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ABSTRACT

We examine the Stein-rule shrinkage estimator for possible improvements
in estimation and forecasting when there are many predictors in a linear
time series model. We consider the Stein-rule estimator of Hill and Judge
(1987) that shrinks the unrestricted unbiased ordinary least squares
(OLS) estimator toward a restricted biased principal component (PC)
estimator. Since the Stein-rule estimator combines the OLS and PC
estimators, it is a model-averaging estimator and produces a combined
forecast. The conditions under which the improvement can be achieved
depend on several unknown parameters that determine the degree of the
Stein-rule shrinkage. We conduct Monte Carlo simulations to examine
these parameter regions. The overall picture that emerges is that the
Stein-rule shrinkage estimator can dominate both OLS and principal
components estimators within an intermediate range of the signal-to-noise
ratio. If the signal-to-noise ratio is low, the PC estimator is superior.
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If the signal-to-noise ratio is high, the OLS estimator is superior. In
out-of-sample forecasting with AR(1) predictors, the Stein-rule shrink-
age estimator can dominate both OLS and PC estimators when the
predictors exhibit low persistence.

Keywords: Stein-rule; shrinkage; risk; variance-bias tradeoff; OLS;
principal components

JEL classification: C1; C2; C5
INTRODUCTION

Recent contributions to the forecasting literature consider many predictors
in data-rich environments and principal components (PCs), such as Bai
(2003), Bai and Ng (2006, 2008), Bair, Hastie, Paul, and Tibshirani (2006),
Hillebrand, Huang, Lee, and Li (2011), Huang and Lee (2010), Inoue and
Kilian (2008), Stock and Watson (2002, 2006, 2011), among others. In
particular, Stock and Watson (2011) note that many forecasting models in
this environment can be written in a unified framework called the shrinkage
representation. Although the notion of the generalized shrinkage represen-
tation can be found in much earlier publications (e.g., Judge and Bock,
1978), interest in shrinkage has been revived in the recent literature on out-
of-sample (OOS) forecasting.

The issue of forecasting using many predictors was discussed earlier in
econometrics and statistics under the subject heading of ill-conditioned data
or multicolinearity. In particular, Hill and Judge (1987) studied ‘‘improved
prediction in the presence of multicolinearity.’’ They examined possible
improvements in estimation and forecasting when there are many predictors
in a linear regression model. The Stein-rule estimator proposed in their
paper shrinks the unrestricted unbiased ordinary least squares (OLS)
estimator toward a restricted biased principal component (PC) estimator.

Improvements are usually measured employing a risk function of the
squared forecast error loss. While the asymptotic risk functions for the OLS
and PC estimators are rather easily obtained, the risk of the Stein-rule is
complicated as it depends on several unknown parameters and data-
characteristics. It is not easy to understand conditions and situations under
which improvements can be achieved. We conduct Monte Carlo simulations
to shed light on the issue, both in-sample estimation and out-of-sample
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forecasting. In general, a key feature is that the desired improvement
through Stein-rule shrinkage depends on the signal-to-noise ratio, which is
affected by multiple determinants. The Stein-rule shrinkage estimator can
dominate both OLS and PC estimators within an intermediate range of the
signal-to-noise ratio. If the signal-to-noise ratio is low, the PC estimator
tends to be superior. If the signal-to-noise ratio is high, the OLS estimator
tends to be superior. In out-of-sample forecasting with AR(1) predictors, the
Stein-rule shrinkage estimator can dominate both OLS and PC estimators
when the predictors have low persistence.

Hill and Fomby (1992) examined the out-of-sample performance of a
variety of biased estimation procedures such as ridge regression, principal
component regression, and several Stein-like estimators. Their setup of
evaluation was out-of-sample prediction in the sense that the out-of-sample
data are different from the data used for parameter estimation, but not out-
of-sample prediction in the context of the recent time series forecasting
literature.

As the Stein-rule estimator of Hill and Judge (1987) combines OLS and
PC estimators, it can be shown that it is a model-averaging estimator and
thus produces a combined forecast. In fact, Hansen (2011) shows that the
Stein-type shrinkage estimator is a Mallow-type combined estimator. Other
papers have studied the relation between Stein-like shrinkage and forecast
combinations. Fomby and Samanta (1991) use the Stein-rule for directly
combining forecasts. Clark and McCracken (2009) examine the properties
of combined forecasts of two nested models and note that their combined
forecast is a Stein-type shrinkage forecast. Hence, the shrinkage principle
provides insights not only into how to solve the issues of estimation in
the presence of multicolinearity and forecasting using many predictors, but
also how forecast combinations in the sense of Bates and Granger (1969)
yield improvements.

