
self, based on how they perceive that others view them.
The concept has provided a captivating theoretical spring-
board for social scientists from a broad variety of disci-
plines. Sociologists and psychologists have historically
focused on this effect more than researchers in other
fields, however, because of the effect’s inherent focus on
both society and the individual as critical shaping forces in
the development of human identity.

The term looking-glass effect was coined by Charles
Horton Cooley, a social psychologist, in his 1902 treatise
entitled Human Nature and the Social Order. Cooley’s
assertion that people derive their attitudes about them-
selves based on how others perceive them drew on earlier
works by William James and inspired the work of George
Herbert Mead, founder of the school of thought known as
symbolic interactionism.

Central to the existence of the looking-glass self is the
presence of a social audience; to learn about themselves,
people require others to provide self-relevant information.
Gordon Gallup’s work with chimpanzees highlighted the
necessity of a history of social interaction to the existence
of self-knowledge (Gallup 1977). In a series of investiga-
tions, Gallup and his colleagues demonstrated that chim-
panzees that were reared in isolation from other
chimpanzees responded to their reflections in a mirror in
a very different fashion from their socially informed, non-
isolated counterparts. Whereas nonisolates recognized
themselves in a mirror and evidenced recognition of a
researcher-induced change in their physical appearance,
isolates never demonstrated knowledge that they were
viewing a reflection of themselves in the mirror. Without
a prior history of information about themselves gleaned
from interactions with other chimpanzees, isolates were
seemingly devoid of a concept of self.

Though Cooley’s original notion of the looking-glass
self implied that people imagine how others must view
them and, as a result, develop self-attitudes based on these
imagined evaluations by others, it did not detail whether or
not these imagined evaluations were accurate. It assumed,
rather, that people should be able effectively to learn about
themselves from social feedback from others. Later work
revealed, however, that people’s self-evaluations may 
not be rooted in others’ actual evaluations but in people’s
beliefs about how others evaluate them (Shrauger and
Schoeneman 1979). So, in effect, people could misperceive
others’ attitudes about themselves and, correspondingly,
report self-attitudes that did not align with others’ real
evaluations.

Findings that the looking-glass effect may not pro-
vide people with accurate self-evaluations challenged the
informative utility of the effect but paved the way for
future investigations concerning it. Much of this work has
revealed that people’s own feelings of self-worth, or self-

esteem, play a role in how they think that others view
them. People who have more positive self-evaluations tend
to believe that others view them positively as well.
Likewise, people who view themselves negatively are more
likely to believe that others view them in the same nega-
tive light. As a result, a more nuanced definition of the
looking-glass effect is people’s evaluations of themselves
based on their own self-attitudes and their perceptions,
which are influenced by these self-attitudes, of how others
view them (Tice and Wallace 2003).

SEE ALSO James, William; Mead, George Herbert;
Primates; Self-Concept; Social Influence; Social
Isolation; Social Psychology
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LOSS FUNCTIONS
The loss function (or cost function) is a crucial ingredient in
all optimizing problems, such as statistical decision theory,
policymaking, estimation, forecasting, learning, classifica-
tion, financial investment, and so on. The discussion here
will be limited to the use of loss functions in economet-
rics, particularly in time series forecasting.

When a forecast ft, h of a variable Yt + h is made at time
t for h periods ahead, the loss (or cost) will arise if a fore-
cast turns out to be different from the actual value. The
loss function of the forecast error et + h = Yt + h – ft, h is
denoted as c (Yt + h , ft, h ). The loss function can depend on
the time of prediction, and so it can be ct + h(Yt + h , ft, h ). If
the loss function does not change with time and does not
depend on the value of the variable Yt + h , the loss can be
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written simply as a function of the error only, ct + h(Yt + h ,
ft, h ) = c (et + h ).

Clive Granger (1999) discusses the following
required properties for a loss function: (1) c (0) = 0 (no
error and no loss); (2) mine c (e ) = 0, so that c (e ) ≥ 0; and
(3) c (e ) is monotonically nondecreasing as e moves away
from zero so that c (e1) ≥ c (e2) if e1 > e2 > 0 and if e1 < e2
< 0.

When c1(e ), c2(e ) are both loss functions, Granger
(1999) shows that further examples of loss functions can
be generated: c (e ) = ac1(e ) + bc2(e ), a ≥ 0, b ≥ 0 will be
a loss function; c (e ) = c1(e )ac2(e )b, a > 0, b > 0 will be a
loss function; and c (e ) = 1(e > 0)c1(e ) + 1(e < 0)c2(e ) will
be a loss function. If h (·) is a positive monotonic nonde-
creasing function with h (0) finite, then c (e ) = h (c1(e )) –
h (0) is a loss function.

