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Glossary

Arbitrage pricing theory (APT) the expected return of
an asset is a linear function of a set of factors.

Artificial neural network is a nonlinear flexible func-
tional form, connecting inputs to outputs, being ca-
pable of approximating a measurable function to
any desired level of accuracy provided that sufficient
complexity (in terms of number of hidden units) is
permitted.

Autoregressive conditional heteroskedasticity (ARCH)
the variance of an asset returns is a linear function of
the past squared surprises to the asset.

Bagging short for bootstrap aggregating. Bagging is
a method of smoothing the predictors’ instability by

averaging the predictors over bootstrap predictors and
thus lowering the sensitivity of the predictors to train-
ing samples. A predictor is said to be unstable if
perturbing the training sample can cause significant
changes in the predictor.

Capital asset pricing model (CAPM) the expected re-
turn of an asset is a linear function of the covari-
ance of the asset return with the return of the market
portfolio.

Factor model a linear factor model summarizes the di-
mension of a large system of variables by a set of factors
that are linear combinations of the original variables.

Financial forecasting prediction of prices, returns, direc-
tion, density or any other characteristic of financial as-
sets such as stocks, bonds, options, interest rates, ex-
change rates, etc.

Functional coefficient model a model with time-varying
and state-dependent coefficients. The number of states
can be infinite.

Linearity in mean the process fytg is linear in mean con-
ditional on Xt if

Pr
�
E(yt jXt) D X 0t�

�
�
D 1 for some �� 2 Rk :

Loss (cost) function When a forecast ft;h of a variable
YtCh is made at time t for h periods ahead, the loss
(or cost) will arise if a forecast turns out to be dif-
ferent from the actual value. The loss function of
the forecast error etCh D YtCh � ft;h is denoted as
ctCh(YtCh; ft;h), and the function ctCh(�) can change
over t and the forecast horizon h.

Markov-switching model features parameters changing
in different regimes, but in contrast with the threshold
models the change is dictated by a non-observable state
variable that is modelled as a hidden Markov chain.

Martingale property tomorrow’s asset price is expected
to be equal to today’s price given some information set

E(ptC1jFt) D pt :

Nonparametric regression is a data driven technique
where a conditional moment of a random variable is
specified as an unknown function of the data and es-
timated by means of a kernel or any other weighting
scheme on the data.

Random field a scalar random field is defined as a func-
tion m(!; x) : ˝ � A! R such that m(!; x) is a ran-
dom variable for each x 2 Awhere A � Rk .

Sieves the sieves or approximating spaces are approxima-
tions to an unknown function, that are dense in the
original function space. Sieves can be constructed us-
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ing linear spans of power series, e. g., Fourier series,
splines, or many other basis functions such as artifi-
cial neural network (ANN), and various polynomials
(Hermite, Laguerre, etc.).

Smooth transition models threshold model with the in-
dicator function replaced by a smooth monotonically
increasing differentiable function such as a probability
distribution function.

Threshold model a nonlinear model with time-varying
coefficients specified by using an indicator which takes
a non-zero value when a state variable falls on a speci-
fied partition of a set of states, and zero otherwise. The
number of partitions is finite.

Varying cross-sectional rank (VCR) of asset i is the pro-
portion of assets that have a return less than or equal
to the return of firm i at time t

zi;t � M�1
MX

jD1

1(y j;t � yi;t)

Volatility Volatility in financial economics is often mea-
sured by the conditional variance (e. g., ARCH) or
the conditional range. It is important for any decision
making under uncertainty such as portfolio allocation,
option pricing, risk management.

Definition of the Subject

Financial Forecasting

Financial forecasting is concerned with the prediction
of prices of financial assets such as stocks, bonds, op-
tions, interest rates, exchange rates, etc. Though many
agents in the economy, i. e. investors, money managers,
investment banks, hedge funds, etc. are interested in the
forecasting of financial prices per se, the importance of
financial forecasting derives primarily from the role of fi-
nancial markets within the macro economy. The devel-
opment of financial instruments and financial institutions
contribute to the growth and stability of the overall econ-
omy. Because of this interconnection between financial
markets and the real economy, financial forecasting is also
intimately linked to macroeconomic forecasting, which
is concerned with the prediction of macroeconomic ag-
gregates such as growth of the gross domestic product,
consumption growth, inflation rates, commodities prices,
etc. Financial forecasting and macroeconomic forecasting
share many of the techniques and statistical models that
will be explained in detail in this article.

In financial forecasting a major object of study is the
return to a financial asset, mostly calculated as the con-
tinuously compounded return, i. e., yt D log pt � log pt�1

where pt is the price of the asset at time t. Nowadays fi-
nancial forecasters use sophisticated techniques that com-
bine the advances in modern finance theory, pioneered by
Markowitz [113], with the advances in time series econo-
metrics, in particular the development of nonlinear mod-
els for conditional moments and conditional quantiles of
asset returns.

The aim of finance theory is to provide models for ex-
pected returns taking into account the uncertainty of the
future asset payoffs. In general, financial models are con-
cerned with investors’ decisions under uncertainty. For in-
stance the portfolio allocation problem deals with the al-
location of wealth among different assets that carry dif-
ferent levels of risk. The implementation of these theories
relies on econometric techniques that aim to estimate fi-
nancial models and testing them against the data. Finan-
cial econometrics is the branch of econometrics that pro-
vides model-based statistical inference for financial vari-
ables, and therefore financial forecasting will provide their
corresponding model-based predictions. However there
are also econometric developments that inform the con-
struction of ad hoc time series models that are valuable on
describing the stylized facts of financial data.

Since returns fytg are random variables, the aim of
financial forecasting is to forecast conditional moments,
quantiles, and eventually the conditional distribution of
these variables. Most of the time our interest will be
centered on expected returns and volatility as these two
moments are crucial components on portfolio allocation
problems, option valuation, and risk management, but it
is also possible to forecast quantiles of a random variable,
and therefore to forecast the expected probability density
function. Density forecasting is the most complete forecast
as it embeds all the information on the financial variable of
interest. Financial forecasting is also concerned with other
financial variables like durations between trades and di-
rections of price changes. In these cases, it is also possible
to construct conditional duration models and conditional
probit models that are the basis for forecasting durations
and market timing.

Critical to the understanding of the methodological
development in financial forecasting is the statistical con-
cept of martingale, which historically has its roots in the
games of chance also associated with the beginnings of
probability theory in the XVI century. Borrowing from
the concept of fair game, financial prices are said to en-
joy themartingale property if tomorrow’s price is expected
to be equal to today’s price given some information set;
in other words tomorrow’s price has an equal chance to
either move up or move down, and thus the best forecast
must be the current price. The martingale property is writ-
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ten as

E(ptC1jFt) D pt

where E is the expectation operator and the information
set Ft � fpt ; pt�1; pt�2; : : : g is the collection of past and
current prices, though it may also include other variables
known at time t such as volume. From a forecasting point
of view, the martingale model implies that changes in fi-
nancial prices (ptC1 � pt) are not predictable.

The most restrictive form of the martingale property,
proposed by Bachelier [6] in his theory of speculation is
the model (in logarithms)

log ptC1 D �t C log pt C "tC1 ;

where �t D � is a constant drift and "tC1 is an identically
and independently distributed (i.i.d.) error that is assumed
to be normally distributed with zero mean and constant
variance �2. This model is also known as a random walk
model. Since the return is the percentage change in prices,
i. e. yt D log pt � log pt�1, an equivalent model for asset
returns is

ytC1 D �t C "tC1 :

Then, taking conditional expectations, we find that
E(ytC1jFt) D �t . If the conditional mean return is not
time-varying, �t D �, then the returns are not fore-
castable based on past price information. In addition and
given the assumptions on the error term, returns are in-
dependent and identically distributed random variables.
These two properties, a constant drift and an i.i.d error
term, are too restrictive and they rule out the possibility
of any predictability in asset returns. A less restrictive and
more plausible version is obtained when the i.i.d assump-
tion is relaxed. The error term may be heteroscedastic so
that returns have different (unconditional or conditional)
variances and consequently they are not identically dis-
tributed, and/or the error term, though uncorrelated, may
exhibit dependence in higher moments and in this case the
returns are not independent random variables.

The advent of modern finance theory brings the no-
tion of systematic risk, associated with return variances
and covariances, into asset pricing. Though these theo-
ries were developed to explain the cross-sectional vari-
ability of financial returns, they also helped many years
later with the construction of time series models for fi-
nancial returns. Arguably, the two most important asset
pricing models in modern finance theory are the Capital
Asset Pricing Model (CAPM) proposed by Sharpe [137]
and Lintner [103] and the Arbitrage Pricing Theory (APT)

proposed by Ross [131]. Both models claim that the ex-
pected return to an asset is a linear function of risk; in
CAPM risk is related to the covariance of the asset return
with the return to the market portfolio, and in APT risk
is measured as exposure to a set of factors, which may in-
clude the market portfolio among others. The original ver-
sion of CAPM, based on the assumption of normally dis-
tributed returns, is written as

E(yi ) D y f C ˇim
�
E(ym ) � y f

�
;

where yf is the risk-free rate, ym is the return to the market
portfolio, and ˇim is the risk of asset i defined as

ˇim D
cov(yi ; ym)
var(ym)

D
�im

�2m
:

This model has a time series version known as the con-
ditional CAPM [17] that it may be useful for forecast-
ing purposes. For asset i and given an information set as
Ft D fyi;t; yi;t�1; : : : ; ym;t ; ym;t�1; : : : g, the expected re-
turn is a linear function of a time-varying beta

E(yi;tC1jFt) D y f C ˇim;t
�
E(ym;tC1jFt) � y f

�

where ˇim;t D
cov(yi;tC1 ;ym;tC1jFt )

var(ym;tC1 jFt )
D


im;t

2
m;t

. From this type
of models is evident that we need to model the condi-
tional second moments of returns jointly with the con-
ditional mean. A general finding of this type of models
is that when there is high volatility, expected returns are
high, and hence forecasting volatility becomes important
for the forecasting of expected returns. In the same spirit,
the APTmodels have also conditional versions that exploit
the information contained in past returns. AK-factor APT
model is written as

yt D c C B0 ft C "t ;

where f t is a K � 1 vector of factors and B is a K � 1 vec-
tor of sensitivities to the factors. If the factors have time-
varying second moments, it is possible to specify an APT
model with a factor structure in the time-varying covari-
ance matrix of asset returns [48], which in turn can be ex-
ploited for forecasting purposes.

The conditional CAPM and conditional APT models
are fine examples on how finance theory provides a base to
specify time-series models for financial returns. However
there are other time series specifications, more ad hoc in
nature, that claim that financial prices are nonlinear func-
tions – not necessarily related to time-varying second mo-
ments – of the information set and by that, they impose
some departures from the martingale property. In this
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case it is possible to observe some predictability in asset
prices. This is the subject of nonlinear financial forecast-
ing. We begin with a precise definition of linearity versus
nonlinearity.

Linearity and Nonlinearity

Lee, White, and Granger [99] are the first who precisely
define the concept of “linearity”. Let fZtg be a stochastic
process, and partition Zt as Zt D (yt X 0t)0, where (for sim-
plicity) yt is a scalar and Xt is a k � 1 vector. Xt may (but
need not necessarily) contain a constant and lagged values
of yt . LWG define that the process fytg is linear in mean
conditional on Xt if

Pr
�
E(yt jXt) D X 0t�

�
�
D 1 for some �� 2 Rk :

In the context of forecasting, Granger and Lee [71] de-
fine linearity as follows. Define �tCh D E(ytCh jFt) be-
ing the optimum least squares h-step forecast of ytCh
made at time t. �tCh will generally be a nonlinear func-
tion of the contents ofFt . Denote mtCh the optimum lin-
ear forecast of ytCh made at time t be the best forecast
that is constrained to be a linear combination of the con-
tents of Xt 2 Ft . Granger and Lee [71] define that fytg
is said to be linear in conditional mean if �tCh is linear
in Xt, i. e., Pr

�
�tCh D mtCh

�
D 1 for all t and for all h.

Under this definition the focus is the conditional mean
and thus a process exhibiting autoregressive conditional
heteroskedasticity (ARCH) [44] may nevertheless exhibit
linearity of this sort because ARCH does not refer to the
conditional mean. This is appropriate whenever we are
concerned with the adequacy of linear models for forecast-
ing the conditional mean returns. See [161], Section 2, for
a more rigorous treatment on the definitions of linearity
and nonlinearity.

This definition may be extended with some cau-
tion to the concept of linearity in higher moments and
quantiles, but the definition may depend on the focus
or interest of the researcher. Let "tCh D ytCh � �tCh
and �2tCh D E("2tCh jFt). If we consider the ARCH and
GARCH as linear models, we say

˚
�2tCh

�
is linear in con-

ditional variance if �2tCh is a linear function of lagged
"2t� j and �2t� j for some h or for all h. Alternatively,
�2tCh D E("2tCh jFt) is said to be linear in conditional vari-
ance if �2tCh is a linear function of xt 2 Ft for some h
or for all h. Similarly, we may consider linearity in condi-
tional quantiles. The issue of linearity versus nonlinearity
is most relevant for the conditional mean. It is more rele-
vant whether a certain specification is correct or incorrect
(rather than linear or nonlinear) for higher order condi-
tional moments or quantiles.

Introduction

There exists a nontrivial gap between martingale differ-
ence and serial uncorrelatedness. The former implies the
latter, but not vice versa. Consider a stationary time series
fytg. Often, serial dependence of fytg is described by its
autocorrelation function �( j), or by its standardized spec-
tral density

h(!) D
1
2�

1X

jD�1

�( j)e�i j! ; ! 2 [��; �] :

Both h(!) and �( j) are the Fourier transform of each
other, containing the same information of serial correla-
tions of fytg. A problem with using h(!) and �( j) is that
they cannot capture nonlinear time series that have zero
autocorrelation but are not serially independent. Nonlin-
ear MA and Bilinear series are good examples:

Nonlinear MA : Yt D bet�1et�2 C et ;
Bilinear : Yt D bet�1Yt�2 C et :

These processes are serially uncorrelated, but they are pre-
dictable using the past information. Hong and Lee [86]
note that the autocorrelation function, the variance ratios,
and the power spectrum can easily miss these processes.
Misleading conclusions in favor of the martingale hypoth-
esis could be reached when these test statistics are insignif-
icant. It is therefore important and interesting to explore
whether there exists a gap between serial uncorrelatedness
and martingale difference behavior for financial forecast-
ing, and if so, whether the neglected nonlinearity in con-
ditional mean can be explored to forecast financial asset
returns.