The paper is organized as follows. Section ‘‘Shrinkage representation’’
presents the shrinkage representation for forecasting using principal
components. In Section ‘‘Principal component model’’ we consider the
OLS and PC estimators and their asymptotic risk of the squared error loss.
In Section ‘‘Stein-rule estimator’’, the Stein-rule shrinkage estimator that
combines the OLS and PC estimators is presented. Sections ‘‘In-sample
performance of Stein-rule shrinkage estimator’’ and ‘‘Out-of-sample
performance of Stein-rule shrinkage estimator’’ present Monte Carlo
analysis for in-sample and out-of-sample performance of these three
estimators – OLS, PC, and the Stein-rule estimators. Finally, Section
‘‘Concluding remarks’’ provides some concluding remarks.
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SHRINKAGE REPRESENTATION

This section uses Stock and Watson’s (2011) notation. Let the time series
under study be denoted by yt and let Pit, i ¼ 1; . . . ;K , be a set of K
orthonormal predictors such that P0P=T ¼ IK . These predictors can be
thought of as the principal components of a possibly large dataset Xt�1. The
statistical model is

yt ¼ d0Pt�1 þ et (1)

where d 2 RK is a parameter vector and et is some error with mean zero and
variance s2. Both yt and Pt are assumed to have sample mean zero. Let
~yTþ1jT be the forecast of y at time T þ 1 given information through time T .
The theorems in Stock and Watson (2011) show that an array of forecasting
methods, namely Normal Bayes, Bayesian Model Averaging, Empirical
Bayes, and Bagging, have a shrinkage representation

~yTþ1jT ¼
XK
i¼1

cðktiÞd̂iPiT þ oPð1Þ (2)

where d̂i ¼ T�1
PT

t¼1Pi;t�1yt is the OLS estimator of di, ti ¼
ffiffiffiffi
T
p

d̂i=ŝ is the

t-statistic for d̂i, ŝ2 ¼
PT

t¼1ðyt � d̂0Pt�1Þ
2
=ðT � KÞ is the consistent estimator

of s2, c is a function that is specific to a forecasting method, and k is a
constant that is specific to a forecasting method. For example, the shrinkage
representation of the OLS estimator is cðktiÞ ¼ 1 for all i. A pretest
estimator has shrinkage representation cðktiÞ ¼ 1fjti j4tcg for some critical

value tc. The principal components estimator that retains the first K1

principal components and discards the others has shrinkage representation
cðktiÞ ¼ 1 for i 2 f1; . . . ;K1g and cðktiÞ ¼ 0 else. See also Judge and Bock
(1978, p. 231) and Hill and Fomby (1992, p. 6) for a general representation
of a family of minimax shrinkage estimators.
PRINCIPAL COMPONENT MODEL

This section follows Hill and Judge (1987, 1990) and Hill and Fomby (1992),
with adapted notation. Let the model in terms of the original predictor X be

y ¼ Xbþ e (3)

where y is a T � 1 time series, X is a T � K matrix of K predictors, b is a
K � 1 parameter vector, and e is a T � 1 error time series with the
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conditional mean zero EðejXÞ ¼ 0 and conditional variance Eðee0jXÞ ¼ s2IK .
Note that we do not assume normality of e in this section, while we generate
it from the normal distribution in our simulation study in Sections ‘‘In-
sample performance of Stein-rule shrinkage estimator’’ and ‘‘Out-of-sample
performance of Stein-rule shrinkage estimator’’. Our interest is to forecast y
when the number K of predictors in X is large. The location vector b is
unknown and the objective is to estimate it by bðy;XÞ. We consider three
estimators for b in this paper: (i) the OLS estimator denoted b̂; (ii) the
principal component (PC) estimator denoted b̂

n

, and (iii) the Stein-like
combined estimator of b̂ and b̂

n

, which is to be denoted as ~b in the next
section. In this section we examine the sampling properties of b̂ and b̂

n

in
terms of the asymptotic risk under the weighted squared error loss. In
Sections ‘‘In-sample performance of Stein-rule shrinkage estimator’’ and
‘‘Out-of-sample performance of Stein-rule shrinkage estimator’’ we compare
them with the Stein-like combined estimator ~b.

The sampling performance of an estimator bðy;XÞ is evaluated by its risk
function, the expected weighted squared error loss with weight Q,

Riskðb; bðy;XÞ;QÞ ¼ E½ðbðy;XÞ � bÞ0Qðbðy;XÞ � bÞ� (4)

As we will examine the performance of the Stein-like estimator in
dynamic models for forecasting with weakly dependent time series, the
predictor matrix X is treated as stochastic. Hence, the expectation in Eq. (4)
is taken over the joint probability law of ðy;XÞ. In this section we compute
the weighted quadratic risk with a weight Q ¼ X 0X , which gives the squared
conditional prediction error risk. In Sections ‘‘In-sample performance of
Stein-rule shrinkage estimator’’ and ‘‘Out-of-sample performance of Stein-
rule shrinkage estimator’’ we also consider a weight Q ¼ IK . The asymptotic
risks of b̂ and b̂

n

are computed below based on the asymptotic covariances
of b̂ and b̂

n

:
The OLS estimator

b̂ ¼ ðX 0XÞ�1X 0y (5)

conditional on X ; has the asymptotic sampling property

ffiffiffiffi
T
p
ðb̂� bÞ

���
X
!
d
Nð0; s2ðX 0XÞ�1Þ (6)

