0196

Squared 0.3645 0.0391 0.0632 0.0094
(ρ = 0.7) 0.6779 0.1191 0.1435 0.0249

0.9652 0.3963 0.2997 0.0933
0.3984 0.0475 0.0592 0.0088
0.3805 0.0556 0.0663 0.0110

Note: Sample size n = 200. The p-values of Tn(q) are computed for simulated data of each DGP from
five replications. The statistic Tn(q) is computed with m = 100 random draws of

m
from

U[−2, 2]. The table reports the range and standard deviation (SD) of the m p-values in each of the five
replications with q = 20, 1000.
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can robustify the ANN test and reduce its sensitivity to the randomization of γs
by simply increasing q.

5 Small q vs. large q in applications

In this section, we compare Tn(20) and Tn(1,000) for the same five monthly US
economic time series used by LWG (1993) with updated time period from 1990:1
to 2011:12 with n = 264. The five series are US/Japan exchange rate (EX), US
three-month T-bill interest rate (INT), US M2 money stock (M2), US personal
income (PI), and US unemployment rate (UNE). We have made the same trans-
formation as in LWG (p. 287), by taking logarithms and/or the first differencing,
to ensure stationarity.

For each of these five series, we fit a linear AR(1) model under H0, so

that the ANN has one input xt = yt−1. The ANN statistic and

its p-value Pi are computed from m randomly generated activation parameters

. Table 3 reports the p-values {Pi} with i = 1, . . . , m = 20. Table

3 also reports the Hochberg’s (1988) Bonferroni bound HB(m) and the Simple
Bonferroni bound SB(m), both to be defined below, computed using the first m
p-values (with m = 5, 20). Figure 3 presents the histograms of the p-values

For exchange rate and unemployment rate data, both the Tn(20) and
Tn(1,000) give consistent results among 20 times of tests. So with both q = 20
and q = 1,000, the null hypothesis of linearity is not rejected for exchange rate in
all 20 p-values, but it is clearly rejected for unemployment rate by the ANN test
using all m = 20 randomized hidden unit activations. However, for personal
income PI, using Tn(20) will give 2 times of failure of rejection in 20 randomized
neural network activations, while using Tn (1,000) test, we reject the linearity
using all 20 randomizations. For the M2 series, using Tn(20) and Tn(1,000) will
give us contradicting conclusions, as Tn(20) rejects the null hypothesis 8 times
out of 20 and Tn(1,000) rejects linearity in all 20 statistics. In this case, using
Tn(1,000) yields more reliable result. For the interest rate INT, both Tn(20) and
Tn(1,000) give some uncertainty in the results in the sense that there are 3 or 4
times of failure of rejection out of the total 20 randomized activations. To
examine this case further, we further increase q. The results (not shown in the
table) show that when q increased to 2,000, we can get 19 times of rejection out
of 20. For INT, if q = 1,000, some p-values are greater than 10% and some are
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even greater than 20%. But if q = 2,000, all p-values are below 10% except one
that is only slightly above it.

Table 3 reports the p-values for Tn(20) and Tn(1,000) with m = 20 different

randomly generated hidden unit activation parameters A low

p-value suggests a rejection of the null hypothesis of linearity in conditional
mean. Since the tests may not give consistent results over the different rando-
mized activations, we use Bonferroni bounds on the p-value as a reference

Table 3: Empirical analysis: p-values, bonferroni bounds, and rejection frequencies.

i EX INT M2

q = 20 q = 1000 q = 20 q = 1000 q = 20 q = 1000

1 0.1192 0.7126 0.0023 0.0156 0.3034 0.0034
2 0.1752 0.7164 0.8501 0.0096 0.0576 0.0029
3 0.4740 0.7926 0.0665 0.0032 0.0229 0.0033
4 0.8045 0.7726 0.1198 0.0752 1.0000 0.0108
5 0.1565 0.7589 0.0064 0.0024 1.0000 0.0041
6 0.4497 0.8244 0.0034 0.2006 1.0000 0.0023
7 0.5505 0.7688 0.0125 0.0595 0.2030 0.0030
8 0.5022 0.7575 0.0608 0.0535 0.0049 0.0036
9 0.4750 0.7676 0.0258 0.1487 0.0049 0.0101
10 0.4628 0.7587 0.0407 0.0115 1.0000 0.0019
11 0.4800 0.7097 0.0121 0.0013 1.0000 0.0023
12 0.2813 0.8057 0.1246 0.0146 0.3971 0.0115
13 0.4717 0.6834 0.0003 0.1007 1.0000 0.0028
14 0.4730 0.6988 0.0217 0.0537 0.0495 0.0025
15 0.5196 0.7630 0.0090 0.0015 0.8678 0.0029
16 0.1573 0.7742 0.4018 0.0332 0.0033 0.0181
17 0.5109 0.8010 0.0044 0.0191 0.0351 0.0067
18 0.5241 0.7831 0.0102 0.0955 0.9987 0.0037
19 0.4386 0.7584 0.0017 0.0333 0.0378 0.0051
20 0.4380 0.7807 0.0247 0.0354 0.1197 0.0042