In the forthcoming sections, we will present, with-
out being exhaustive, nonlinear time series models for fi-
nancial returns, which are the basis for nonlinear fore-
casting. In Sect. “Nonlinear Forecasting Models for the
Conditional Mean”, we review nonlinear models for the
conditional mean of returns. A general representation is
ytC1 D �(yt ; yt�1; : : : ) C "tC1 with �(�) a nonlinear
function of the information set. IfE(ytC1jyt; yt�1; : : : ) D
�(yt ; yt�1; : : : ), then there is a departure from the mar-
tingale hypothesis, and past price information will be rel-
evant to predict tomorrow’s return. In Sect. “Nonlinear
Forecasting Models for the Conditional Variance”, we
review models for the conditional variance of returns.
For instance, a model like ytC1 D � C utC1�tC1 with
time-varying conditional variance �2tC1 D E((ytC1 �

�)2jFt) and i.i.d. error utC1, is still a martingale-differ-
ence for returns but it represents a departure from the



Financial Forecasting, Non-linear Time Series in F 3479

independence assumption. The conditional mean return
may not be predictable but the conditional variance of
the return will be. In addition, as we have seen modeling
time-varying variances and covariances will be very use-
ful for the implementation of conditional CAPM and APT
models.

Nonlinear ForecastingModels
for the ConditionalMean

We consider models to forecast the expected price changes
of financial assets and we restrict the loss function of
the forecast error to be the mean squared forecast er-
ror (MSFE). Under this loss, the optimal forecast is
�tCh D E(ytCh jFt). Other loss functions may also be
used but it will be necessary to forecast other aspects of
the forecast density. For example, under a mean absolute
error loss function the optimal forecast is the conditional
median.

There is evidence for �tCh being time-varying. Simple
linear autoregressive polynomials in lagged price changes
are not sufficient to model �tCh and nonlinear specifica-
tions are needed. These can be classified into parametric
and nonparametric. Examples of parametric models are
autoregressive bilinear and threshold models. Examples of
nonparametric models are artificial neural network, kernel
and nearest neighbor regression models.

It will be impossible to have an exhaustive review of
the many nonlinear specifications. However, as discussed
in White [161] and Chen [25], some nonlinear mod-
els are universal approximators. For example, the sieves
or approximating spaces are proven to approximate very
well unknown functions and they can be constructed us-
ing linear spans of power series, Fourier series, splines,
or many other basis functions such as artificial neural
network (ANN), Hermite polynomials as used in e. g.,
[56] for modelling semi-nonparametric density, and La-
guerre polynomials used in [119] for modelling the yield
curve. Diebold and Li [36] and Huang, Lee, and Li [89]
use the Nelson–Siegel model in forecasting yields and
inflation.

We review parametric nonlinear models like thresh-
old model, smooth transition model, Markov switching
model, and random fields model; nonparametric models
like local linear, local polynomial, local exponential, and
functional coefficient models; and nonlinear models based
on sieves like ANN and various polynomials approxima-
tions. For other nonlinear specifications we recommend
some books on nonlinear time series models such as Fan
and Yao [52], Gao [57], and Tsay [153]. We begin with
a very simple nonlinear model.

A Simple Nonlinear Model with Dummy Variables

Goyal and Welch [66] forecast the equity premium on the
S&P 500 index – index return minus T-bill rate – using
many predictors such as stock-related variables (e. g., divi-
dend-yield, earning-price ratio, book-to-market ratio, cor-
porate issuing activity, etc.), interest-rate-related variables
(e. g., treasury bills, long-term yield, corporate bond re-
turns, inflation, investment to capital ratio), and ex ante
consumption, wealth, income ratio (modified from [101]).
They find that these predictors have better performance
in bad times, such as the Great Depression (1930–33), the
oil-shock period (1973–75), and the tech bubble-crash pe-
riod (1999–2001). Also, they argue that it is reasonable to
impose a lower bound (e. g., zero or 2%) on the equity pre-
mium because no investor is interested in (say) a negative
premium.

Campbell and Thompson [23], inspired by the out-of-
sample forecasting of Goyal and Welch [66], argue that if
we impose some restrictions on the signs of the predic-
tors’ coefficients and excess return forecasts, some predic-
tors can beat the historical average equity premium. Sim-
ilarly to Goyal and Welch [66], they also use a rich set
of forecasting variables – valuation ratios (e. g., dividend
price ratio, earning price ratio, and book to market ratio),
real return on equity, nominal interest rates and inflation,
and equity share of new issues and consumption-wealth
ratio. They impose two restrictions – the first one is to re-
strict the predictors’ coefficients to have the theoretically
expected sign and to set wrong-signed coefficients to zero,
and the second one is to rule out a negative equity pre-
mium forecast. They show that the effectiveness of these
theoretically-inspired restrictions almost always improve
the out-of sample performance of the predictive regres-
sions. This is an example where “shrinkage” works, that is
to reduce the forecast error variance at the cost of a higher
forecast bias but with an overall smaller mean squared
forecast error (the sum of error variance and the forecast
squared bias).

The results from Goyal and Welch [66] and Campbell
and Thompson [23] support a simple form of nonlinearity
that can be generalized to threshold models or time-vary-
ing coefficient models, which we consider next.

Threshold Models

Many financial and macroeconomic time series exhibit
different characteristics over time depending upon the
state of the economy. For instance, we observe bull and
bear stock markets, high volatility versus low volatility pe-
riods, recessions versus expansions, credit crunch versus
excess liquidity, etc. If these different regimes are present
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in economic time series data, econometric specifications
should go beyond linear models as these assume that there
is only a single structure or regime over time. Nonlinear
time series specifications that allow for the possibility of
different regimes, also known as state-dependent models,
include several types of models: threshold, smooth transi-
tion, and regime-switching models.

Threshold autoregressive (TAR) models [148,149] as-
sume that the dynamics of the process is explained by an
autoregression in each of the n regimes dictated by a con-
ditioning or threshold variable. For a process fytg, a gen-
eral specification of a TAR model is

yt D
nX

jD1

2

4�( j)
o C

p jX

iD1

�
( j)
i yt�i C "

( j)
t

3

5 1(r j�1 < xt � r j):

There are n regimes, in each one there is an autoregres-
sive process of order pj with different autoregressive pa-
rameters �( j)

i , the threshold variable is xt with rj thresh-
olds and ro D �1 and rn D C1, and the error term is
assumed i.i.d. with zeromean and different variance across
regimes "( j)t � i.i.d.



0; �2j

�
, or more generally "( j)t is as-

sumed to be a martingale difference. When the threshold
variable is the lagged dependent variable itself yt�d , the
model is known as self-exciting threshold autoregressive
(SETAR) model. The SETAR model has been applied to
the modelling of exchange rates, industrial production in-
dexes, and gross national product (GNP) growth, among
other economic data sets. The most popular specifications
within economic time series tend to find two, at most three
regimes. For instance, Boero and Marrocu [18] compare
a two and three-regime SETAR models with a linear AR
with GARCH disturbances for the euro exchange rates. On
the overall forecasting sample, the linear model performs
better than the SETAR models but there is some improve-
ment in the predictive performance of the SETAR model
when conditioning on the regime.

Smooth TransitionModels

In the SETAR specification, the number of regimes is dis-
crete and finite. It is also possible to model a continuum
of regimes as in the Smooth Transition Autoregressive
(STAR) models [144]. A typical specification is

yt D �0C
pX

iD1

�i yt�iC

 

�0 C

pX

iD1

�i yt�i

!

F(yt�d )C"t

where F(yt�d ) is the transition function that is continu-
ous and in most cases is either a logistic function or an

exponential,

F(yt�d ) D
�
1C exp

�
��

�
yt�d � r

��1

F(yt�d ) D 1�
h
exp

�
��

�
yt�d � r

2i

This model can be understood as many autoregressive
regimes dictated by the values of the function F(yt�d ),
or alternatively as an autoregression where the autore-
gressive parameters change smoothly over time. When
F(yt�d ) is logistic and � !1, the STAR model collapses
to a threshold model SETAR with two regimes. One im-
portant characteristic of these models, SETAR and STAR,
is that the process can be stationary within some regimes
and non-stationary within others moving between explo-
sive and contractionary stages.

Since the estimation of these models can be demand-
ing, the first question to solve is whether the nonlinearity
is granted by the data. A test for linearity is imperative be-
fore engaging in the estimation of nonlinear specifications.
An LM test that has power against the two alternatives
specifications SETAR and STAR is proposed by Luukko-
nen et al. [110] and it consists of running two regressions:
under the null hypothesis of linearity, a linear autore-
gression of order p is estimated in order to calculate the
sum of squared residuals, SSE0; the second is an auxiliary
regression

yt Dˇ0 C
pX

iD1

ˇi yt�i C
pX

iD1

pX

jD1

 i j yt�i yt� j

C

pX

iD1

pX

jD1

�i j yt�i y2t� j C

pX

iD1

pX

jD1

�i j yt�i y3t� j C ut

from which we calculate the sum of squared residu-
als, SSE1. The test is constructed as �2 D T(SSE0 �
SSE1)/SSE0 that under the null hypothesis of linearity is
chi-squared distributed with p(pC 1)/2C 2p2 degrees of
freedom. There are other tests in the literature, for in-
stance Hansen [80] proposes a likelihood ratio test that
has a non-standard distribution, which is approximated by
implementing a bootstrap procedure. Tsay [151] proposes
a test based on arranged regressions with respect to the in-
creasing order of the threshold variable and by doing this
the testing problem is transformed into a change-point
problem.

If linearity is rejected, we proceed with the estimation
of the nonlinear specification. In the case of the SETAR
model, if we fix the values of the delay parameter d and
the thresholds rj, the model reduces to n linear regres-
sions for which least squares estimation is straightforward.
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Tsay [151] proposes a conditional least squares (CLS) esti-
mator. For simplicity of exposition suppose that there are
two regimes in the data and the model to estimate is

yt D

"

�(1)
o C

p1X

iD1

�
(1)
i yt�i

#

1(yt�d � r)

C

"

�(2)
o C

p2X

iD1

�
(2)
i yt�i

#

1(yt�d > r)C "t

Since r and d are fixed, we can apply least squares es-
timation to the model and to obtain the LS estimates for
the parameters � i’s. With the LS residual "̂t , we obtain the
total sum of squares S(r; d) D

P
t "̂

2
t . The CLS estimates

of r and d are obtained from (r̂; d̂) D argmin S(r; d).
For the STAR model, it is also necessary to specify

a priori the functional form of F(yt�d ). Teräsvirta [144]
proposes a modeling cycle consisting of three stages: spec-
ification, estimation, and evaluation. In general, the spec-
ification stage consists of sequence of null hypothesis to
be tested within a linearized version of the STAR model.
Parameter estimation is carried out by nonlinear least
squares or maximum likelihood. The evaluation stage
mainly consists of testing for no error autocorrelation, no
remaining nonlinearity, and parameter constancy, among
other tests.

Teräsvirta and Anderson [146] find strong nonlinear-
ity in the industrial production indexes of most of the
OECD countries. The preferredmodel is the logistic STAR
with two regimes, recessions and expansions. The dynam-
ics in each regime are country dependent. For instance, in
USA they find that the economy tends to move from re-
cessions into expansions very aggressively but it will take
a large negative shock to move rapidly from an expansion
into a recession. Other references for applications of these
models to financial series are found in [28,73,94].

For forecasting with STARmodels, see Lundbergh and
Teräsvirta [109]. It is easy to construct the one-step-ahead
forecast but the multi-step-ahead forecast is a complex
problem. For instance, for the 2-regime threshold model,
the one-step-ahead forecast is constructed as the condi-
tional mean of the process given some information set

E(ytC1jFt ; �)

D

"

�(1)
o C

p1X

iD1

�
(1)
i ytC1�i

#

1(ytC1�d � r)

C

"

�(2)
o C

p2X

iD1

�
(2)
i ytC1�i

#

1(ytC1�d > r)

provided that ytC1�i ; ytC1�d 2 Ft . However, a multi-
step-ahead forecast will be a function of variables that be-

ing dated at a future date do not belong to the information
set; in this case the solution requires the use of numeri-
cal integration techniques or simulation/bootstrap proce-
dures. See Granger and Teräsvirta [72], Chapter 9, and
Teräsvirta [145] for more details on numerical methods
for multi-step forecasts.

Markov-Switching Models

A Markov-switching (MS) model [76,77] also features
changes in regime, but in contrast with the SETARmodels
the change is dictated by a non-observable state variable
that is modelled as a Markov chain. For instance, a first
order autoregressive Markov switching model is specified
as

yt D cst C �st yt�1 C "t

where st D 1; 2; : : : ;N is the unobserved state variable
that is modelled as an N-state Markov chain with tran-
sition probabilities pi j D P(st D jjst�1 D i), and "t �

i.i.d. N(0; �2) or more generally "t is a martingale dif-
ference. Conditioning in a given state and an informa-
tion set Ft , the process fytg is linear but uncondition-
ally the process is nonlinear. The conditional forecast
is E(ytC1jstC1 D j;Ft ; �) D c j C � j yt and the uncondi-
tional forecast based on observable variables is the sum
of the conditional forecasts for each state weighted by the
probability of being in that state,

E(ytC1jFt ; �)

D

NX

jD1

P(stC1 D jjFt ; �)E(ytC1jstC1 D j;Ft ; �) :

The parameter vector � D (c1 : : : cN ; �1 : : : �N ; �2)0 as
well as the transition probabilities pij can be estimated by
maximum likelihood.

MS models have been applying to the modeling of for-
eign exchange rates with mixed success. Engel and Hamil-
ton [43] fit a two-state MS for the Dollar and find that
there are long swings and by that they reject the random
walk behavior in the exchange rate. Marsh [114] estimates
a two-state MS for the Deutschemark, the Pound Sterling,
and the Japanese Yen. Though the model approximates
the characteristics of the data well, the forecasting perfor-
mance is poor when measured by the profit/losses gener-
ated by a set of trading rules based on the predictions of
the MS model. On the contrary, Dueker and Neely [40]
find that for the same exchange rate a MS model with
three states variables – in the scale factor of the variance
of a Student-t error, in the kurtosis of the error, and in
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the expected return – produces out-of-sample excess re-
turns that are slightly superior to those generated by com-
mon trading rules. For stock returns, there is evidence that
MSmodels perform relatively well on describing two states
in the mean (high/low returns) and two states in the vari-
ance (stable/volatile periods) of returns [111]. In addition,
Perez-Quiros and Timmermann [124] propose that the er-
ror term should be modelled as a mixture of Gaussian and
Student-t distributions to capture the outliers commonly
found in stock returns. This model provides some gains in
predictive accuracy mainly for small firms returns. For in-
terest rates in USA, Germany, and United Kingdom, Ang
and Bekaert [5] find that a two-state MS model that in-
corporates information on international short rate and on
term spread is able to predict better than an univariate MS
model. Additionally they find that in USA the classifica-
tion of regimes correlates well with the business cycles.