The asymptotic quadratic risk weighted with Q ¼ X 0X of the OLS
estimator b̂ is
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Risk ðb; b̂;X 0XÞ ¼ Efðb̂� bÞ0X 0Xðb̂� bÞg

¼ tr EfX 0Xðb̂� bÞðb̂� bÞ0g

¼ tr EfX 0XE½ðb̂� bÞðb̂� bÞ0jX �g

¼ tr EfX 0Xs2ðX 0XÞ�1g

¼ trðs2IK Þ

¼ Ks2

(7)

Since the bias Eðb̂� bjXÞ ¼ 0 conditional on X ; the risk contains only
a variance component.

Turning to the PC estimator b̂
n

, let V be the K � K matrix of eigenvectors
of X 0X ¼ TVLV 0, where L is the diagonal matrix of eigenvalues in
descending order. Then, V 0V ¼ IK and

y ¼ Xbþ e ¼ XVL�
1
2L

1
2V 0bþ e ¼ Pdþ e; P ¼ XVL�

1
2; d ¼ L

1
2V 0b

(8)

This is the principal components regression model; P contains the
principal components of X , and d̂ ¼ ðP0PÞ�1P0y ¼ T�1P0y can be estimated
either from the principal components or as d̂ ¼ L

1
2V 0b̂ from the OLS

estimator of b. So far, the principal components model is equivalent to the
original model. When X has a large degree of colinearity, the eigenvalues in
L vary greatly in magnitude, and some are close to zero. Then, the number
of components is decomposed into K ¼ K1 þ K2, where K1 is the number of
eigenvalues that are relatively large and K2 is the number of eigenvalues that
are relatively close to zero. The K2 principal components that correspond to
the small eigenvalues are discarded; the remaining K1 principal components
are kept. The model becomes

y ¼ Pdþ e ¼ ðP1 P2Þ
d1
d2

� �
þ e ¼ P1d1 þ P2d2 þ e (9)
¼ XðV1V2ÞL
�
1
2L

1
2ðV1V2Þ

0bþ e ¼ XV1L
�
1
2

1 L
1
2
1V
0
1bþ XV2L

�
1
2

2 L
1
2
2V
0
2bþ e

(10)

where L1 and L2 are the K1 � K1 and K2 � K2 diagonal matrices,
respectively, that contain the corresponding eigenvalues, and P2d2 ¼

XV2L
�
1
2

2 L
1
2
2V
0
2b is deleted. Therefore, principal components regression with

deleted components is equivalent to OLS estimation with the restriction

d2 ¼ Rb ¼ L
1
2
2V
0
2b ¼ 0; (11)
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where R ¼ L
1
2
2V
0
2 imposes K2 linear restrictions on b: Note that R ¼ L

1
2
2V
0
2 is

stochastic depending on X ; and the risk of the restricted estimator is the
expected loss with expectation taken over ðy;XÞ.

The principal components estimator of d with K2 deleted components,
corresponding to the restrictions d2 ¼ 0, is

d̂1 ¼ ðP01P1Þ
�1
P01y ¼ T�1P01y: (12)

The asymptotic distribution conditional on X is

ffiffiffiffi
T
p
ðd̂1 � d1Þ

���
X
!
d
Nð0; s2IK1

Þ: (13)

The estimator d̂1 and setting d2 ¼ 0 result in the fit

y ¼ P1d̂1 þ ê ¼ XV1L
�
1
2

1 d̂1 þ ê; (14)

and the principal components estimator of b is therefore

b̂
n

¼ V1L
�
1
2

1 d̂1: (15)

This is a special case of the restricted least squares (RLS) estimators
explored by Mittelhammer (1985). Fomby, Hill, and Johnson (1978) present
an optimality property of b̂

n

that the trace of the asymptotic covariance
matrix of b̂

n

obtained by deleting K2 principal components associated
with the smallest eigenvalues is at least as small as that for any other RLS
estimator with J � K2 restrictions. This optimality is in terms of the asymp-
totic quadratic risk weighted with Q ¼ IK , that is, Risk ðb; b̂

n

; IK Þ.
For forecasting, it is interesting to examine the asymptotic quadratic risk

weighted with Q ¼ X 0X of the PC estimator b̂
n

.