HB (5) 0.5256 0.7926 0.0115 0.0120 0.1145 0.0082
HB (20) 0.8045 0.8244 0.0060 0.0260 0.0660 0.0181
SB (5) 0.5960 3.5630 0.0115 0.0120 0.1145 0.0145
SB (20) 2.3840 13.6680 0.0060 0.0260 0.0660 0.0380

REJ 0
20

0
20

16
20

17
20

8
20

20
20

REJ-B 0
20

0
20

5
20

4
20

3
20

14
20

REJ-FDR 0
20

0
20

16
20

16
20

3
20

20
20

(Continued)
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Table 3: (Continued)

i PI UNE

q = 20 q = 1000 q = 20 q = 1000

1 0.0000 0.0000 0.0011 0.0006
2 0.0000 0.0000 0.0003 0.0006
3 0.0000 0.0000 0.0024 0.0005
4 0.0361 0.0000 0.0005 0.0008
5 0.0000 0.0000 0.0003 0.0008
6 0.0000 0.0000 0.0005 0.0006
7 0.0000 0.0000 0.0004 0.0004
8 0.0017 0.0000 0.0004 0.0008
9 0.0000 0.0000 0.0006 0.0008
10 0.0000 0.0000 0.0059 0.0007
11 0.0000 0.0000 0.0002 0.0005
12 0.0000 0.0000 0.0003 0.0007
13 0.0000 0.0000 0.0013 0.0006
14 0.0000 0.0000 0.0003 0.0006
15 0.0000 0.0000 0.0003 0.0007
16 0.0000 0.0000 0.0003 0.0006
17 0.0000 0.0000 0.0003 0.0006
18 0.3395 0.0000 0.0005 0.0007
19 0.2982 0.0000 0.0004 0.0006
20 0.0000 0.0000 0.0002 0.0007

HB (5) 0.0000 0.0000 0.0012 0.0008
HB (20) 0.0000 0.0000 0.0030 0.0008
SB (5) 0.0000 0.0000 0.0015 0.0023
SB (20) 0.0000 0.0000 0.0040 0.0089

REJ 18
20

20
20

20
20

20
20

REJ-B 17
20

20
20

19
20

20
20

REJ-FDR 18
20

20
20

20
20

20
20

Notes: Data range from 1990:1 to 2011:12, monthly. EX: US/Japan exchange rate. INT, US three-month
T-bill interest rate; M2, US M2 money stock; PI, US personal income; UNE, US unemployment rate. We
use AR(1) as a model under the null hypothesis in each case. The 20 rows (i = 1 , . . . , 20) show the
20 sets of p-values of the ANN(q) test statistics with q = 20 or 1,000.
HBðmÞ ¼ mini¼1;...;mðm� iþ 1ÞPðiÞ is the Hochberg’s Bonferroni bound computed the first m

p-values with m = 5 or 20. HB(5) in the Hochberg Bonferroni bound computed using the first
five p-values f. SB(m) = mP(1) is the Simple Bonferoni bound computed the first m p-values. P(i) is the
ith smallest smallest (ordered from the smallest to the largest) p-value among the m p-values. The
reported numbers in the last three rows are the rejection frequency in these m = 20 p-values that are

less than 0.10 (at 10% level),

and .
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value. Let {P1, . . . , Pm} be the p-values of m different randomized activations, and
let {P(1), . . . , P(m)} denote the ordered p-values from the smallest to the largest.

Then, the Bonferroni inequality leads to rejection of the null hypothesis at level
if , so we call SB(m) := mP(1) the Simple Bonferroni bound. One

p

p

p p

p

p = 1,000

= 1,000

V

V

V

V

V

V

= 1,000

Figure 3: Empirical applications with m = 100 randomized hidden unit activations.

Testing for Neglected Nonlinearity Using ANN 81

Unauthenticated | 174.67.230.83
Download Date | 7/3/13 7:14 AM



disadvantage of the Simple Bonferroni bound is that it is too conservative when
m is large. Hochberg (1988) modified the rejection rule to reject the null hypoth-
esis if there exists an i such that . We call HB(m)

:= mini = 1, . . . , m (m − i + 1)P(i) the Hochberg Bonferroni bound. In Table 3,
reported are SB(m) and HB(m) with m = 5, 20.