SETAR, STAR, and MS models are successful spec-
ifications to approximate the characteristics of financial
and macroeconomic data. However, good in-sample per-
formance does not imply necessarily a good out-of-sam-
ple performance, mainly when compared to simple lin-
ear ARMA models. The success of nonlinear models de-
pends on how prominent the nonlinearity is in the data.
We should not expect a nonlinear model to perform bet-
ter than a linear model when the contribution of the non-
linearity to the overall specification of the model is very
small. As it is argued in Granger and Teräsvirta [72], the
prediction errors generated by a nonlinear model will be
smaller only when the nonlinear feature modelled in-sam-
ple is also present in the forecasting sample.

A State Dependent Mixture Model
Based on Cross-sectional Ranks

In the previous section, we have dealt with nonlinear
time series models that only incorporate time series in-
formation. González-Rivera, Lee, andMishra [63] propose
a nonlinear model that combines time series with cross
sectional information. They propose the modelling of ex-
pected returns based on the joint dynamics of a sharp jump
in the cross-sectional rank and the realized returns. They
analyze the marginal probability distribution of a jump
in the cross-sectional rank within the context of a dura-
tion model, and the probability of the asset return condi-
tional on a jump specifying different dynamics depending
on whether or not a jump has taken place. The resulting
model for expected returns is a mixture of normal distri-
butions weighted by the probability of jumping.

Let yi;t be the return of firm i at time t, and fyi;tgMiD1 be
the collection of asset returns of theM firms that constitute

the market at time t. For each time t, the asset returns are
ordered from the smallest to the largest, and define zi;t ,
the Varying Cross-sectional Rank (VCR) of firm i within
the market, as the proportion of firms that have a return
less than or equal to the return of firm i. We write

zi;t � M�1
MX

jD1

1(y j;t � yi;t) ; (1)

where 1(�) is the indicator function, and for M large,
zi;t 2 (0; 1]. Since the rank is a highly dependent vari-
able, it is assumed that small movements in the asset rank-
ing will not contain significant information and that most
likely largemovements in ranking will be the result of news
in the overall market and/or of news concerning a partic-
ular asset. Focusing on large rank movements, we define,
at time t, a sharp jump as a binary variable that takes the
value one when there is a minimum (upward or down-
ward) movement of 0.5 in the ranking of asset i, and zero
otherwise:

Ji;t � 1(jzi;t � zi;t�1j � 0:5) : (2)

A jump of this magnitude brings the asset return above
or below the median of the cross-sectional distribution of
returns. Note that this notion of jumps differs from the
more traditional meaning of the word in the context of
continuous-time modelling of the univariate return pro-
cess. A jump in the cross-sectional rank implicitly depends
on numerous univariate return processes.

The analytical problem now consists in modeling
the joint distribution of the return yi;t and the jump
Ji;t , i. e. f (yi;t; Ji;tjFt�1) where Ft�1 is the informa-
tion set up to time t � 1. Since f (yi;t; Ji;tjFt�1) D
f1(Ji;tjFt�1) f2(yi;t jJi;t;Ft�1), the analysis focuses first on
the modelling of the marginal distribution of the jump,
and subsequently on the modelling of the conditional dis-
tribution of the return.

Since Ji;t is a Bernoulli variable, the marginal distri-
bution of the jump is f1(Ji;tjFt�1) D pJi;ti;t (1 � pi;t)(1�J i;t )

where pi;t � Pr(Ji;t D 1jFt�1) is the conditional proba-
bility of a jump in the cross-sectional ranks. The mod-
elling of pi;t is performed within the context of a dynamic
duration model specified in calendar time as in Hamilton
and Jordà [79]. The calendar time approach is necessary
because asset returns are reported in calendar time (days,
weeks, etc.) and it has the advantage of incorporating any
other available information also reported in calendar time.

It is easy to see that the probability of jumping and du-
ration must have an inverse relationship. If the probability
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of jumping is high, the expected duration must be short,
and vice versa. Let�N(t) be the expected duration. The ex-
pected duration until the next jump in the cross-sectional
rank is given by �N(t) D

P1
jD1 j(1 � pt) j�1pt D p�1t .

Note that
P1

jD0(1 � pt) j D p�1t . Differentiating with re-
spect to pt yields

P1
jD0 � j(1 � pt) j�1 D �p�2t . Multiply-

ing by �pt gives
P1

jD0 j(1 � pt) j�1pt D p�1t and thus
P1

jD1 j(1 � pt) j�1pt D p�1t . Consequently, to model pi;t ,
it suffices to model the expected duration and compute
its inverse. Following Hamilton and Jordà [79], an autore-
gressive conditional hazard (ACH) model is specified. The
ACH model is a calendar-time version of the autoregres-
sive conditional duration (ACD) of Engle and Russell [49].
In both ACD and ACH models, the expected duration is
a linear function of lag durations. However as the ACD
model is set up in event time, there are some difficulties on
how to introduce information that arrives between events.
This is not the case in the ACHmodel because the set-up is
in calendar time. In the ACDmodel, the forecasting object
is the expected time between events; in the ACH model,
the objective is to forecast the probability that the event
will happen tomorrow given the information known up to
today. A general ACH model is specified as

�N(t) D

mX

jD1

˛ jDN(t)� j C

rX

jD1

ˇ j�N(t)� j : (3)

Since pt is a probability, it must be bounded between zero
and one. This implies that the conditional duration must
have a lower bound of one. Furthermore, working in cal-
endar time it is possible to incorporate information that
becomes available between jumps and can affect the prob-
ability of a jump in future periods. The conditional hazard
rate is specified as

pt D [�N(t�1) C ı
0

Xt�1]�1 ; (4)

where Xt�1 is a vector of relevant calendar time vari-
ables such as past VCRs and past returns. This completes
the marginal distribution of the jump f1(Ji;tjFt�1) D
pJi;ti;t (1 � pi;t)(1�J i;t ).

Onmodelling f2(yt jJt;Ft�1; �2), it is assumed that the
return to asset i may behave differently depending upon
the occurrence of a jump. The modelling of two potential
different states (whether a jump has occurred or not) will
permit to differentiate whether the conditional expected
return is driven by active or/and passive movements in the
asset ranking in conjunction with its own return dynam-
ics. A priori, different dynamics are possible in these two

states. A general specification is

f2(yt jJt;Ft�1; �2) D
�

N(�1;t ; �
2
1;t) if Jt D 1

N(�0;t ; �
2
0;t) if Jt D 0 ; (5)

where � j;t is the conditional mean and �2j;t the condi-
tional variance in each state ( j D 1; 0). Whether these two
states are present in the data is an empirical question and
it should be answered through statistical testing.

Combining the models for the marginal density of the
jump and the conditional density of the returns, the esti-
mation can be conducted with maximum likelihood tech-
niques. For a sample fyt; JtgTtD1, the joint log-likelihood
function is

TX

tD1

ln f (yt; Jt jFt�1; �)

D

TX

tD1

ln f1(Jt jFt�1; �1)C
TX

tD1

ln f2(yt jJt;Ft�1; �2) :

Let us callL1(�1) D
PT

tD1 ln f1(Jt jFt�1; �1) andL2(�2) DPT
tD1 ln f2(yt jJt;Ft�1; �2). The maximization of the joint

log-likelihood function can be achieved by maximizing
L1(�1) and L2(�2) separately without loss of efficiency by
assuming that the parameter vectors �1 and �2 are “varia-
tion free” in the sense of Engle et al. [45].

The log-likelihood function L1(�1) D
PT

tD1 ln f1(Jtj
Ft�1; �1) is

L1(�1) D
TX

tD1

�
Jt ln pt(�1)C (1 � Jt) ln(1 � pt(�1))

�
; (6)

where �1 includes all parameters in the conditional dura-
tion model.

The log-likelihood function L2(�2) D
PT

tD1 ln f2(yt j
Jt;Ft�1; �2) is

L2(�2)D
TX

tD1

ln

2

6
4

Jtq
2��21;t

exp

(

�
1
2

�
yt��1;t

�1;t

�2
)

C
1 � Jtq
2��20;t

exp

(

�
1
2

�
yt��0;t

�0;t

�2
)3

7
5;

where �2 includes all parameters in the conditional means
and conditional variances under both regimes.

If the two proposed states are granted in the data,
the marginal density function of the asset return must be
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a mixture of two normal density functions where the mix-
ture weights are given by the probability of jumping pt :

g(yt jFt�1; �) �
1X

JtD0

f (yt; Jt jFt�1; �)

D

1X

JtD0

f1(Jt jFt�1; �1) f2(yt jJt;Ft�1; �2)

D pt � f2(yt jJt D 1;Ft�1; �2)
C (1 � pt) � f2(yt jJt D 0;Ft�1; �2);

(7)

as f1(Jt jFt�1; �1) D pJtt (1 � pt)(1�Jt ). Therefore, the one-
step ahead forecast of the return is

E(ytC1jFt ; �)

D

Z
ytC1 � g(ytC1jFt ; �)dytC1

D ptC1(�1) � �1;tC1(�2)C (1 � ptC1(�1)) � �0;tC1(�2) :
(8)

The expected return is a function of the probability of
jumping pt , which is a nonlinear function of the informa-
tion set as shown in (4). Hence the expected returns are
nonlinear functions of the information set, even in a sim-
ple case where �1;t and �0;t are linear.

This model was estimated for the returns of the con-
stituents of the SP500 index from 1990 to 2000, and its per-
formance was assessed in an out-of-sample exercise from
2001 to 2005 within the context of several trading strate-
gies. Based on the one-step-ahead forecast of the mix-
ture model, a proposed trading strategy called VCR-Mix-
ture Trading Rule is shown to be a superior rule because
of its ability to generate large risk-adjusted mean returns
when compared to other technical and model-based trad-
ing rules. The VCR-Mixture Trading Rule is implemented
by computing for each firm in the SP500 index the one-
step ahead forecast of the return as in (8). Based on the
forecasted returns fŷ i;tC1(�̂t)gT�1tDR , the investor predicts
the VCR of all assets in relation to the overall market, that
is,

ẑi;tC1 D M�1
MX

jD1

1(ŷ j;tC1 � ŷ i;tC1);

t D R; : : : ; T � 1 ; (9)

and buys the top K performing assets if their forecasted
return is above the risk-free rate. In every subsequent out-
of-sample period (t D R; : : : ; T � 1), the investor revises

her portfolio, selling the assets that fall out of the top per-
formers and buying the ones that rise to the top, and she
computes the one-period portfolio return

�tC1 D K�1
MX

jD1

y j;tC1 � 1
�
ẑ j;tC1 � zKtC1


;

t D R; : : : ; T � 1 ;

(10)

where zKtC1 is the cutoff cross-sectional rank to
select the K best performing stocks such thatPM

jD1 1
�
ẑ j;tC1 � zKtC1


D K. In the analysis of González-

Rivera, Lee, and Mishra [63] a portfolio is formed with
the top 1% (K D 5 stocks) performers in the SP500 index.
Every asset in the portfolio is weighted equally. The eval-
uation criterion is to compute the “mean trading return”
over the forecasting period

MTR D P�1
T�1X

tDR

�tC1 :

It is also possible to correct MTR according to the level
of risk of the chosen portfolio. For instance, the tradi-
tional Sharpe ratio will provide the excess return per unit
of risk measured by the standard deviation of the selected
portfolio

SR D P�1
T�1X

tDR

(�tC1 � r f ;tC1)

�	tC1(�̂t)
;

where r f ;tC1 is the risk free rate. The VCR-Mixture Trad-
ing Rule produces a weekly MTR of 0:243% (63:295% cu-
mulative return over 260 weeks), equivalent to a yearly
compounded return of 13:45%, that is significantly more
than the next most favorable rule, which is the Buy-and-
Hold-the-Market Trading Rule with a weekly mean re-
turn of �0:019%, equivalent to a yearly return of �1:00%.
To assess the return-risk trade off, we implement the
Sharpe ratio. The largest SR (mean return per unit of stan-
dard deviation) is provided by the VCR-Mixture rule with
a weekly return of 0:151% (8:11% yearly compounded re-
turn per unit of standard deviation), which is lower than
the mean return provided by the same rule under the
MTR criterion, but still a dominant return when compared
to the mean returns provided by the Buy-and-Hold-the-
Market Trading Rule.

Random Fields

Hamilton [78] proposed a flexible parametric regression
model where the conditional mean has a linear para-
metric component and a potential nonlinear component
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represented by an isotropic Gaussian random field. The
model has a nonparametric flavor because no functional
form is assumed but, nevertheless, the estimation is fully
parametric.

A scalar random field is defined as a function m(!; x) :
˝ � A ! R such that m(!; x) is a random variable
for each x 2 A where A � Rk . A random field is also
denoted as m(x). If m(x) is a system of random vari-
ables with finite dimensional Gaussian distributions, then
the scalar random field is said to be Gaussian and it
is completely determined by its mean function �(x) D
E
�
m(x)

�
and its covariance function with typical ele-

ment C(x; z) D E
�
(m(x) � �(x))(m(z) � �(z))

�
for any

x; z 2 A. The random field is said to be homogeneous or
stationary if �(x) D � and the covariance function de-
pends only on the difference vector x � z and we should
write C(x; z) D C(x � z). Furthermore, the random field
is said to be isotropic if the covariance function depends
on d(x; z), where d(�) is a scalar measure of distance. In
this situation we write C(x; z) D C(d(x; z)).

The specification suggested by Hamilton [78] can be
represented as

yt D ˇ0 C x0tˇ1 C m(g ˇ xt)C �t ; (11)

for yt 2 R and xt 2 Rk , both stationary and ergodic pro-
cesses. The conditional mean has a linear component
given by ˇ0 C x0tˇ1 and a nonlinear component given by
m(g ˇ xt), where m(z), for any choice of z, represents
a realization of a Gaussian and homogenous random field
with a moving average representation; xt could be prede-
termined or exogenous and is independent of m(�), and
�t is a sequence of independent and identically distributed
N(0; �2) variates independent of both m(�) and xt as well
as of lagged values of xt . The scalar parameter  represents
the contribution of the nonlinear part to the conditional
mean, the vector g 2 Rk

0;C drives the curvature of the con-
ditional mean, and the symbolˇ denotes element-by-ele-
ment multiplication.