LOSS FUNCTIONS AND RISK

Granger (2002) notes that an expected loss (a risk mea-
sure) of financial return Yt + 1 that has a conditional pre-
dictive distribution Ft(y) ≡ Pr (Yt + 1 ≤ y|It ) with Xt � It
may be written as

with A1, A2 both > 0 and some θ > 0. Considering the
symmetric case A1 = A2, one has a class of volatility mea-
sures Vθ = �[|y – f |θ ], which includes the variance with 
θ = 2, and mean absolute deviation with θ = 1.

Zhuanxin Ding, Clive Granger, and Robert Engle
(1993) study the time series and distributional properties
of these measures empirically and show that the absolute
deviations are found to have some particular properties,
such as the longest memory. Granger remarks that given
that the financial returns are known to come from a long-
tail distribution, θ = 1 may be more preferable.

Another problem raised by Granger is how to choose
optimal Lp-norm in empirical works, to minimize �[|εt|

p]
for some p to estimate the regression model Yt = Xtβ + εt.
As the asymptotic covariance matrix of Ã depends on p,
the most appropriate value of p can be chosen to minimize
the covariance matrix. In particular, Granger (2002) refers
to a trio of papers (Nyquist 1983; Money et al. 1982; and
Harter 1977) that find that the optimal p = 1 from
Laplace and Cauchy distribution, p = 2 for Gaussian, and
p = ∞ (min/max estimator) for a rectangular distribution.
Granger (2002) also notes that in terms of the kurtosis κ,
H. L. Harter (1977) suggests using p = 1 for κ > 3.8; p =
2 for 2.2 ≤ κ ≤ 3.8; and p = 3 for κ < 2.2. In finance, the
kurtosis of returns can be thought of as being well over 4,
so p = 1 is preferred.

We consider some variant loss functions with θ = 1, 2
below.

LOSS FUNCTIONS AND
REGRESSION FUNCTIONS

Optimal forecasting of a time series model depends exten-
sively on the specification of the loss function. Symmetric
quadratic loss function is the most prevalent in applications
due to its simplicity. The optimal forecast under quadratic
loss is simply the conditional mean, but an asymmetric loss
function implies a more complicated forecast that depends
on the distribution of the forecast error as well as the loss
function itself (Granger 1999), as the expected loss func-
tion is formulated with the expectation taken with respect
to the conditional distribution. Specification of the loss
function defines the model under consideration.

Consider a stochastic process Zt ≡ (Yt, X't )', where Yt
is the variable of interest and Xt is a vector of other vari-
ables. Suppose there are T + 1 (≡ R + P ) observations. We
use the observations available at time t, R ≤ t < T + 1, to
generate P forecasts using each model. For each time t in
the prediction period, we use either a rolling sample 
{Zt – R + 1, …, Zt} of size R or the whole past sample 
{Z1, …, Zt} to estimate model parameters Ãt. We can then
generate a sequence of one-step-ahead forecasts {f (Zt,
Ãt)}

T
t = R.

Suppose that there is a decision maker who takes a
one-step point forecast ft, 1 ≡ f (Zt, Ãt) of Yt + 1 and uses it
in some relevant decision. The one-step forecast error 
et + 1 ≡ Yt + 1 – ft, 1 will result in a cost of c (et + 1), where the
function c (e) will increase as e increases in size, but not
necessarily symmetrically or continuously. The optimal
forecast f *

t, 1 will be chosen to produce the forecast errors
that minimize the expected loss

where Ft(y ) ≡ Pr (Yt + 1 ≤ y|It ) is the conditional distribu-
tion function, with It being some proper information set
at time t that includes Zt – j , j ≥ 0. The corresponding opti-
mal forecast error will be

e*
t + 1 = Yt + 1 – f *

t, 1.

Then the optimal forecast would satisfy

When we interchange the operations of differentiation
and integration,

�

��

c( y � f *   )dFt(y) � 0.t,1
∂——

∂ft,1

�
min c( y � f t,1)dFt(y),

ft,1 ��

0

�
�c(e) � A1 |y � f |�dFt(y) � A2

0

��

|y � f |�dFt(y),
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the generalized forecast error, , 

forms the condition of forecast optimality:

H0: �(gt + 1|It ) = 0 a.s.,

that is, a martingale difference (MD) property of the gen-
eralized forecast error. This forms the optimality condi-
tion of the forecasts and gives an appropriate regression
function corresponding to the specified loss function c (·).

To see this, consider the following two examples.
First, when the loss function is the squared error loss

c (Yt + 1 – ft, 1) = (Yt + 1 – ft, 1)
2,

the generalized forecast error will be 

and thus �(e*
t + 1|It) 

= 0 a.s., which implies that the optimal forecast

f *
t, 1 = �(Yt + 1|It )

is the conditional mean. Next, when the loss is the check
function, c (e ) = [α – 1(e < 0)] · e ≡ ρα(et + 1), the optimal
forecast ft, 1, for given α � (0, 1), minimizing

can be shown to satisfy

�[α – 1(Yt + 1 < f *
t, 1)|It ] = 0 a.s.