Riskðb; b̂
n

;X 0XÞ ¼ Eðb̂
n

�bÞ0X 0Xðb̂
n

�bÞ

¼ EðV1L
�
1
2

1 d̂1�bÞ0 TVLV 0ð ÞðV1L
�
1
2

1 d̂1�bÞ

¼TEðV1L
�
1
2

1 d̂1�bÞ0ðVL1=2L1=2V 0ÞðV1L
�
1
2

1 d̂1�bÞ

¼TEðd̂
0

1L
�
1
2

1 V 01VL1=2
�b0VL1=2

ÞðL1=2V 0V1L
�
1
2

1 d̂1�L1=2V 0bÞ

¼TEðd̂
0

1½IK1
0 ��d0Þ

IK1

0

" #
d̂1�d

 !
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¼ TEðd̂1 � d1Þ
0
ðd̂1 � d1Þ þ Td02d2

¼ T tr Eðd̂1 � d1Þðd̂1 � d1Þ
0
þ Td02d2

¼ T tr ðT�1s2IK1
Þ þ Td02d2

¼ K1s2 þ Td02d2

(16)

where the first term corresponds to the variance term that declines as K1

decreases and the second term corresponds to the bias term. The second to
the last equality follows from Eq. (13).

To compare the asymptotic risks of the OLS b̂ estimator and the PC
estimator b̂

n

; look at the risk difference

Risk ðb; b̂;X 0XÞ�Risk ðb; b̂
n

;X 0XÞ ¼Ks2�ðK1s2þTd02d2Þ ¼K2s2�Td02d2;

which is positive when d02d2 is small. This is the case if the restriction in
Eq. (11) is reasonable. In that case the OLS estimator b̂ is dominated by the
PC estimator b̂

n

:

STEIN-RULE ESTIMATOR

Hill and Judge (1987, 1990) propose a Stein-rule estimator ~b that shrinks
the standard OLS estimator b̂ toward the principal components esti-
mator b̂

n

:

~b ¼ b̂
n

þ 1�
aŝ2ðT � KÞ

b̂0R0ðRðX 0XÞ�1R0Þ
�1
Rb̂

 !
ðb̂� b̂

n

Þ

¼ b̂
n

þ cðb̂� b̂
n

Þ

¼ cb̂þ ð1� cÞb̂
n

(17)

where a is a constant, R is defined from Eq. (11), and the Stein coefficient c

is the shrinkage from the OLS estimator b̂ to the PC estimator b̂
n

. Using

R ¼ L
1
2
2V
0
2 and b̂ ¼ VL�

1
2d̂, we obtain

~b ¼ V1L
�
1
2

1 d̂1 þ 1�
1

T

aŝ2ðT � KÞ

d̂0L�
1
2V 0V2L

1
2
2ðL

1
2
2V
0
2VL�1V 0V2L

1
2
2Þ

�1

L
1
2
2V
0
2VL�

1
2d̂

0
B@

1
CAðVL�

1
2d̂� V1L

�
1
2

1 d̂1Þ

(18)
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Using that

V 0V2 ¼
0

IK2

" #
; V 02V ¼ ½0 IK2

�; and ðX 0XÞ
�1
¼ T�1VL�1V 0

where IK2
is the K2 � K2 identity matrix, we obtain that

~b ¼ 1�
1

T

aŝ2ðT � KÞ

d̂
0

2d̂2

 !
ðVL�

1
2d̂� V1L

�
1
2

1 d̂1Þ þ V1L
�
1
2

1 d̂1;

¼ V1L
�
1
2

1 d̂1 þ cðVL�
1
2d̂� V1L

�
1
2

1 d̂1Þ:

(19)

Further rearrangement yields the expression

~b ¼ V1L
�
1
2

1 d̂1 þ cV2L
�
1
2

2 d̂2; (20)

for the Stein-rule estimator, from which its shrinkage representation can
now be read. Since the individual t-statistics of the principal components are
given by ti ¼

ffiffiffiffi
T
p

d̂2;i=ŝ, the coefficient of the K2 terms in d̂ corresponding to
the discarded principal components can be written as

1�
1

T

aŝ2ðT � KÞ

d̂
0

2d̂2
¼ 1�

aðT � KÞPK
K1þ1

t2i
¼ 1�

aðT � KÞ

K2FK2;T�K
; (21)

where FK2;T�K ¼
PK

K1þ1
t2i =K2 is the test statistic for H0 : d2 ¼ 0, the

restriction of Eq. (11). Note that

FK2;T�K ¼

PK
K1þ1

t2i
K2

¼
T d̂
0

2d̂2=K2

ŝ2
¼

signal from K2 discarded variables

noise
:

The Stein coefficient function c in the shrinkage representation of Section
‘‘shrinkage representation’’ is given by

ci ¼
1; i 2 f1; . . . ;K1g;

c; i 2 fK1 þ 1; . . . ;Kg:

(
(22)

The asymptotic quadratic risk weighted with Q ¼ X 0X for the Stein
estimator ~b

Risk ðb; ~b;X 0XÞ ¼ E½ð ~b� bÞ0 X 0Xð ~b� bÞ� (23)
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can be calculated here but it is rather complicated as it depends on
parameters such as b; s; a; and on data characteristics such as T ; K ;
K1; X (with X determining L;VÞ: Hence, we use Monte Carlo analysis in
the next two sections to examine the risk of ~b in comparison with those
of b̂ and b̂

n

.