Let Hk be the covariance (correlation) function of
the random field m(�) with typical element defined as
Hk(x; z) D E

�
m(x)m(z)

�
. Hamilton [78] proved that the

covariance function depends solely upon the Euclidean
distance between x and z, rendering the random field
isotropic. For any x and z 2 Rk , the correlation between
m(x) and m(z) is given by the ratio of the volume of
the overlap of k-dimensional unit spheroids centered
at x and z to the volume of a single k-dimensional unit
spheroid. If the Euclidean distance between x and z is
greater than two, the correlation between m(x) and m(z)
will be equal to zero. The general expression of the corre-

lation function is

Hk(h) D

(
Gk�1(h; 1)/Gk�1(0; 1) if h � 1
0 if h > 1

; (12)

Gk(h; r) D
Z r

h
(r2 � w2)k/2dw ;

where h � 1
2dL2 (x; z), and dL2 (x; z) �

�
(x�z)0(x�z)

�1/2

is the Euclidean distance between x and z.
Within the specification (11), Dahl and González-Ri-

vera [33] provided alternative representations of the ran-
dom field that permit the construction of Lagrange mul-
tiplier tests for neglected nonlinearity, which circumvent
the problem of unidentified nuisance parameters under
the null of linearity and, at the same time, they are robust
to the specification of the covariance function associated
with the randomfield. Theymodified the Hamilton frame-
work in two directions. First, the random field is specified
in the L1 norm instead of the L2 norm, and secondly they
considered random fields that may not have a simplemov-
ing average representation. The advantage of the L1 norm,
which is exploited in the testing problem, is that this dis-
tance measure is a linear function of the nuisance parame-
ters, in contrast to the L2 norm which is a nonlinear func-
tion. Logically, Dahl and González-Rivera proceeded in
an opposite fashion to Hamilton. Whereas Hamilton first
proposed a moving average representation of the random
field, and secondly, he derived its corresponding covari-
ance function, Dahl and González-Rivera first proposed
a covariance function, and secondly they inquire whether
there is a random field associated with it. The proposed
covariance function is

Ck(h�) D

(
(1 � h�)2k if h� � 1
0 if h� > 1

; (13)

where h� � 1
2dL1 (x; z) D

1
2 jx � zj01. The function (13)

is a permissible covariance, that is, it satisfies the posi-
tive semidefiniteness condition, which is q0Ckq � 0 for all
q ¤ 0T . Furthermore, there is a random field associated
with it according to the Khinchin’s theorem (1934) and
Bochner’s theorem (1959). The basic argument is that the
class of functions which are covariance functions of ho-
mogenous random fields coincides with the class of pos-
itive semidefinite functions. Hence, (13) being a positive
semidefinite function must be the covariance function of
a homogenous random field.

The estimation of these models is carried out by
maximum likelihood. From model (11), we can write
y � N(Xˇ; 2Ck C �

2IT ) where y D (y1; y2; : : : ; yT )0,
X1 D (x01; x

0
2; : : : ; x

0
T )
0, X D (1 : X1), ˇ D (ˇ0; ˇ01)

0, � D
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(�1; �2; : : : ; �T )
0 and �2 is the variance of �t .Ck is a generic

covariance function associated with the random field,
which could be equal to the Hamilton spherical covariance
function in (12), or to the covariance in (13). The log-like-
lihood function corresponding to this model is

`(ˇ; 2; g; �2) D �
T
2
log(2�) �

1
2
log j2Ck C �

2IT j

�
1
2
(y�Xˇ)0(2CkC�

2IT)�1(y�Xˇ):

(14)

The flexible regression model has been applied suc-
cessfully to detect nonlinearity in the quarterly growth rate
of the US real GNP [34] and in the Industrial Production
Index of sixteen OECD countries [33]. This technology is
able to mimic the characteristics of the actual US business
cycle. The cycle is dissected according tomeasures of dura-
tion, amplitude, cumulation and excess cumulation of the
contraction and expansion phases. In contrast to Harding
and Pagan [82] who find that nonlinear models are not
uniformly superior to linear ones, the flexible regression
model represents a clear improvement over linear mod-
els, and it seems to capture just the right shape of the
expansion phase as opposed to Hamilton [76] and Dur-
land and McCurdy [41] models, which tend to overesti-
mate the cumulation measure in the expansion phase. It is
found that the expansion phasemust have at least two sub-
phases: an aggressive early expansion after the trough, and
a moderate/slow late expansion before the peak implying
the existence of an inflexion point that we date approx-
imately around one-third into the duration of the expan-
sion phase. This shape lends support to parametric models
of the growth rate that allow for three regimes [136], as op-
posed to models with just two regimes (contractions and
expansions). For the Industrial Production Index, test-
ing for nonlinearity within the flexible regression frame-
work brings similar conclusions to those in Teräsvirta and
Anderson [146], who propose parametric STAR models
for industrial production data. However, the tests pro-
posed in Dahl and González-Rivera [33], which have su-
perior performance to detect smooth transition dynamics,
seem to indicate that linearity cannot be rejected in the
industrial production indexes of Japan, Austria, Belgium
and Sweden as opposed to the findings of Teräsvirta and
Anderson.

Nonlinear Factor Models

For the last ten years forecasting using a data-rich envi-
ronment has been one of the most researched topic in eco-
nomics and finance, see [140,141]. In this literature, factor

models are used to reduce the dimension of the data but
mostly they are linear models. Bai and Ng (BN) [7] intro-
duce a nonlinear factor model with a quadratic principal
component model as a special case. First consider a simple
factor model

xi t D 0i Ft C ei t : (15)

By the method of principal component, the elements of ft
are linear combinations of elements of xt . The factors are
estimated by minimizing the sum of squared residuals of
the linear model, xi t D i Ft C ei t .

The factor model in (15) assumes a linear link function
between the predictor xt and the latent factors Ft. BN con-
sider a more flexible approach by a nonlinear link function
g(�) such that

g(xi t) D � 0i Jt C vi t ;

where Jt are the common factors, and � i is the vector of
factor loadings. BN consider g(xi t) to be xit augmented
by some or all of the unique cross-products of the ele-
ments of fxi tgNiD1. The second-order factor model is then
x�i t D �

0
i Jt C vi t where x�i t is an N� � 1 vector. Estimation

of Jt then proceeds by the usual method of principal com-
ponents. BN consider x�i t D fxi t x

2
i tg

N
iD1 with N� D 2N,

which they call the SPC (squared principal components).
Once the factors are estimated, the forecasting equa-

tion for ytCh would be

ytCh D (1F̂ 0t) C "t :

The forecasting equation remains linear whatever the link
function g is. An alternative way of capturing nonlinearity
is to augment the forecasting equation to include functions
of the factors

ytCh D (1F̂ 0t) C a(F̂t)C "t ;

where a(�) is nonlinear. A simple case when a(�) is
quadratic is referred to as PC2 (squared factors) in BN.

BN note that the PC2 is conceptually distinct from
SPC. While the PC2 forecasting model allows the volatil-
ity of factors estimated by linear principal components to
have predictive power for y, the SPC model allows the
factors to be possibly nonlinear functions of the predic-
tors while maintaining a linear relation between the fac-
tors and y. Ludvigson and Ng [108] found that the square
of the first factor estimated from a set of financial factors
(i. e., volatility of the first factor) is significant in the regres-
sionmodel for themean excess returns. In contrast, factors
estimated from the second moment of data (i. e., volatility
factors) are much weaker predictors of excess returns.
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Artificial Neural Network Models

Consider an augmented single hidden layer feedforward
neural network model f (xt; �) in which the network out-
put yt is determined given input xt as

yt D f (xt; �)C "t

D xtˇ C
qX

jD1

ı j (xt� j)C "t

where � D (ˇ0� 0ı0)0, ˇ is a conformable column vector
of connection strength from the input layer to the out-
put layer; � j is a conformable column vector of connec-
tion strength from the input layer to the hidden units,
j D 1; : : : ; q; ı j is a (scalar) connection strength from the
hidden unit j to the output unit, j D 1; : : : ; q; and  is
a squashing function (e. g., the logistic squasher) or a radial
basis function. Input units x send signals to intermediate
hidden units, then each of hidden unit produces an activa-
tion  that then sends signals toward the output unit. The
integer q denotes the number of hidden units added to the
affine (linear) network. When q D 0, we have a two layer
affine network yt D xtˇ C "t . Hornick, Stinchcombe and
White [88] show that neural network is a nonlinear flex-
ible functional form being capable of approximating any
Borel measurable function to any desired level of accu-
racy provided sufficiently many hidden units are available.
Stinchcombe and White [138] show that this result holds
for any  (�) belonging to the class of “generically compre-
hensively revealing” functions. These functions are “com-
prehensively revealing” in the sense that they can reveal
arbitrary model misspecifications E(yt jxt) ¤ f (xt; ��)
with non-zero probability and they are “generic” in
the sense that almost any choice for � will reveal the
misspecification.

We build an artificial neural network (ANN) model
based on a test for neglected nonlinearity likely to have
power against a range of alternatives. See White [158]
and Lee, White, and Granger [99] on the neural net-
work test and its comparison with other specification
tests. The neural network test is based on a test function
h(xt) chosen as the activations of ‘phantom’ hidden units
 (xt� j); j D 1; : : : ; q, where � j are random column vec-
tors independent of xt. That is,

E[ (xt� j)"�t j� j] D E[ (xt� j)"�t ] D 0 j D 1; : : : ; q ;
(16)

underH0, so that

E(�t"
�
t ) D 0 ; (17)

where �t D ( (xt�1); : : : ;  (xt�q))0 is a phantom hid-
den unit activation vector. Evidence of correlation of "�t
with � t is evidence against the null hypothesis that yt is
linear in mean. If correlation exists, augmenting the linear
network by including an additional hidden unit with ac-
tivations  (xt� j) would permit an improvement in net-
work performance. Thus the tests are based on sample
correlation of affine network errors with phantom hidden
unit activations,

n�1
nX

tD1

�t "̂t D n�1
nX

tD1

�t(yt � xt ˆ̌) : (18)

Under suitable regularity conditions it follows from the

central limit theorem that n�1/2
Pn

tD1�t "̂t
d
! N(0;W�)

as n!1, and if one has a consistent estimator for its
asymptotic covariance matrix, say Ŵn , then an asymptotic
chi-square statistic can be formed as

 

n�1/2
nX

tD1

�t "̂t

!0
Ŵ�1n

 

n�1/2
nX

tD1

�t "̂t

!
d
! �2(q) :

(19)

Elements of� t tend to be collinear withXt and with them-
selves. Thus LWG conduct a test on q� < q principal com-
ponents of � t not collinear with xt, denoted ��t . This
test is to determine whether or not there exists some ad-
vantage to be gained by adding hidden units to the affine
network. We can estimate Ŵn robust to the conditional
heteroskedasticity, or we may use with the empirical null
distribution of the statistic computed by a bootstrap pro-
cedure that is robust to the conditional heteroskedasticity,
e. g., wild bootstrap.

Estimation of an ANN model may be tedious
and sometimes results in unreliable estimates. Recently,
White [161] proposes a simple algorithm called Quick-
Net, a form of “relaxed greedy algorithm” because Quick-
Net searches for a single best additional hidden unit based
on a sequence of OLS regressions, that may be analo-
gous to the least angular regressions (LARS) of Efron,
Hastie, Johnstone, and Tibshirani [42]. The simplicity of
the QuickNet algorithm achieves the benefits of using
a forecasting model that is nonlinear in the predictors
while mitigating the other computational challenges to the
use of nonlinear forecasting methods. See White [161],
Section 5, for more details on QuickNet, and for other is-
sues of controlling for overfit and the selection of the ran-
dom parameter vectors � j independent of xt .

Campbell, Lo, and MacKinlay [22], Section 12.4, pro-
vide a review of these models. White [161] reviews
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the research frontier in ANN models. Trippi and Tur-
ban [150] review the applications of ANNs to finance and
investment.

Functional Coefficient Models

A functional coefficient model is introduced by Cai, Fan,
and Yao [24] (CFY), with time-varying and state-depen-
dent coefficients. It can be viewed as a special case of
Priestley’s [127] state-dependentmodel, but it includes the
models of Tong [149], Chen and Tsay [26] and regime-
switching models as special cases. Let f(yt ; st)0gntD1 be
a stationary process, where yt and st are scalar variables.
Also let Xt � (1; yt�1; : : : ; yt�d )0. We assume

E(yt jFt�1) D a0(st)C
dX

jD1

a j(st)yt� j ;

where the fa j(st)g are the autoregressive coefficients de-
pending on st , which may be chosen as a function of Xt
or something else. Intuitively, the functional coefficient
model is an AR process with time-varying autoregressive
coefficients. The coefficient functions fa j(st)g can be esti-
mated by local linear regression. At each point s, we ap-
proximate a j(st) locally by a linear function a j(st) � a jC

bj(st � s), j D 0; 1; : : : ; d, for st near s, where aj and bj are
constants. The local linear estimator at point s is then given
by â j(s) D â j , where f(â j; b̂ j)gdjD0 minimizes the sum of
local weighted squares

Pn
tD1[yt�E(yt jFt�1)]2Kh(st� s),

with Kh(�) � K(�/h)/h for a given kernel function K(�) and
bandwidth h � hn ! 0 as n!1. CFY [24], p. 944, sug-
gest to select h using amodifiedmulti-fold “leave-one-out-
type” cross-validation based on MSFE.

It is important to choose an appropriate smooth vari-
able st. Knowledge on data or economic theory may be
helpful. When no prior information is available, st may be
chosen as a function of explanatory vectorXt or using such
data-drivenmethods as AIC and cross-validation. See Fan,
Yao and Cai [52] for further discussion on the choice of
st . For exchange rate changes, Hong and Lee [85] choose
st as the difference between the exchange rate at time t � 1
and the moving average of the most recent L periods of ex-
change rates at time t � 1. The moving average is a proxy
for the local trend at time t � 1. Intuitively, this choice of
st is expected to reveal useful information on the direction
of changes.