A disadvantage of the Simple Bonferroni bound is that it could be larger
than 1, especially when m is large. The Simple Bonferroni bound is more
sensitive to q than the Hochberg Bonferroni bound. Comparing Bonferroni
bounds over q = 20, 1,000, the Hochberg Bonferroni bounds for m = 5 and
m = 20 are close for Tn(1,000), but the difference between the two bounds HB(5)
and HB(20) is larger for Tn(20). Hence, increasing the number of the randomized
hidden activations not only makes the ANN test more robust but also the
Bonferroni bounds tighter. From the formula HB(m):= mini=1, . . . , m(m − i + 1)
P(i), it is easy to see that, when q is large, the Hochberg Bonferroni bound tends
to be the maximum p-value HB(m) ≈ P(m) since the p-values tends to be

p p

p

= 1,000

= 1,000

V V

pVV

Figure 3: (Continued)
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concentrated to a small region as discussed in the previous section (Table 2 and
Figure 2). However, when q is small, the Hochberg Bonferroni bound may give
inconsistent conclusion according to different values of m. For instance, for the
money stock M2 series, for Tn(20), we do not reject linearity when m = 5 at 10%
level, yet we reject linearity when m = 20 at 10% level. And in this case, we can
reject linearity using Tn(1,000) with both m = 5 and m = 20. Thus, the Hochberg
Bonferroni bound is preferred to the Simple Bonferroni bound. Moreover, if we
use Tn(1,000) instead Tn(20), we can take a smaller value of m and get reliable
conclusion.

The reported numbers in the last part of Table 3 are the rejection frequency
in these m = 20 p-values that are less than 0.10 (at 10% level),

. To compare the rejection frequency using

different approaches, we compare the rejection frequency using the Bonferroni
approach to the False Discovery Rate (FDR) of Storey (2003) and Benjamini and

Hochberg (1995). The results are reported in the last two rows of Table 3. REJ-B is
the rejection frequency using the Bonferroni approach, where

. REJ-FDR is the rejection frequency using FDR,

where . Note that, using the Bonferroni

approach we get fewer times of rejection for interest rate for both q = 20 and

q = 1,000, while for individual test, we can reject most of the time. This problem
can be solved if we use FDR. The results show that FDR can improve the power
of the test for all the series. Storey (2003) pointed out that the positive FDR
(pFDR) could improve the power of FDR when the number of tests is large. In
our study, we find the rejection frequency of pFDR depends heavily on the

choice of tuning parameter. As we get good power for our data with FDR, we
do not report the results with pFDR here.

In addition to Table 3 for which 20 p-values (with m = 20) are used, we
also experiment this with m = 100 random draws of the hidden unit
activations and 100 p-values are presented in Figure 3. For all five economic
time series, the p-values tend to get concentrated at a narrow region or even
converge to a single value when q = 1,000 compared with q = 20. For M2 data, the
p-values of Tn (20) range widely from 0 to 1 and close to 1 for around 40 times
among the 100 p-values, while all the 100 p-values of Tn (1,000) are near zero. For
personal income, when q = 1,000, we can get rejection among all 100 times of
tests while when q = 20, we cannot reject for around 10 times of tests. For interest
rate INT as REJ becomes 19

20 when we experiment it with q = 2,000 (not shown).
These results clearly indicate that choosing a large q = 1,000 can give more stable
conclusion compared with choosing a small q = 20.
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6 Conclusions

In this paper, we revisit the ANN-based test statistics for neglected nonlinearity in
conditional mean. The ANN test has a set of nuisance parameters that are not
identified under the null hypothesis. As the nuisance parameters are identified
only under the alternative, the alternative ANN model can be estimated to form a
Wald-type test statistic. However, the estimation of the ANN models are known to
be difficult and the estimated models are often contaminated by large estimation
errors. To avoid the estimation of the ANN models, LWG (1993) suggested a noble
test in a Lagrange multiplier (LM) test framework for which the ANN model under
the alternative hypothesis needs not be estimated. As suggested in LWG (1993), in
constructing an LM test, the unidentified nuisance parameters under the null
hypothesis can be randomly generated from their parameter space. LWG show
excellent performance of the ANN test when a small number of hidden activations
is based on the randomly generated nuisance parameters.

It has not been noted in the literature that the ANN test is sensitive to the
number of the randomized activations. We demonstrate this sensitivity problem
and propose a simple solution. We examine how the performance of the ANN
test can be improved by simply increasing the number of randomized hidden
unit activations. This paper shows that the benefit of increasing it is substantial.
This robustification is reliable and does not require either the use of Bonferroni
bounds or the integration of the test statistic over the nuisance parameter. We
provide a practically useful insight to make the ANN test reliably applicable in
applied work. As increasing the number of random activations is almost cost-
less, the ANN test based on “many” randomized hidden unit neural network
activations can be easily included in a diagnostics toolbox for applied research.
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