IN-SAMPLE PERFORMANCE OF STEIN-RULE

SHRINKAGE ESTIMATOR

We conduct Monte Carlo analysis to compare the risk of ~b with those of b̂
and b̂

n

. The risk of the Stein-rule estimator depends on b; s; a; T ; K ; K1; X :
For the risk comparisons we fix T ¼ 200 and K ¼ 50 while we vary b, s, a,
K1, and X :
Simulation Design

The elementary model to be studied is the linear equation

y ¼ Xbþ e; (24)

where y is a T � 1 vector, X is a T � K matrix of regressors, e is a T � 1
random vector drawn from Nð0;s2Þ distribution, b 2 RK�1, and s 2 Rþ.

We compare the performance of the Stein-rule estimator in-sample with
the standard OLS estimator and the principal components estimator and
employ the following simulation design. We draw a matrix X0 of Nð0; 1Þ
random variables of dimensions T � K , T ¼ 200, and K ¼ 50. We aim to
impose different eigenvalue structures on the regressor matrix X in the spirit
of Hill and Judge (1987). To this end, we singular-value decompose X0 into

X0 ¼ UL
1
2
0V
0

and discard the diagonal matrix L
1
2
0. The regressor matrix X is then cons-

tructed as

X ¼ UL
1
2V 0; (25)

where L is constructed according to three different scenarios.

� The singular values are constant.

L
1
2 ¼ diagð2; . . . ; 2Þ: (26)
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� The singular values are linearly decreasing from 5 to 1.
� The singular values are exponentially decreasing from 5 to 1.

diagðL
1
2Þ ¼ 1þ 4e�0:10k; k ¼ 1; . . . ;K : (27)

In the data-generating process, we consider different scenarios for the
variance s2 of the error process. In particular, we set

s 2 f1; 3; 5; 7g: (28)

The data-generating parameter vector b is set to

b ¼
L

K

� �
k2 f1;...;Kg

(29)

such that its direction in parameter space is ð1=KÞk and its length is L. We
consider different scenarios for the length L of the vector, in particular,

L 2 f0; 1; 2; 3g: (30)

Table 1 lists the population-R2 for the different resulting scenarios, where

population - R2 ¼
b0EðX 0XÞb

b0EðX 0XÞbþ Ts2
:

Our simulation design considers only a limited region of the space of
simulation design parameters (T , K , L, s, L). Estimating a response surface
for a larger region could give some more indication on the range of data sets
where gains from Stein-rule estimation can be expected. This is left for
future research.

The performance of the estimators is measured in terms of their risk. The
general risk function considered is

Risk ðb;bðy;XÞ;QÞ ¼ E½ðb ðy;XÞ � bÞ0Q ðb ðy;XÞ � bÞ�;

as shown in Eq. (4). We study the particular case where Q ¼ I , which results
in the standard mean squared error considered in James and Stein (1961)
and Judge and Bock (1978) and the second case where Q ¼ X 0X as
considered in Hill and Fomby (1992), Hill and Judge (1987, 1990), Judge
and Bock (1978). This risk measure can be interpreted as the square of the
distance ðXb� X b̂Þ of the fitted value from the signal part of y.

There are a few estimator-specific settings to consider as well, in particular
the number K1 of principal components for the principal components
estimator and the value of the parameter a in the Stein-rule shrinkage



Table 1. Population R2 for the Different Simulation Scenarios.

Eigenvalues Constant Linear Exponential

L/s2 1 3 5 7 1 3 5 7 1 3 5 7

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0.020 0.007 0.004 0.003 0.049 0.017 0.010 0.007 0.019 0.007 0.004 0.003

2 0.074 0.026 0.016 0.011 0.172 0.065 0.040 0.029 0.073 0.026 0.016 0.011

3 0.153 0.057 0.035 0.025 0.319 0.135 0.086 0.063 0.151 0.056 0.034 0.025
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estimator. We consider K1 2 f1; 5; 10; 20g and a 2 ð0; 1Þ. The two numbers
interact through the bounds for a given in Hill and Judge (1987, p. 87) and
Judge and Bock (1978, p. 193):

0 � a �
2ðK � K1 � 2Þ

T � K þ 2
: (31)

Here, for K1 2 f1; 5; 10; 20g, we obtain

0 � a � 0:62; 0:57; 0:50; 0:37;

so that we expect the region for a in which the Stein-rule shrinkage estimator
performs better than OLS and PC estimators to move toward the origin as
the number of components increases.
Choosing the Number of Principal Components

Selecting the number of principal components is a problem that has spawned
a large literature (see, e.g., Anderson, 2003; Bai & Ng, 2002; Hallin & Liska,
2007; Onatski, 2009). In this paper, we restrict ourselves to studying the
behavior of the Stein-rule estimator for a set of number of components,
including the one-factor model, few components (K1 ¼ 5), a moderate
number (K1 ¼ 10), and many factors (K1 ¼ 20). Recall that the number of
regressors is K ¼ 50.