To justify the use of the functional coefficient model,
CFY [24] suggest a goodness-of-fit test for anAR(d) model
against a functional coefficient model. The null hypothesis
of AR(d) can be stated as

H0 : a j(st) D ˇ j; j D 0; 1; : : : ; d ;

where ˇj is the autoregressive coefficient in AR(d). Under
H0, fytg is linear in mean conditional on Xt . Under the al-
ternative to H0, the autoregressive coefficients depend on
st and the AR(d) model suffers from “neglected nonlinear-
ity”. To testH0, CFY compares the residual sum of squares
(RSS) underH0

RSS0 �
nX

tD1

"̂2t D

nX

tD1

2

4Yt � ˆ̌0 �
dX

jD1

ˆ̌ jYt� j

3

5

2

with the RSS under the alternative

RSS1 �
nX

tD1

"̃2t D

nX

tD1

2

4Yt � â0(st)�
dX

jD1

â j(st)Yt� j

3

5

2

:

The test statistic is Tn D (RSS0 � RSS1)/RSS1. We re-
ject H0 for large values of Tn. CFY suggest the follow-
ing bootstrap method to obtain the p-value of Tn: (i)
generate the bootstrap residuals f"bt gntD1 from the cen-
tered residuals "̃t � "̄ where "̄ � n�1

Pn
tD1 "̃t and define

ybt � X 0t ˆ̌C "
b
t , where ˆ̌ is the OLS estimator for AR(d);

(ii) calculate the bootstrap statistic Tb
n using the bootstrap

sample fybt ; X 0t ; stg
n
tD1; (iii) repeat steps (i) and (ii) B times

(b D 1; : : : ; B) and approximate the bootstrap p-value of
Tn by B�1

PB
bD1 1(T

b
n � Tn). See Hong and Lee [85] for

empirical application of the functional coefficient model to
forecasting foreign exchange rates.

Nonparametric Regression

Let fyt; xtg; t D 1; : : : ; n, be stochastic processes, where yt
is a scalar and xt D (xt1; : : : ; xtk) is a 1 � k vector which
may contain the lagged values of yt . Consider the regres-
sion model

yt D m(xt)C ut

where m(xt) D E
�
ytjxt


is the true but unknown re-

gression function and ut is the error term such that
E(ut jxt) D 0.

If m(xt) D g(xt ; ı) is a correctly specified family of
parametric regression functions then yt D g(xt ; ı)C ut
is a correct model and, in this case, one can construct
a consistent least squares (LS) estimator of m(xt) given by
g(xt ; ı̂), where ı̂ is the LS estimator of the parameter ı.

In general, if the parametric regression g(xt; ı) is in-
correct or the form ofm(xt) is unknown then g(xt; ı̂) may
not be a consistent estimator of m(xt). For this case, an al-
ternative approach to estimate the unknown m(xt) is to
use the consistent nonparametric kernel regression esti-
mator which is essentially a local constant LS (LCLS) es-
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timator. To obtain this estimator take a Taylor series ex-
pansion of m(xt) around x so that

yt D m(xt)C ut
D m(x)C et

where et D (xt � x)m(1)(x) C 1
2 (xt � x)2m(2)(x) C

� � � C ut and m(s)(x) represents the sth derivative of m(x)
at xt D x. The LCLS estimator can then be derived by
minimizing

nX

tD1

e2t Ktx D

nX

tD1

(yt � m(x))2Ktx

with respect to constant m(x), where Ktx D K
� xt�x

h

is

a decreasing function of the distances of the regressor
vector xt from the point x D (x1; : : : ; xk), and h! 0
as n!1 is the window width (smoothing parameter)
which determines how rapidly the weights decrease as the
distance of xt from x increases. The LCLS estimator so es-
timated is

m̂(x) D
Pn

tD1 ytKtxPn
tD1 Ktx

D (i0K(x)i)�1 i0K(x)y

where K(x) is the n � n diagonal matrix with the diago-
nal elements Ktx (t D 1; : : : ; n), i is an n � 1 column vec-
tor of unit elements, and y is an n � 1 vector with el-
ements yt (t D 1; : : : ; n). The estimator m̂(x) is due to
Nadaraya [118] and Watson [155] (NW) who derived this
in an alternative way. Generally m̂(x) is calculated at the
data points xt , in which case we can write the leave-one
out estimator as

m̂(x) D
Pn

t0D1;t0¤t yt0Kt0 t
Pn

t0D1;t0¤t Kt0 t
;

where Kt0 t D K xt0�xt
h . The assumption that h! 0 as

n!1 gives xt � x D O(h)! 0 and hence Eet ! 0 as
n!1. Thus the estimator m̂(x) will be consistent under
certain smoothing conditions on h;K, and m(x). In small
samples howeverEet ¤ 0 so m̂(x) will be a biased estima-
tor, see [122] for details on asymptotic and small sample
properties.

An estimator which has a better small sample bias and
hence the mean square error (MSE) behavior is the local
linear LS (LLLS) estimator. In the LLLS estimator we take
a first order Taylor-Series expansion of m(xt) around x so
that

yt D m(xt)C ut D m(x)C (xt � x)m(1)(x)C vt
D ˛(x)C xtˇ(x)C vt
D Xtı(x)C vt

where Xt D (1 xt) and ı(x) D [˛(x) ˇ(x)0]0 with ˛(x) D
m(x)� xˇ(x) and ˇ(x) D m(1)(x). The LLLS estimator of
ı(x) is then obtained by minimizing

nX

tD1

v2t Ktx D

nX

tD1

(yt � Xtı(x))2Ktx

sand it is given by

ı̃(x) D (X0K(x)X)�1X0K(x)y : (20)

where X is an n � (k C 1) matrix with the tth row Xt
(t D 1; : : : ; n).

The LLLS estimator of ˛(x) and ˇ(x) can be calculated
as ˜̨(x) D (1 0)ı̃(x) and ˜̌(x) D (0 1)ı̃(x). This gives

m̃(x) D (1 x)ı̃(x) D ˜̨ (x)C x ˜̌(x) :

Obviously when X D i, ı̃(x) reduces to the NW’s LCLS es-
timator m̂(x). An extension of the LLLS is the local poly-
nomial LS (LPLS) estimators, see [50].

In fact one can obtain the local estimators of a general
nonlinear model g(xt ; ı) by minimizing

nX

tD1

[yt � g(xt; ı(x))]2Ktx

with respect to ı(x). For g(xt ; ı(x)) D Xtı(x) we get the
LLLS in (20). Further when h D 1;Ktx D K(0) is a con-
stant so that theminimization of K(0)

P
[yt�g(xt ; ı(x))]2

is the same as the minimization of
P

[yt � g(xt ; ı)]2, that
is the local LS becomes the global LS estimator ı̂.

The LLLS estimator in (20) can also be interpreted as
the estimator of the functional coefficient (varying coeffi-
cient) linear regression model

yt D m(xt)C ut
D Xtı(xt)C ut

where ı(xt) is approximated locally by a constant
ı(xt) ' ı(x). The minimization of

P
u2t Ktx with respect

to ı(x) then gives the LLLS estimator in (20), which can
be interpreted as the LC varying coefficient estimator. An
extension of this is to consider the linear approximation
ı(xt) ' ı(x)C D(x)(xt � x)0 where D(x) D @ı(xt )

@x0t
evalu-

ated at xt D x. In this case

yt D m(xt)C ut D Xtı(xt)C ut
' Xtı(x)C XtD(x)(xt � x)0 C ut
D Xtı(x)C [(xt � x)˝ Xt]vecD(x)C ut
D Xx

t ı
x (x)C ut
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where Xx
t D [Xt (xt � x)˝ Xt] and ıx (x) D [ı(x)0

(vecD(x))0]0. The LL varying coefficient estimator of ıx (x)
can then be obtained by minimizing

nX

tD1

[yt � Xx
t ı

x (x)]2Ktx

with respect to ıx (x) as

ı̇x (x) D (Xx0K(x)Xx )�1Xx0K(x)y : (21)

From this ı̇(x) D (I 0)ı̇x (x), and hence

ṁ(x) D (1 x 0)ı̇x (x) D (1 x)ı̇(x) :

The above idea can be extended to the situations where
�t D (xt zt) such that

E(yt j�t) D m(�t) D m(xt ; zt) D Xtı(zt) ;

where the coefficients are varying with respect to only
a subset of � t ; zt is 1 � l and � t is 1 � p, p D k C l . Exam-
ples of these include functional coefficient autoregressive
models of Chen and Tsay [26] and CFY [24], random co-
efficient models of Raj and Ullah [128], smooth transition
autoregressive models of Granger and Teräsvirta [72], and
threshold autoregressive models of Tong [149].

To estimate ı(zt) we can again do a local con-
stant approximation ı(zt) ' ı(z) and then mini-
mize

P
[yt � Xtı(z)]2Ktz with respect to ı(z), where

Ktz D K( zt�zh ). This gives the LC varying coefficient
estimator

ı̃(z) D (X0K(z)X)�1X0K(z)y (22)

where K(z) is a diagonal matrix of Ktz ; t D 1; : : : ; n.
When z D x, (22) reduces to the LLLS estimator ı̃(x)
in (20).

CFY [24] consider a local linear approximation
ı(zt) ' ı(z)C D(z)(zt � z)0. The LL varying coefficient
estimator of CFY is then obtained by minimizing

nX

tD1

[yt � Xtı(zt)]2Ktz

D

nX

tD1

[yt � Xtı(z) � [(zt � z)˝ Xt]vecD(z)]2Ktz

D

nX

tD1

[yt � Xz
t ı

z(z)]2Ktz

with respect to ız(z) D [ı(z)0 (vecD(z))0]0 where Xz
t D

[Xt (zt � z)˝ Xt]. This gives

ı̈z(z) D (Xz0K(z)Xz )�1Xz0K(z)y ; (23)

and ı̈(z) D (I 0)ı̈z (z). Hence

m̈(�) D (1 x 0)ı̈z(z) D (1 x)ı̈(z) :

For the asymptotic properties of these varying coefficient
estimators, see CFY [24]. When z D x, (23) reduces to the
LL varying coefficient estimator ı̇x (x) in (21). See Lee and
Ullah [98] for more discussion of these models and issues
of testing nonlinearity.

Regime Switching Autoregressive Model
Between Unit Root and Stationary Root

To avoid the usual dichotomy between unit-root non-
stationarity and stationarity, we may consider models
that permit two regimes of unit root nonstationarity and
stationarity.

One model is the Innovation Regime-Switching (IRS)
model of Kuan, Huang, and Tsay [96]. Intuitively, it may
be implausible to believe that all random shocks exert only
one effect (permanent or transitory) on future financial as-
set prices in a long time span. This intuition underpins
the models that allow for breaks, stochastic unit root, or
regime switching. As an alternative, Kuan, Huang, and
Tsay [96] propose the IRS model that permits the random
shock in each period to be permanent or transitory, de-
pending on a switching mechanism, and hence admits dis-
tinct dynamics (unit-root nonstationarity or stationarity)
in different periods. Under the IRS framework, standard
unit-root models and stationarity models are just two ex-
treme cases. By applying the IRS model to real exchange
rate, they circumvent the difficulties arising from unit-root
(or stationarity) testing. They allow the data to speak for
themselves, rather than putting them in the straitjacket
of unit-root nonstationarity or stationarity. Huang and
Kuan [90] re-examine long-run PPP based on the IRS
model and their empirical study on US/UK real exchange
rates shows that there are both temporary and permanent
influences on the real exchange rate such that approxi-
mately 42% of the shocks in the long run are more likely
to have a permanent effect. They also found that transi-
tory shocks dominate in the fixed-rate regimes, yet perma-
nent shocks play a more important role during the float-
ing regimes. Thus, the long-run PPP is rejected due to the
presence of a significant amount of permanent shocks, but
there are still long periods of time in which the deviations
from long-run PPP are only transitory.

Another model is a threshold unit root (TUR) model
or threshold integrated moving average (TIMA) model of
Gonzalo andMartíneza [65]. Based on this model they ex-
amine whether large and small shocks have different long-
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run effects, as well as whether one of them is purely tran-
sitory. They develop a new nonlinear permanent – transi-
tory decomposition, that is applied to US stock prices to
analyze the quality of the stock market.

Comparison of these two models with the linear au-
toregressive model with a unit root or a stationary AR
model for the out-of-sample forecasting remains to be ex-
amined empirically.

Bagging Nonlinear Forecasts

To improve on unstable forecasts, bootstrap aggregat-
ing or bagging is introduced by Breiman [19]. Lee and
Yang [100] show how bagging works for binary and quan-
tile predictions. Lee and Yang [100] attributed part of the
success of the bagging predictors to the small sample esti-
mation uncertainties. Therefore, a question that may arise
is that whether the good performance of bagging predic-
tors critically depends on algorithms we employ in non-
linear estimation.

They find that bagging improves the forecasting per-
formance of predictors on highly nonlinear regression
models – e. g., artificial neural network models, especially
when the sample size is limited. It is usually hard to choose
the number of hidden nodes and the number of inputs (or
lags), and to estimate the large number of parameters in
an ANN model. Therefore, a neural network model gen-
erate poor predictions in a small sample. In such cases,
bagging can do a valuable job to improve the forecasting
performance as shown in [100], confirming the result of
Breiman [20]. A bagging predictor is a combined predic-
tor formed over a set of training sets to smooth out the “in-
stability” caused by parameter estimation uncertainty and
model uncertainty. A predictor is said to be “unstable” if
a small change in the training set will lead to a significant
change in the predictor [20].

As bagging would be valuable in nonlinear forecasting,
in this section, we will show how a bagging predictor may
improve the predicting performance of its underlying pre-
dictor. Let

Dt � f(Ys ;Xs�1)gtsDt�RC1 (t D R; : : : ; T)

be a training set at time t and let '(Xt ;Dt) be a forecast of
YtC1 or of the binary variable GtC1 � 1(YtC1 � 0) using
this training setDt and the explanatory variable vectorXt .
The optimal forecast '(Xt;Dt) for YtC1 will be the condi-
tional mean of YtC1 given Xt under the squared error loss
function, or the conditional quantile of YtC1 on Xt if the
loss is a tick function. Below we also consider the binary
forecast for GtC1 � 1(YtC1 � 0).

Suppose each training set Dt consists of R obser-
vations generated from the underlying probability dis-
tribution P. The forecast f'(Xt;Dt)gTtDR can be im-
proved if more training sets were able to be generated
from P and the forecast can be formed from averaging
the multiple forecasts obtained from the multiple train-
ing sets. Ideally, if P were known and multiple training
sets D( j)

t ( j D 1; : : : ; J) may be drawn from P, an ensem-
ble aggregating predictor 'A(Xt) can be constructed by the
weighted averaging of '(Xt ;D( j)

t ) over j, i. e.,

'A(Xt) � EDt'(Xt ;Dt) �
JX

jD1

wj;t'(Xt ;D( j)
t ) ;

where EDt (�) denotes the expectation over P, wj;t is the
weight function with

PJ
jD1 wj;t D 1, and the subscript A

in 'A denotes “aggregation”.
Lee and Yang [100] show that the ensemble aggregat-

ing predictor 'A(Xt) has not a larger expected loss than the
original predictor '(Xt ;Dt). For any convex loss function
c(�) on the forecast error ztC1, we will have

EDt ;YtC1 ;Xt c(ztC1) � EYtC1 ;Xt c(EDt (ztC1));

where EDt (ztC1) is the aggregating forecast error, and
EDt ;YtC1;Xt (�) � EXt [EYtC1 jXt fEDt (�) jXtg] denotes the
expectation EDt (�) taken over P (i. e., averaging over the
multiple training sets generated from P), then taking an
expectation of YtC1 conditioning on Xt , and then tak-
ing an expectation of Xt. Similarly we define the notation
EYtC1 ;Xt (�) � EXt [EYtC1 jXt (�) jXt]. Therefore, the aggre-
gating predictor will always have no larger expected cost
than the original predictor for a convex loss function
'(Xt ;Dt). The examples of the convex loss function in-
cludes the squared error loss and a tick (or check) loss
�˛(z) � [˛ � 1(z < 0)]z.

How much this aggregating predictor can improve
depends on the distance between EDt ;YtC1;Xt c(ztC1) and
EYtC1 ;Xt c(EDt (ztC1)). We can define this distance by
� � EDt ;YtC1;Xt c(ztC1) � EYtC1 ;Xt c(EDt (ztC1)). There-
fore, the effectiveness of the aggregating predictor depends
on the convexity of the cost function. The more convex is
the cost function, the more effective this aggregating pre-
dictor can be. If the loss function is the squared error loss,
then it can be shown that� D VDt

�
'(Xt ;Dt)

�
is the vari-

ance of the predictor, which measures the “instability” of
the predictor. See Lee and Yang [100], Proposition 1, and
Breiman [20]. If the loss is the tick function, the effective-
ness of bagging is also different for different quantile pre-
dictions: bagging works better for tail-quantile predictions
than for mid-quantile predictions.
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In practice, however, P is not known. In that case
we may estimate P by its empirical distribution, P̂(Dt),
for a given Dt . Then, from the empirical distribution
P̂(Dt), multiple training sets may be drawn by the boot-
strap method. Bagging predictors, 'B(Xt ;D�t ), can then
be computed by taking weighted average of the predictors
trained over a set of bootstrap training sets. More specifi-
cally, the bagging predictor 'B(Xt;D�t ) can be obtained in
the following steps:

1. Given a training set of data at time t,
Dt � f(Ys ;Xs�1)gtsDt�RC1, construct the jth bootstrap
sample D�( j)t � f(Y�( j)s ;X�( j)s�1)g

t
sDt�RC1, j D 1; : : : ; J,

according to the empirical distribution of P̂(Dt) ofDt .
2. Train the model (estimate parameters) from the jth

bootstrapped sampleD�( j)t .
3. Compute the bootstrap predictor '�( j)(Xt ;D�( j)t ) from

the jth bootstrapped sampleD�( j)t .
4. Finally, for mean and quantile forecast, the bagging

predictor 'B(Xt ;D�t ) can be constructed by averaging
over J bootstrap predictors

'B(Xt;D�t ) �
JX

jD1

ŵ j;t'
�( j)(Xt;D�( j)t ) ;

and for binary forecast, the bagging binary predic-
tor 'B(Xt;D�t ) can be constructed by majority voting
over J bootstrap predictors:

'B(Xt;D�t ) � 1

0

@
JX

jD1

ŵ j;t'
�( j)(Xt;D�( j)t ) > 1/2

1

A

with
PJ

jD1 ŵ j;t D 1 in both cases.

One concern of applying bagging to time series is
whether a bootstrap can provide a sound simulation sam-
ple for dependent data, for which the bootstrap is required
to be consistent. It has been shown that some bootstrap
procedure (such as moving block bootstrap) can provide
consistent densities for moment estimators and quantile
estimators. See, e. g., Fitzenberger [54].

Nonlinear ForecastingModels
for the Conditional Variance

Nonlinear Parametric Models for Volatility

Volatility models are of paramount importance in finan-
cial economics. Issues such as portfolio allocation, op-

tion pricing, risk management, and generally any decision
making under uncertainty rely on the understanding and
forecasting of volatility. This is one of the most active ares
of research in time series econometrics. Important surveys
as in Bollerslev, Chou, and Kroner [15], Bera and Hig-
gins [13], Bollerslev, Engle, and Nelson [16], Poon and
Granger [125], and Bauwens, Laurent, and Rombouts [12]
attest to the variety of issues in volatility research. The
motivation for the introduction of the first generation of
volatility models namely the ARCH models of Engle [44]
was to account for clusters of activity and fat-tail behav-
ior of financial data. Subsequent models accounted for
more complex issues. Among others and without being
exclusive, we should mention issues related to asymmet-
ric responses of volatility to news, probability distribu-
tion of the standardized innovations, i.i.d. behavior of the
standardized innovation, persistence of the volatility pro-
cess, linkages with continuous time models, intraday data
and unevenly spaced observations, seasonality and noise
in intraday data. The consequence of this research agenda
has been a vast array of specifications for the volatility
process.

Suppose that the return series fytgTC1
tD1 of a financial

asset follows the stochastic process ytC1 D �tC1 C "tC1,
whereE(ytC1jFt) D �tC1(�) andE("2tC1jFt) D �2tC1(�)
given the information set Ft (�-field) at time t. Let
ztC1 � "tC1/�tC1 have the conditional normal distribu-
tion with zero conditional mean and unit conditional vari-
ance. Volatility models can be classified in three categories:
MA family, ARCH family, and stochastic volatility (SV)
family.

The simplest method to forecast volatility is to cal-
culate a historical moving average variance, denoted as
MA(m), or an exponential weighted moving average
(EWMA):

MA(m) 
2
t D

1
m

Pm
jD1(yt�j � �̂

m
t )

2; �̂m
t D

1
m

Pm
jD1 yt�j

EWMA 
2
t D (1� �)

Pt�1
jD1 �

j�1(yt�j � �̂t)2;

�̂t D
1

t�1

Pt�1
jD1 yt�j

In the EWMA specification, a common practice is
to fix the  parameter, for instance  D 0:94 [129]. For
these two MA family models, there are not parameters to
estimate.

Second, the ARCH family is very extensive with many
variations on the original model ARCH(p) of Engle [44].
Some representativemodels are: GARCHmodel of Boller-
slev [14]; Threshold GARCH (T-GARCH) of Glosten
et al. [60]; Exponential GARCH (E-GARCH) of Nel-
son [120]; quadratic GARCH models (Q-GARCH) as
in Sentana [135]; Absolute GARCH (ABS-GARCH) of
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Taylor [143] and Schwert [134] and Smooth Transition
GARCH (ST-GARCH) of González-Rivera [61].

ARCH(p) 
2
t D ! C

Pp
iD1 ˛i"

2
t�i

GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1

I-GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1; ˛C ˇ D 1

T-GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1 C �"

2
t�11("t�1 � 0)

ST-GARCH 
2
t D ! C ˇ


2
t�1 C ˛"

2
t�1 C �"

2
t�1F("t�1; ı)

with F("t�1; ı) D [1C exp(ı"t�1)]�1 � 0:5
E-GARCH ln
2

t D ! C ˇ ln
2
t�1 C ˛[jzt�1j � czt�1]

Q-GARCH 
2
t D ! C ˇ


2
t�1 C ˛("t�1 C � )

2

ABS-GARCH 
t D ! C ˇ
t�1 C ˛j"t�1j

The EWMA specification can be viewed as an inte-
gratedGARCHmodel with! D 0, ˛ D , and ˇ D 1 � .
In the T-GARCH model, the parameter � allows for pos-
sible asymmetric effects of positive and negative innova-
tions. In Q-GARCH models, the parameter � measures
the extent of the asymmetry in the news impact curve.
For the ST-GARCH model, the parameter � measures the
asymmetric effect of positive and negative shocks, and the
parameter ı > 0 measures the smoothness of the transi-
tion between regimes, with a higher value of ı making ST-
GARCH closer to T-GARCH.

Third, the stationary SV model of Taylor [143] with �t
is i.i.d. N (0; �2�) and � t is i.i.d. N(0; �2/2) is a representa-
tive member of the SV family.

SV 
2
t D exp(0:5ht); ln(y2t ) D �1:27C ht C �t;

ht D � C �ht�1 C �t .

With so many models, the natural question becomes
which one to choose. There is not a universal answer to
this question. The best model depends upon the objectives
of the user. Thus, given an objective function, we search
for the model(s) with the best predictive ability control-
ling for possible biases due to “data snooping” [105]. To
compare the relative performance of volatility models, it is
customary to choose either a statistical loss function or an
economic loss function.

The preferred statistical loss functions are based on
moments of forecast errors (mean-error, mean-squared
error, mean absolute error, etc.). The best model will min-
imize a function of the forecast errors. The volatility fore-
cast is often compared to a measure of realized volatil-
ity. With financial data, the common practice has been
to take squared returns as a measure of realized volatil-
ity. However, this practice is questionable. Andersen and
Bollerslev [2] argued that this measure is a noisy estimate,
and proposed the use of the intra-day (at each five min-

utes interval) squared returns to calculate the daily realized
volatility. This measure requires intra-day data, which is
subject to the variation introduced by the bid-ask spread
and the irregular spacing of the price quotes.

Some other authors have evaluated the performance
of volatility models with criteria based on economic loss
functions. For example,West, Edison, and Cho [157] con-
sidered the problem of portfolio allocation based on mod-
els that maximize the utility function of the investor. En-
gle, Kane, and Noh [46] and Noh, Engle, and Kane [121]
considered different volatility forecasts to maximize the
trading profits in buying/selling options. Lopez [107] con-
sidered probability scoring rules that were tailored to
a forecast user’s decision problem and confirmed that
the choice of loss function directly affected the forecast
evaluation of different models. Brooks and Persand [21]
evaluated volatility forecasting in a financial risk man-
agement setting in terms of Value-at-Risk (VaR). The
common feature to these branches of the volatility litera-
ture is that none of these has controlled for forecast de-
pendence across models and the inherent biases due to
data-snooping.

Controlling for model dependence [160], González-
Rivera, Lee, and Mishra [62] evaluate fifteen volatility
models for the daily returns to the SP500 index accord-
ing to their out-of-sample forecasting ability. The forecast
evaluation is based, among others, on two economic loss
functions: an option pricing formula and a utility func-
tion; and a statistical loss function: a goodness-of-fit based
on a Value-at-Risk (VaR) calculation. For option pricing,
volatility is the only component that is not observable and
it needs to be estimated. The loss function assess the dif-
ference between the actual price of a call option and the es-
timated price, which is a function of the estimated volatil-
ity of the stock. The second economic loss function refers
to the problem of wealth allocation. An investor wishes to
maximize her utility allocatingwealth between a risky asset
and a risk-free asset. The loss function assesses the perfor-
mance of the volatility estimates according to the level of
utility they generate. The statistical function based on the
goodness-of-fit of a VaR calculation is important for risk
management. The main objective of VaR is to calculate
extreme losses within a given probability of occurrence,
and the estimation of the volatility is central to the VaR
measure. The preferred models depend very strongly upon
the loss function chosen by the user. González-Rivera,
Lee, and Mishra [62] find that, for option pricing, sim-
ple models such as the exponential weighted moving av-
erage (EWMA) proposed by Riskmetrics [64] performed
as well as any GARCH model. For an utility loss function,
an asymmetric quadratic GARCH model is the most pre-
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ferred. For VaR calculations, a stochastic volatility model
dominates all other models.

Nonparametric Models for Volatility

Ziegelmann [163] considers the kernel smoothing tech-
niques that free the traditional parametric volatility es-
timators from the constraints related to their specific
models. He applies the nonparametric local ‘exponential’
estimator to estimate conditional volatility functions, en-
suring its nonnegativity. Its asymptotic properties are
established and compared with those for the local linear
estimator for the volatility model of Fan and Yao [51].
Long, Su, and Ullah [106] extend this idea to semipara-
metricmultivariate GARCH and show that theremay exist
substantial out-of-sample forecasting gain over the para-
metric models. This gain accounts for the presence of non-
linearity in the conditional variance-covariance that is ne-
glected in parametric linear models.

Forecasting Volatility Using High Frequency Data

Using high-frequency data, quadratic variation may be es-
timated using realized volatility (RV). Andersen, Boller-
slev, Diebold, and Labys [3] and Barndorff-Nielsen and
Shephard [11] establish that RV, defined as the sum of
squared intraday returns of small intervals, is an asymptot-
ically unbiased estimator of the unobserved quadratic vari-
ation as the interval length approaches zero. Besides the
use of high frequency information in volatility estimation,
volatility forecasting using high frequency information has
been addressed as well. In an application to volatility pre-
diction, Ghysels, Santa-Clara, and Valkanov [58] investi-
gate the predictive power of various regressors (lagged re-
alized volatility, squared return, realized power, and daily
range) for future volatility forecasting. They find that the
best predictor is realized power (sum of absolute intra-
day returns), andmore interestingly, direct use of intraday
squared returns in mixed data sampling (MIDAS) regres-
sions does not necessarily lead to better volatility forecasts.

Andersen, Bollerslev, Diebold, and Labys [4] represent
another approach to forecasting volatility using RV. The
model they propose is a fractional integrated AR model:
ARFI(5, d) for logarithmic RV’s obtained from foreign
exchange rates data of 30-minute frequency and demon-
strate the superior predictive power of their model.

Alternatively, Corsi [32] proposes the heterogeneous
autoregressive (HAR) model of RV, which is able to re-
produce long memory. McAleer and Medeiros [115] pro-
pose a new model that is a multiple regime smooth transi-
tion (ST) extension of the HARmodel, which is specifically
designed to model the behavior of the volatility inherent

in financial time series. The model is able to describe si-
multaneously long memory as well as sign and size asym-
metries. They apply the model to several Dow Jones In-
dustrial Average index stocks using transaction level data
from the Trades and Quotes database that covers ten years
of data, and find strong support for long memory and both
sign and size asymmetries. Furthermore, they show that
the multiple regime smooth transition HAR model, when
combined with the linear HAR model, is flexible for the
purpose of forecasting volatility.

Forecasting BeyondMean and Variance

In the previous section, we have surveyed the major de-
velopments in nonlinear time series, mainly modeling the
conditional mean and the conditional variance of finan-
cial returns. However it is not clear yet that any of those
nonlinear models may generate profits after accounting
for various market frictions and transactions costs. There-
fore, some research efforts have been directed to inves-
tigate other aspects of the conditional density of returns
such as higher moments, quantiles, directions, intervals,
and the density itself. In this section, we provide a brief
survey on forecasting these other features.