Figs. 1–3 show the risk of the three estimators, Stein-rule shrinkage,
OLS, and PC, as functions of the parameter a of the Stein-rule shrinkage
estimator. Since the OLS and PC estimators do not depend on this
parameter, they are constants in the graphs. The risk of the OLS estimator is
depicted by a dotted line; the risk of the PC estimator is shown as a dashed
line. The risk of the Stein-rule shrinkage estimator is shown as connected
dots. The left panel of four plots in each figure shows the MSE risk (Q ¼ I);
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Fig. 1. Riskðbðy;XÞÞ ¼ E½ðbðy;XÞ � bÞ0Qðbðy;XÞ � bÞ� as Function of a. Left Panel:

Q ¼ I (MSE), Right Panel: Q ¼ X 0X . The Data-Generating Singular Values are

Constant and Equal to Two. Other Parameters Are Set to L ¼ 1, s ¼ 3. The

Connected Dots’ Line Shows the Performance of the Stein-like Estimator. For

Comparison, the Performance of the Standard OLS Estimator is Shown in Dots. The

Performance of the Principal Components Estimator is Plotted with Dashes.
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the right panel of four plots shows the risk for Q ¼ X 0X . The four plots
show the different scenarios for the number K1 2 f1; 5; 10; 20g of principal
components. Each figure shows a different singular value scenario, Fig. 1
shows the case of constant singular values equal to two; Fig. 2 shows the
case of linearly decreasing singular values, and Fig. 3 shows the case of
exponentially decreasing singular values.

The graphs show that the risk of the Stein-rule follows a parabola in a,
which indicates that there is an optimal a, at least in the simulation scenarios
considered. Unlike in the case of the original James and Stein (1961)
estimator, this optimal a is not analytically known at this point. The
minimum of the parabola is moving inward toward the origin as the number
K1 of components increases, as expected. For the scenarios where the
singular values are constant and where they are linearly decreasing, the OLS
estimator performs generally better than the PC estimator. For exponen-
tially decreasing singular values, the PC estimator often performs better
than the OLS estimator. The Stein-rule shrinkage estimator has a greater
relative advantage over PC and OLS estimators for small number of
components (K1 ¼ 1; 5). For larger K1, the performance of the Stein-rule
shrinkage estimator approaches that of the relatively better estimator
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Fig. 2. Riskðbðy;XÞÞ ¼ E½ðbðy;XÞ � bÞ0Qðbðy;XÞ � bÞ� as Function of a. Left

Panel: Q ¼ I (MSE), Right Panel: Q ¼ X 0X. The Data-Generating Singular
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Estimator. For Comparison, the Performance of the Standard OLS Estimator is

shown in Dots. The Performance of the Principal Components Estimator is Plotted
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among OLS and PC. Note that the singular-value scenarios considered in
this paper do not include values close to zero as in Hill and Judge (1987). We
found that for most scenarios of this nature, where a strong degree of
multicolinearity is present, the principal components estimator performs
better than the Stein-rule shrinkage estimator.
Different Variance Scenarios

Fig. 4–6 report the performance of the estimators for different noise levels

s 2 f1; 3; 5; 7g:

The organization of the graphs is the same as described in Section
‘‘Choosing the number of principal components’’. Again, the risk of the
Stein-rule shrinkage estimator describes a parabola in a, indicating the
existence of an optimal parameter value. For low values of variance, OLS
performs better than principal components, and as the noise level increases,
the PC estimator outperforms OLS. The Stein-rule shrinkage estimator can
outperform both OLS and PC estimators within an intermediate noise
range.
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Fig. 4. Riskðbðy;XÞÞ ¼ E½ðbðy;XÞ � bÞ0Qðbðy;XÞ � bÞ� as Function of a. Left Panel:

Q ¼ I (MSE), Right Panel: Q ¼ X 0X . The Data-Generating Singular Values are

Constant and Equal to Two. Other Parameters are Set to L ¼ 1, K1 ¼ 1. The

Connected Dots’ Line Shows the Performance of the Stein-like Estimator. For

Comparison, the Performance of the Standard OLS Estimator is Shown in Dots. The

Performance of the Principal Components Estimator is Plotted with Dashes.
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Fig. 6. Riskðbðy;XÞÞ ¼ E½ðbðy;XÞ � bÞ0Qðbðy;XÞ � bÞ� as Function of a. Left Panel:
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Exponentially Decreasing from 5 to 1 at a Rate of 0.10. Other Parameters are
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Different Lengths of the Parameter Vector b

Fig. 7–9 display the performance of the estimators for different lengths L of
the parameter vector b ¼ L=K . The four plots of each panel show the risks
of the estimators for

L 2 f0; 1; 2; 3g:

The organization of the graphs is the same as described in Section
‘‘Choosing the number of principal components’’. If L ¼ 0, that is, there is
no signal in y, the PC estimator outperforms both OLS and the Stein-rule
shrinkage estimators. For large values of L, OLS performs better than
the other estimators. On an intermediate range, the Stein-rule shrinkage
estimator can outperform both other estimators.