Forecasting Quantiles

The optimal forecast of a time seriesmodel depends on the
specification of the loss function. A symmetric quadratic
loss function is the most prevalent in applications due to
its simplicity. Under symmetric quadratic loss, the opti-
mal forecast is simply the conditional mean. An asymmet-
ric loss function implies a more complicated forecast that
depends on the distribution of the forecast error as well as
the loss function itself [67].

Consider a stochastic process Zt � (Yt ; X 0t)0 where
Yt is the variable of interest and Xt is a vector of
other variables. Suppose there are T C 1 (� RC P) ob-
servations. We use the observations available at time t,
R � t < T C 1, to generate P forecasts using each model.
For each time t in the prediction period, we use either
a rolling sample fZt�RC1; : : : ; Ztg of size R or the whole
past sample fZ1; : : : ; Ztg to estimatemodel parameters ˆ̌t .
We can then generate a sequence of one-step-ahead fore-
casts f f (Zt; ˆ̌t)gTtDR .

Suppose that there is a decision maker who takes an
one-step point forecast ft;1 � f (Zt; ˆ̌t) of YtC1 and uses
it in some relevant decision. The one-step forecast error
etC1 � YtC1 � ft;1 will result in a cost of c(etC1), where
the function c(e) will increase as e increases in size, but
not necessarily symmetrically or continuously. The opti-
mal forecast f �t;1 will be chosen to produce the forecast er-
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rors that minimize the expected loss

min
ft;1

Z 1

�1

c(y � ft;1)dFt(y) ;

where Ft(y) � Pr(YtC1 � yjIt) is the conditional distri-
bution function, with It being some proper information
set at time t that includes Zt� j , j � 0. The corresponding
optimal forecast error will be

e�tC1 D YtC1 � f �t;1 :

Then the optimal forecast would satisfy

@

@ ft;1

Z 1

�1

c(y � f �t;1)dFt(y) D 0 :

Whenwe interchange the operations of differentiation and
integration,
Z 1

�1

@

@ ft;1
c(y� f �t;1)dFt(y) � E

�
@

@ ft;1
c(YtC1 � f �t;1)jIt

�

Based on the “generalized forecast error”, gtC1 �
@
@ f t;1

c(YtC1 � f �t;1), the condition for forecast optimality
is:

H0 : E
�
gtC1jIt


D 0 a:s: ;

that is a martingale difference (MD) property of the gener-
alized forecast error. This forms the optimality condition
of the forecasts and gives an appropriate regression func-
tion corresponding to the specified loss function c(�).

To see this we consider the following two examples.
First, when the loss function is the squared error loss

c(YtC1 � ft;1) D (YtC1 � ft;1)2 ;

the generalized forecast error will be gtC1 �
@
@ f t

c(YtC1 �

f �t;1) D �2e
�
tC1 and thus E

�
e�tC1jIt


D 0 a:s:, which im-

plies that the optimal forecast

f �t;1 D E (YtC1jIt)

is the conditional mean. Next, when the loss is the check
function, c(e) D

�
˛ � 1(e < 0)

�
� e � �˛(etC1), the opti-

mal forecast ft;1, for given ˛ 2 (0; 1), minimizing

min
ft;1

E
�
c(YtC1 � ft;1)jIt

�

can be shown to satisfy

E
�
˛ � 1(YtC1 < f �t;1)jIt

�
D 0 a:s:

Hence, gtC1 � ˛ � 1(YtC1 < f �t;1) is the generalized fore-
cast error. Therefore,

˛ D E
�
1(YtC1 < f �t;1)jIt

�
D Pr(YtC1 � f �t;1jIt) ;

and the optimal forecast f �t;1 D q˛ (YtC1jIt) � q˛t is the
conditional ˛-quantile.

Forecasting conditional quantiles are of paramount
importance for risk management, which nowdays is key
activity in financial institutions due to the increasing fi-
nancial fragility in emergingmarkets and the extensive use
of derivative products over the last decade. A risk mea-
surement methodology called Value-at-Risk (VaR) has re-
ceived a great attention from both regulatory and aca-
demic fronts. During a short span of time, numerous pa-
pers have studied various aspects of the VaRmethodology.
Bao, Lee, and Saltoglu [8] examine the relative out-of-sam-
ple predictive performance of various VaR models.

An interesting VaR model is the CaViaR (conditional
autoregressive Value-at-Risk) model suggested by Engle
and Manganelli [47]. They estimate the VaR from a quan-
tile regression rather than inverting a conditional distribu-
tion. The idea is similar to the GARCH modeling in that
VaR is modeled autoregressively

qt (˛) D a0 C a1qt�1 (˛)C h(xt j�) ;

where xt 2 Ft�1, � is a parameter vector, and h(�) is
a function to explain the VaR model. Depending on the
specification of h(�), the CaViaR model may be

qt (˛) D a0 C a1qt�1 (˛)C a2jrt�1j ;

qt (˛) D a0Ca1qt�1 (˛)Ca2jrt�1jCa3jrt�1j�1(rt�1 < 0);

where the second model allow nonlinearity (asymmetry)
similarly to the asymmetric GARCH models.

Bao, Lee, and Saltoglu [8] compare various VaR mod-
els. Their results show that the CaViaR quantile regression
models of Engle and Manganelli [47] have shown some
success in predicting the VaR risk measure for various pe-
riods of time, and it is generally more stable than the mod-
els that invert a distribution function.

Forecasting Directions

It is well known that, while financial returns fYtgmay not
be predictable, their variance, sign, and quantiles may be
predictable. Christofferson and Diebold [27] show that bi-
nary variable GtC1 � 1(YtC1 > 0), where 1(�) takes the
value of 1 if the statement in the parenthesis is true, and
0 otherwise, is predictable when some conditional mo-
ments are time varying, Hong and Lee [86], Hong and
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Chung [85], Linton andWhang [104], Lee and Yang [100]
amongmany others find some evidence that the directions
of stock returns and foreign exchange rate changes are
predictable.

Lee and Yang [100] also show that forecasting quan-
tiles and forecasting binary (directional) forecasts are re-
lated, in that the former may lead to the latter. As noted by
Powell [126], using the fact that for any monotonic func-
tion h(�), q˛t (h(YtC1)jXt) D h(q˛t (YtC1jXt)), which fol-
lows immediately from observing that Pr(YtC1 < yjXt) D
Pr[h(YtC1) < h(y)jXt], and noting that the indicator
function is monotonic, q˛t (GtC1jXt) D q˛t (1(YtC1 >

0)jXt) D 1(q˛t (YtC1jXt) > 0). Therefore, predictability of
conditional quantiles of financial returns may imply pre-
dictability of conditional direction.

Probability Forecasts

Diebold and Rudebush [38] consider the probability
forecasts for the turning points of the business cy-
cle. They measure the accuracy of predicted proba-
bilities, that is the average distance between the pre-
dicted probabilities and observed realization (as mea-
sured by a zero-one dummy variable). Suppose there are
T C 1 (� RC P) observations. We use the observations
available at time t (R � t < T C 1), to estimate a model.
We then have time series of P D T � RC 1 probability
forecasts fptC1g

T
tDR where pt is the predicted probability

of the occurrence of an event (e. g., business cycle turn-
ing point) in the next period t C 1. Let fdtC1g

T
tDR be the

corresponding realization with dt D 1 if a business cycle
turning point (or any defined event) occurs in period t
and dt D 0 otherwise. The loss function analogous to the
squared error is the Brier’s score based on quadratic prob-
ability score (QPS):

QPS D P�1
TX

tDR

2(pt � dt)2 :

TheQPS ranges from 0 to 2, with 0 for perfect accuracy. As
noted by Diebold and Rudebush [38], the use of the sym-
metric loss function may not be appropriate as a forecaster
may be penalized more heavily for missing a call (making
a type II error) than for signaling a false alarm (making
a type I error). Another loss function is given by the log
probability score (LPS)

LPS D �P�1
TX

tDR

ln


pdtt (1 � pt)(1�dt )

�
;

which is similar to the loss for the interval forecast. A large
mistake is penalized more heavily under LPS than under

QPS. More loss functions are discussed in Diebold and
Rudebush [38].

Another loss function useful in this context is the
Kuipers score (KS), which is defined by

KS D Hit Rate� False Alarm Rate ;

where Hit Rate is the fraction of the bad events that were
correctly predicted as good events (power, or 1� probabil-
ity of type II error), and False Alarm Rate is the fraction
of good events that had been incorrectly predicted as bad
events (probability of type I error).

Forecasting Interval

Suppose Yt is a stationary series. Let the one-period ahead
conditional interval forecast made at time t from a model
be denoted as

Jt;1(˛) D (Lt;1(˛);Ut;1(˛)); t D R; : : : ; T ;

where Lt;1(˛) and Ut;1(˛) are the lower and upper lim-
its of the ex ante interval forecast for time t C 1 made
at time t with the coverage probability ˛. Define the
indicator variable XtC1(˛) D 1[YtC1 2 Jt;1(˛)]. The se-
quence fXtC1(˛)gTtDR is i.i.d. Bernoulli (˛). The optimal
interval forecast would satisfy E(XtC1(˛)jIt) D ˛, so that
fXtC1(˛) � ˛g will be an MD. A better model has a larger
expected Bernoulli log-likelihood

E˛XtC1(˛)(1 � ˛)[1�XtC1(˛)] :

Hence, we can choose a model for interval forecasts with
the largest out-of-sample mean of the predictive log-like-
lihood, which is defined by

P�1
TX

tDR

ln


˛xtC1(˛)(1 � ˛)[1�xtC1(˛)]

�
:

Evaluation of Nonlinear Forecasts

In order to evaluate the possible superior predictive ability
of nonlinear models, we need to compare competing mod-
els in terms of a certain loss function. The literature has re-
cently been exploding on this issue. Examples are Granger
and Newbold [69], Diebold andMariano [37], West [156],
White [160], Hansen [81], Romano and Wolf [130], Gi-
acomini and White [59], etc. In different perspective, to
test the optimality of a given model, Patton and Tim-
mermann [123] examine various testable properties that
should hold for an optimal forecast.
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Loss Functions

The loss function (or cost function) is a crucial ingredient
for the evaluation of nonlinear forecasts. When a forecast
ft;h of a variable YtCh is made at time t for h periods ahead,
the loss (or cost) will arise if a forecast turns out to be dif-
ferent from the actual value. The loss function of the fore-
cast error etCh D YtCh � ft;h is denoted as c(YtCh ; ft;h).
The loss function can depend on the time of prediction
and so it can be ctCh(YtCh ; ft;h). If the loss function is not
changing with time and does not depend on the value of
the variable YtCh , the loss can be written simply as a func-
tion of the error only, ctCh(YtCh; ft;h) D c(etCh).

Granger [67] discusses the following required proper-
ties for a loss function: (i) c(0) D 0 (no error and no loss),
(ii) mine c(e) D 0, so that c(e) � 0, and (iii) c(e) is mono-
tonically nondecreasing as emoves away from zero so that
c(e1) � c(e2) if e1 > e2 > 0 and if e1 < e2 < 0.

When c1(e); c2(e) are both loss functions, Grang-
er [67] shows that further examples of loss functions can
be generated: c(e) D ac1(e)C bc2(e); a � 0; b � 0 will be
a loss function. c(e) D c1(e)a c2(e)b , a > 0; b > 0 will be
a loss function. c(e) D 1(e > 0)c1(e)C 1(e < 0)c2(e) will
be a loss function. If h(�) is a positive monotonic nonde-
creasing function with h(0) finite, then c(e) D h(c1(e)) �
h(0) is a loss function.

Granger [68] notes that an expected loss (a risk mea-
sure) of financial return YtC1 that has a conditional pre-
dictive distribution Ft(y) � Pr(YtC1 � yjIt) with Xt 2 It
may be written as

Ec(e) D A1

Z 1

0
jy� f jpdFt(y)CA2

Z 0

�1

jy� f jpdFt(y);

with A1;A2 both > 0 and some � > 0. Considering the
symmetric case A1 D A2, one has a class of volatility mea-
sures Vp D E

�
jy � f jp

�
, which includes the variance with

p D 2, and mean absolute deviation with p D 1.
Ding, Granger, and Engle [39] study the time series

and distributional properties of these measures empiri-
cally and show that the absolute deviations are found to
have some particular properties such as the longest mem-
ory. Granger remarks that given that the financial returns
are known to come from a long tail distribution, p D 1
may be more preferable.

Another problem raised by Granger is how to
choose optimal Lp-norm in empirical works, to mini-
mize E[j"t jp] for some p to estimate the regression model
Yt D E(Yt jXt ;ˇ)C "t . As the asymptotic covariance ma-
trix of ˆ̌ depends on p, the most appropriate value of p can
be chosen to minimize the covariance matrix. In particu-
lar, Granger [68] refers to a trio of papers [84,116,117]who

find that the optimal p D 1 from Laplace and Cauchy dis-
tribution, p D 2 for Gaussian and p D 1 (min/max es-
timator) for a rectangular distribution. Granger [68] also
notes that in terms of the kurtosis �, Harter [84] sug-
gests to use p D 1 for � > 3:8; p D 2 for 2:2 � � � 3:8;
and p D 3 for � < 2:2. In finance, the kurtosis of returns
can be thought of as being well over 4 and so p D 1 is
preferred.

Forecast Optimality

Optimal forecast of a time series model extensively de-
pends on the specification of the loss function. Symmet-
ric quadratic loss function is the most prevalent in ap-
plications due to its simplicity. The optimal forecast un-
der quadratic loss is simply the conditional mean, but
an asymmetric loss function implies a more complicated
forecast that depends on the distribution of the forecast
error as well as the loss function itself [67], as the ex-
pected loss function if formulated with the expectation
taken with respect to the conditional distribution. Speci-
fication of the loss function defines the model under con-
sideration.

Consider a stochastic process Zt � (Yt ; X 0t)0 where
Yt is the variable of interest and Xt is a vector of
other variables. Suppose there are T C 1 (� RC P) ob-
servations. We use the observations available at time t,
R � t < T C 1, to generate P forecasts using each model.
For each time t in the prediction period, we use either
a rolling sample fZt�RC1; : : : ; Ztg of size R or the whole
past sample fZ1; : : : ; Ztg to estimatemodel parameters ˆ̌t .
We can then generate a sequence of one-step-ahead fore-
casts f f (Zt; ˆ̌t)gTtDR .