Recall from Eq. (11) that d2 ¼ L
1
2
2V
0
2b where b ¼ L

K

� 	
: Hence, the length L

for b determines the length of d2: Because Td02d2 is the second term in the

asymptotic risk of the PC estimator corresponding to the bias due to the
omission of the K2 principal components, as shown in Eq. (16), a large value
of L increases the risk of the PC estimator compared to the risk of the OLS
estimator.
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Fig. 7. Riskðbðy;XÞÞ ¼ E½ðbðy;XÞ � bÞ0Qðbðy;XÞ � bÞ� as Function of a. Left Panel:

Q ¼ I (MSE), Right Panel: Q ¼ X 0X . The Data-Generating Singular Values are

Constant and Equal to Two. Other Parameters are Set to K1 ¼ 1, s ¼ 3. The

Connected Dots’ Line Shows the Performance of the Stein-like Estimator. For

Comparison, the Performance of the Standard OLS Estimator is Shown in Dots. The

Performance of the Principal Components Estimator is Plotted with Dashes.
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For the Stein-rule estimator, a large value of L increases Td02d2, which in
turn will increase the F statistic defined in Eq. (21)

FK2;T�K ¼
T d̂
0

2d̂2=K2

ŝ2

and hence increases the Stein-rule coefficient c and thus reduces the
shrinkage from the OLS estimator b̂ to the PC estimator b̂

n

.

OUT-OF-SAMPLE PERFORMANCE OF STEIN-RULE

SHRINKAGE ESTIMATOR

Simulation Design

We assess the out-of-sample (OOS) performance of the Stein-rule shrinkage
estimator in two different simulation setups. One is exactly the same as
described in Section ‘‘Simulation design’’, only that the forecast perfor-
mance on T2 ¼ 100 out-of-sample observations is evaluated. The two risk
functions considered for the OOS comparison are the mean squared forecast
error (MSFE)

MSFEðbðy;XÞÞ ¼ E½ðŷ� yÞ0ðŷ� yÞ�; (32)

where ŷ ¼ Xbðy;XÞ, and the squared signal-to-prediction distance as
considered in (4) with Q ¼ X 0X ,

Riskðb;bðy;XÞ;X 0XÞ ¼ E½ðbðy;XÞ � bÞ0X 0Xðbðy;XÞ � bÞ�: (33)

The second simulation environment that we study has AR(1) time series
in the columns of the regressor matrix X . That is,

X ¼ ½fx1;tgfx2;tg; . . . ; fxK ;tg�t2f1;...;Tg; (34)

and the individual columns follow

xk;t ¼ fxk;t�1 þ sX ;kxt;k; k ¼ 1; . . . ;K ; xt;k �Nð0; 1Þ: (35)

The standard deviations of the AR(1) processes in the columns of X are
chosen to correspond to the exponentially decaying sequence employed in
Eq. (27): ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varxk;t
p

¼
sX ;kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q ¼ 1þ 4e�0:10k; k ¼ 1; . . . ;K : (36)



ERIC HILLEBRAND AND TAE-HWY LEE190
Thus, sX ;k ¼ sX ;kðfÞ ¼ ð1þ 4e�0:10kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
. Varying f replaces the

variance dimension considered in the in-sample study. The standard
deviation of the noise in y is set to s ¼ 3 and T2 ¼ 100 out-of-sample
observations are evaluated.

Note that principal components are linear combinations of the columns
of X ,

P1 ¼ XV1L
�
1
2

1 ; (37)

and therefore the individual components are, with some coefficients wk;j

determined by V1 and L1,

Pj;t ¼
XK
k¼1

wk; j xk;t ¼ f
XK
k¼1

wk; j xk;t�1 þ
XK
k¼1

wk; j sX ;k xt;k ¼ fPj; t�1 þ Zj;t;

where Zj;t ¼
PK

k¼1wk; jsX ;kxt;k. As long as the AR(1) parameter f is the same
across all columns of X , the principal components will themselves be AR(1)
processes with the same decorrelation length as the individual columns. If
different fk are chosen across the columns, the principal components will be
linear combinations of AR(1) processes with different persistence para-
meters, which can lead to long memory behavior of the components, as
described in Granger (1980).
Choosing the Number of Principal Components

Figs. 10 and 11 display the out-of-sample performance of the estimators for
different numbers of principal components