Suppose that there is a decision maker who takes an
one-step point forecast ft;1 � f (Zt; ˆ̌t) of YtC1 and uses
it in some relevant decision. The one-step forecast error
etC1 � YtC1 � ft;1 will result in a cost of c(etC1), where
the function c(e) will increase as e increases in size, but
not necessarily symmetrically or continuously. The opti-
mal forecast f �t;1 will be chosen to produce the forecast er-
rors that minimize the expected loss

min
ft;1

Z 1

�1

c(y � ft;1)dFt(y) ;

where Ft(y) � Pr(YtC1 � yjIt) is the conditional distri-
bution function, with It being some proper information
set at time t that includes Zt� j , j � 0. The corresponding
optimal forecast error will be

e�tC1 D YtC1 � f �t;1:
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Then the optimal forecast would satisfy

@

@ ft;1

Z 1

�1

c(y � f �t;1)dFt(y) D 0 :

When we may interchange the operations of differentia-
tion and integration,

Z 1

�1

@

@ ft;1
c(y� f �t;1)dFt(y) � E

�
@

@ ft;1
c(YtC1 � f �t;1)jIt

�

the “generalized forecast error”, gtC1�
@
@ f t;1

c(YtC1 � f �t;1),
forms the condition of forecast optimality:

H0 : E
�
gtC1jIt


D 0 a:s:;

that is a martingale difference (MD) property of the gener-
alized forecast error. This forms the optimality condition
of the forecasts and gives an appropriate regression func-
tion corresponding to the specified loss function c(�).

Forecast Evaluation of Nonlinear Transformations

Granger [67] note that it is implausible to use the same
loss function for forecasting YtCh and for forecasting
htC1 D h(YtCh) where h(�) is some function, such as
the log or the square, if one is interested in forecast-
ing volatility. Suppose the loss functions c1(�); c2(�) are
used for forecasting YtCh and for forecasting h(YtCh), re-
spectively. Let etC1 � YtC1 � ft;1 will result in a cost of
c1(etC1), for which the optimal forecast f �t;1 will be cho-
sen from min ft;1

R1
�1 c1(y � ft;1)dFt(y), where Ft(y) �

Pr(YtC1 � yjIt). Let "tC1 � htC1 � ht;1 will result
in a cost of c2("tC1), for which the optimal forecast
h�t;1 will be chosen from minht;1

R1
�1 c2(h � ht;1)dHt(h),

where Ht(h) � Pr(htC1 � hjIt). Then the optimal fore-
casts for Y and h would respectively satisfy

Z 1

�1

@

@ ft;1
c1(y � f �t;1)dFt(y) D 0 ;

Z 1

�1

@

@ht;1
c2(h � h�t;1)dHt(h) D 0 :

It is easy to see that the optimality condition for f �t;1
does not imply the optimality condition for h�t;1 in gen-
eral. Under some strong conditions on the functional
forms of the transformation h(�) and of the two loss func-
tions c1(�); c2(�), the above two conditions may coincide.
Granger [67] remarks that it would be strange behavior to
use the same loss function for Y and h(Y). We leave this
for further analysis in a future research.

Density Forecast Evaluation

Most of the classical finance theories, such as asset pric-
ing, portfolio selection and option valuation, aim to model
the surrounding uncertainty via a parametric distribu-
tion function. For example, extracting information about
market participants’ expectations from option prices can
be considered another form of density forecasting exer-
cise [92]. Moreover, there has also been increasing interest
in evaluating forecasting models of inflation, unemploy-
ment and output in terms of density forecasts [29]. While
evaluating each density forecast model has become versa-
tile since Diebold et al. [35], there has beenmuch less effort
in comparing alternative density forecast models.

Given the recent empirical evidence on volatility clus-
tering and asymmetry and fat-tailedness in financial re-
turn series, relative adequacy of a given model among al-
ternative models would be useful measure of evaluating
forecast models. Deciding on which distribution and/or
volatility specification to use for a particular asset is a com-
mon task even for finance practitioners. For example, de-
spite the existence of many volatility specifications, a con-
sensus on which model is most appropriate has yet to be
reached. As argued in Poon andGranger [125], most of the
(volatility) forecasting studies do not produce very con-
clusive results because only a subset of alternative models
are compared, with a potential bias towards the method
developed by the authors. Poon and Granger [125] argue
that lack of a uniform forecast evaluation technique makes
volatility forecasting a difficult task. They wrote (p. 507),
“ . . . it seems clear that one form of study that is included
is conducted just to support a viewpoint that a particular
method is useful. It might not have been submitted for
publication if the required result had not been reached.
This is one of the obvious weaknesses of a comparison
such as this; the papers being prepared for different rea-
sons, use different data sets, many kinds of assets, vari-
ous intervals between readings, and a variety of evaluation
techniques”.

Following Diebold et al. [35], it has become common
practice to evaluate the adequacy of a forecast model based
on the probability integral transform (PIT) of the process
with respect to the model’s density forecast. If the density
forecast model is correctly specified, the PIT follows an
i.i.d. uniform distribution on the unit interval and, equiva-
lently, its inverse normal transform follows an i.i.d. normal
distribution. We can therefore evaluate a density forecast
model by examining the departure of the transformed PIT
from this property (i.i.d. and normality). The departure
can be quantified by the Kullback-Leibler [97] informa-
tion criterion, or KLIC, which is the expected logarithmic
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value of the likelihood ratio (LR) of the transformed PIT
and the i.i.d. normal variate. Thus the LR statistic mea-
sures the distance of a candidate model to the unknown
true model.

Consider a financial return series fytgTtD1. This ob-
served data on a univariate series is a realization of
a stochastic process YT � fY� : ˝ ! R, � D 1; 2; : : : ; Tg
on a complete probability space (˝;FT ; PT

0 ), where
˝ D RT � �T�D1R and FT D B(RT ) is the Borel �-field
generated by the open sets of RT , and the joint probabil-
ity measure PT

0 (B) � P0[YT 2 B], B 2 B(RT ) completely
describes the stochastic process. A sample of size T is de-
noted as yT � (y1; : : : ; yT )0.

Let �-finite measure �T on B(RT ) be given. Assume
PT
0 (B) is absolutely continuous with respect to �T for all
T D 1; 2; : : :, so that there exists a measurable Radon–
Nikodým density gT (yT) D dPT

0 /d�
T , unique up to a set

of zero measure-�T .
Following White [159], we define a probability

model P as a collection of distinct probability measures
on the measurable space (˝;FT ). A probability model P
is said to be correctly specified for YT if P contains PT

0 .
Our goal is to evaluate and compare a set of paramet-
ric probability models fPT

�
g, where PT

�
(B) � P� [YT 2 B].

Suppose there exists a measurable Radon–Nikodým den-
sity f T(yT ) D dPT

�
/d�T for each � 2 � , where � is a fi-

nite-dimensional vector of parameters and is assumed to
be identified on � , a compact subset of Rk . See Theo-
rem 2.6 in White [159].

In the context of forecasting, instead of the joint
density gT (yT), we consider forecasting the conditional
density of Yt , given the information Ft�1 generated by
Yt�1. Let 't

�
yt

� 't(yt jFt�1) � g t(yt)/g t�1(yt�1) for

t D 2; 3; : : : and '1
�
y1

� '1(y1jF0) � g1(y1) D g1(y1).

Thus the goal is to forecast the (true, unknown) condi-
tional density 't

�
yt

.

For this, we use an one-step-ahead conditional den-
sity forecast model  t

�
yt ;�


�  t(yt jFt�1;�) �

f t(yt)/ f t�1(yt�1) for t D 2; 3; : : : and  1
�
y1

�

 1(y1jF0) � f 1(y1) D f 1(y1). If  t(yt ;�0) D 't(yt)
almost surely for some �0 2 � , then the one-step-ahead
density forecast is correctly specified, and it is said to be
optimal because it dominates all other density forecasts
for any loss functions as discussed in the previous section
(see [35,67,70]).

In practice, it is rarely the case that we can find an
optimal model. As it is very likely that “the true distribu-
tion is in fact too complicated to be represented by a sim-
ple mathematical function” [133], all the models proposed
by different researchers can be possibly misspecified and
thereby we regard each model as an approximation to the

truth. Our task is then to investigate which density fore-
cast model can approximate the true conditional density
most closely. We have to first define a metric to measure
the distance of a given model to the truth, and then com-
pare different models in terms of this distance.

The adequacy of a density forecast model can be mea-
sured by the conditional Kullback-Leibler [97] Informa-
tion Criterion (KLIC) divergence measure between two
conditional densities,

It (' :  ;�) D E't [ln 't
�
yt

� ln t

�
yt ;�


] ;

where the expectation is with respect to the true condi-
tional density 't (�jFt�1), E't ln't

�
ytjFt�1


<1, and

E't ln t
�
yt jFt�1;�


<1. Following White [159], we

define the distance between a density model and the true
density as the minimum of the KLIC

It
�
' :  ;��t�1


D E't

�
ln 't

�
yt

� ln t

�
yt ;��t�1

�
;

where ��t�1 D argmin It (' :  ;�) is the pseudo-true
value of � [133]. We assume that ��t�1 is an interior point
of � . The smaller this distance is, the closer the density
forecast t

�
�jFt�1;��t�1


is to the true density 't (�jFt�1).

However, It
�
' :  ;��t�1


is unknown since ��t�1 is

not observable. We need to estimate ��t�1. If our purpose
is to compare the out-of-sample predictive abilities among
competing density forecast models, we split the data into
two parts, one for estimation and the other for out-of-
sample validation. At each period t in the out-of-sample
period (t D R C 1; : : : ; T), we estimate the unknown pa-
rameter vector ��t�1 and denote the estimate as �̂ t�1. Us-
ing f�̂ t�1g

T
tDRC1, we can obtain the out-of-sample esti-

mate of It
�
' :  ;��t�1


by

IP(' :  ) �
1
P

TX

tDRC1

ln['t(yt)/ t(yt ; �̂ t�1)]

where P D T � R is the size of the out-of-sample period.
Note that

IP (' :  ) D
1
P

TX

tDRC1

ln
�
't(yt)/ t

�
yt ;��t�1

�

C
1
P

TX

tDRC1

ln[ t
�
yt ;��t�1


/ t(yt ; �̂ t�1)] ;

where the first term in IP (' :  ) measures model uncer-
tainty (the distance between the optimal density 't(yt)
and the model  t

�
yt ;��t�1


) and the second term mea-
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sures parameter estimation uncertainty due to the distance
between ��t�1 and �̂ t�1.

Since the KLIC measure takes on a smaller value when
a model is closer to the truth, we can regard it as a loss
function and use IP (' :  ) to formulate the loss-differen-
tial. The out-of-sample average of the loss-differential be-
tween model 1 and model 2 is

IP(' :  1) � IP(' :  2)

D
1
P

TX

tDRC1

ln
h
 2

t



yt ; �̂

2
t�1

�
/ 1

t



yt ; �̂

1
t�1

�i
;

which is the ratio of the two predictive log-likelihood func-
tions. With treating model 1 as a benchmark model (for
model selection) or as the model under the null hypoth-
esis (for hypothesis testing), IP(' :  1) � IP (' :  2) can
be considered as a loss function to minimize. To sum
up, the KLIC differential can serve as a loss function for
density forecast evaluation as discussed in Bao, Lee, and
Saltoglu [10]. See Corradi and Swanson [31] for the related
ideas using different loss functions.

Using the KLIC divergence measure to characterize
the extent of misspecification of a forecast model, Bao, Lee,
and Saltoglu [10], in an empirical study with the S&P500
and NASDAQ daily return series, find strong evidence for
rejecting the Normal-GARCH benchmark model, in fa-
vor of the models that can capture skewness in the con-
ditional distribution and asymmetry and long-memory in
the conditional variance. Also, Bao and Lee [8] investigate
the nonlinear predictability of stock returns when the den-
sity forecasts are evaluated/compared instead of the condi-
tional mean point forecasts. The conditional meanmodels
they use for the daily closing S&P500 index returns include
themartingale differencemodel, the linear ARMAmodels,
the STAR and SETAR models, the ANN model, and the
polynomial model. Their empirical findings suggest that
the out-of-sample predictive abilities of nonlinear models
for stock returns are asymmetric in the sense that the right
tails of the return series are predictable via many of the
nonlinear models while we find no such evidence for the
left tails or the entire distribution.

Conclusions

In this article we have selectively reviewed the state-of-the-
art in nonlinear time series models that are useful in fore-
casting financial variables. Overall financial returns are
difficult to forecast, and this may just be a reflection of the
efficiency of the markets on processing information. The
success of nonlinear time series on producing better fore-

casts than linear models depends on how persistent the
nonlinearities are in the data. We should note that though
many of the methodological developments are concerned
with the specification of the conditional mean and condi-
tional variance, there is an active area of research inves-
tigating other aspects of the conditional density – quan-
tiles, directions, intervals – that seem to be promising from
a forecasting point of view.

For a more extensive coverage to complement this re-
view, the readers may find the following additional refer-
ences useful. Campbell, Lo, and MacKinlay [22], Chap-
ter 12, provides a brief but excellent summary of non-
linear time series models for the conditional mean and
conditional variance as well and various methods such as
ANN and nonparametric methods. Similarly, the inter-
ested readers may also refer to the books and monographs
of Granger and Teräsvirta [72], Franses and van Dijk [55],
Fan and Yao [52], Tsay [153], Gao [57], and some book
chapters such as Stock [139], Tsay [152], Teräsvirta [145],
and White [161].

Future Directions

Methodological developments in nonlinear time series
have happened without much guidance from economic
theory. Nonlinear models are for most part ad hoc spec-
ifications that, from a forecasting point of view, are vali-
dated according to some statistical loss function. Though
we have surveyed some articles that employ some eco-
nomic rationale to evaluate the model and/or the fore-
cast – bull/bear cycles, utility function, profit/loss func-
tion –, there is still a vacuum on understanding why, how,
and when nonlinearities may show up in the data.

From a methodological point of view, future devel-
opments will focus on multivariate nonlinear time series
models and their associated statistical inference. Nonlin-
ear VAR-type models for the conditional mean and high-
dimensional multivariate volatility models are still in their
infancy. Dynamic specification testing in a multivariate
setting is paramount to the construction of a multivariate
forecast and though multivariate predictive densities are
inherently difficult to evaluate, they are most important in
financial economics.

Another area of future research will deal with the
econometrics of a data-rich environment. The advent of
large databases begs the introduction of new techniques
and methodologies that permits the reduction of the many
dimensions of a data set to a parsimonious but highly in-
formative set of variables. In this sense, criteria on how to
combine information and how to combine models to pro-
duce more accurate forecasts are highly desirable.
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Finally, there are some incipient developments on
defining new stochastic processes where the random vari-
ables that form the process are of a symbolic nature, i. e. in-
tervals, boxplots, histograms, etc. Though the mathemat-
ics of these processes are rather complex, future develop-
ments in this area will bring exciting results for the area of
forecasting.
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