K1 2 f1; 5; 10; 20g:

The organization of the graphs is similar to the one described in Section
‘‘Choosing the number of principal components’’. Instead of different
singular-value scenarios, two different simulation designs are considered.
Fig. 10 shows the case where the regressor matrix X is drawn from
independent Nð0; 1Þ distributions; Fig. 11 shows the case where the
regressors are AR(1) time series. Unlike in the in-sample study, here the
relative performance of PC and OLS estimators changes with the number K1

of principal components. For small numbers, OLS performs better than PC,
and for large K1, PC performs better than OLS. The Stein-rule shrinkage
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Fig. 10. Left Panel: MSFEðbðy;XÞÞ ¼ E½ðŷ� yÞ0ðŷ� yÞ�, Where ŷ is a T2-Vector of

Forecasts of y, as Function of a. Right Panel: Riskðb; bðy;XÞ;X 0XÞ ¼ E½ðbðy;XÞ �
bÞ0X 0Xðbðy;XÞ � bÞ� for the T2-Period Forecast Sample. The Data-Generating

Eigenvalues are Exponentially Decreasing from 5 to 1 at a Rate of 0.10. Other

Parameters are Set to L ¼ 1, s ¼ 3. The Connected Dots’ Line Shows the

Performance of the Stein-like Estimator. For Comparison, the Performance of the

Standard OLS Estimator is Shown in Dots. The Performance of the Principal

Components Estimator is Plotted with Dashes.
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Fig. 11. Left Panel: MSFEðbðy;XÞÞ ¼ E½ðŷ� yÞ0ðŷ� yÞ�, Where ŷ Is a T2-Vector of

Forecasts of y, as Function of a. Right Panel: Riskðb; bðy;XÞ;X 0XÞ ¼ E½ðbðy;XÞ �
bÞ0X 0Xðbðy;XÞ � bÞ� for the T2-Period Forecast Sample. The Columns of the
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Comparison, the Performance of the Standard OLS Estimator is Shown in Dots. The

Performance of the Principal Components Estimator is Plotted with Dashes.
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estimator dominates for up to 10 components. There is no obvious difference
between the i.i.d. and the AR(1) simulation scenarios.
Different Variance Scenarios

Fig. 12 shows the performance of the estimator when X is drawn from an
Nð0; 1Þ distribution. Similar to the in-sample study, OLS performs best for
low noise levels and PC performs best for high noise levels. The Stein-rule
shrinkage estimator can outperform both in an intermediate noise range.

Fig. 13 shows the performance for the estimators when the columns of X
follow AR(1) dynamics. The four plots in each panel show the situation for
different values f 2 f0:30; 0:50; 0:90; 0:99g of the AR-parameter. The
standard deviation of the error in the AR model is then set through

sX ;kðfÞ ¼ ð1þ 4e�0:10kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
such that the standard deviation of the

column follows Eq. (36). The figure shows that the Stein-rule shrinkage
estimator outperforms OLS and PC estimators in low-persistence scenarios
(f ¼ 0:30; 0:50), whereas in high-persistence scenarios (f ¼ 0:90; 0:99) the
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Forecasts of y, as Function of a. Right Panel: Riskðb; bðy;XÞ;X 0XÞ ¼ E½ðbðy;XÞ �
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PC estimator outperforms both Stein-rule and OLS. The relative perfor-
mance of OLS and PC estimators also changes with persistence: In low
persistence scenarios, OLS performs better than PC, and vice versa for high
persistence.
Different Lengths of the Parameter Vector b

Figs. 14 and 15 show the performance of the estimators for different lengths
L 2 0; 1; 2; 3 of the parameter vector. As in the in-sample case, when L ¼ 0,
PC performs best. For L ¼ 1, OLS performs better than PC, but both are
dominated by the Stein-rule shrinkage estimator. For higher values of L,
OLS performs best among all three estimators. This holds true for both
simulation environments, i.i.d. regressors and AR(1) regressors.
CONCLUDING REMARKS

In this paper, we have shown that the Stein-rule shrinkage estimator that
shrinks the OLS estimator toward the PC estimator, as proposed in Hill and
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Judge (1987, 1990), can be represented as a shrinkage estimator for a
forecasting model as proposed in Stock and Watson (2011). We examined
the performance of the estimator in a variety of simulation environments,
both in-sample and out-of-sample. The overall picture that emerges is that
the Stein-rule shrinkage estimator can dominate both OLS and principal
components estimators within an intermediate range of the signal-to-noise
ratio. If the noise level is high (high variance of noise terms) or if the signal is
low (short parameter vector), the principal components estimator is
superior. If the noise level is low (low variance of noise terms) or if the
signal is high (long parameter vector), OLS is superior. In out-of-sample
simulations with AR(1) regressors, the Stein-rule shrinkage estimator can
dominate both OLS and principal components estimators in low-persistence
situations.
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