Hence, gt + 1 ≡ α – 1(Yt + 1 < f *
t, 1) is the generalized fore-

cast error. Therefore,

α = �[1(Yt + 1 < f *
t, 1)|It ] = Pr (Yt + 1 ≤ f *

t, 1|It ),

and the optimal forecast f *
t, 1 = qα(Yt + 1|It ) is the condi-

tional α-quantile.

LOSS FUNCTIONS FOR
TRANSFORMATIONS

Granger (1999) notes that it is implausible to use the same
loss function for forecasting Yt + h and for forecasting ht + 1
= h (Yt + h ) where h (·) is some function, such as the log or
the square, if one is interested in forecasting volatility.
Suppose the loss functions c1(·), c2(·) are used for forecast-
ing Yt + h and for forecasting h (Yt + h ), respectively. Let et + 1
≡ Yt + 1 – ft, 1 will result in a cost of c1(et + 1), for which the
optimal forecast f *

t, 1 will be chosen from minft, 1
∫∞

–∞c1(y – 
ft, 1)dFt(y), where Ft(y) ≡ Pr (Yt + 1 ≤ y|It ). Let εt + 1 ≡ ht + 1
– ht, 1 will result in a cost of c2(εt + 1), for which the opti-
mal forecast h*

t, 1 will be chosen from minht, 1
∫∞

–∞c2(h – ht, 1)
dHt(h), where Ht(h) ≡ Pr (ht + 1 ≤ h|It ). Then the optimal
forecasts for Y and h would respectively satisfy

It is easy to see that the optimality condition for f *
t, 1 does

not imply the optimality condition for h*
t, 1 in general.

Under some strong conditions on the functional forms of
the transformation h(·) and of the two loss functions c1(·),
c2(·), the above two conditions may coincide. Granger
(1999) remarks that it would be strange behavior to use
the same loss function for Y and h (Y ). This awaits further
analysis in future research.

LOSS FUNCTIONS FOR
ASYMMETRY

The most prevalent loss function for the evaluation of a
forecast is the symmetric quadratic function. Negative and
positive forecast errors of the same magnitude have the
same loss. This functional form is assumed because math-
ematically it is very tractable, but from an economic point
of view, it is not very realistic. For a given information set
and under a quadratic loss, the optimal forecast is the con-
ditional mean of the variable under study. The choice of
the loss function is fundamental to the construction of an
optimal forecast. For asymmetric loss functions, the opti-
mal forecast can be more complicated as it will depend
not only on the choice of the loss function but also on the
characteristics of the probability density function of the
forecast error (Granger 1999).

As Granger (1999) notes, the overwhelming majority
of forecast work uses the cost function c (e) = ae2, a > 0,
largely for mathematical convenience. Asymmetric loss
function is often relevant. A few examples from Granger
(1999) follow. The cost of arriving ten minutes early at the
airport is quite different from arriving ten minutes late.
The cost of having a computer that is 10 percent too small
for a task is different from the computer being 10 percent
too big. The loss of booking a lecture room that has ten
seats too many for your class is different from that of a
room that has ten seats too few. In dam construction, an
underestimate of the peak water level is usually much
more serious than an overestimate (Zellner 1986).

There are some commonly used asymmetric loss
functions. The check loss function c (y, f ) ≡ [α – 1
(y < f )] · (y – f ), or c (e) ≡ [α – 1(e < 0)] · e, makes the
optimal predictor f the conditional quantile. The check
loss function is also known as the tick function or lil-lin loss.
The asymmetric quadratic loss c (e) ≡ [α – 1(e < 0)] · e2

can also be considered. A value of α = 0.5 gives the sym-
metric squared error loss.

�

��

c1( y � f *   )dFt(y) � 0,t,1
∂——

∂ft,1
�

��

c2(h � h*   )dHt(h) � 0.t,1
∂——

∂ht,1

F               Gmin 
ft,1

� c(Yt�1 � f    )|Itt,1

g
f

c Y f et
t

t t t+ + +
∂

∂
− = −1 1 1 12≡ ( ),

* *

g
f

c Y ft
t

t t+ +
∂

∂
−1

1
1 1≡

,
,
*( )

�         ��

��

c( y � f *   )dFt(y)  �t,1
∂——

∂ft,1
c(Yt�1 � f *   )|Itt,1

∂——
∂ft,1
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A particularly interesting asymmetric loss is the linex
function of Hal Varian (1975), which takes the form

c1(e, α) = exp(αet + 1) – αet + 1 – 1,
where α is a scalar that controls the aversion toward either
positive (α > 0) or negative (α < 0) forecast errors. The
linex function is differentiable. If α > 0, the linex is expo-
nential for e > 0 and linear for e < 0. If α < 0, the linex is
exponential for e < 0 and linear for e > 0. To make the
linex more flexible, it can be modified to the double linex
loss function by

which is exponential for all values of e (Granger 1999).
When α = β, it becomes the symmetric double linex loss
function.

LOSS FUNCTIONS FOR
FORECASTING FINANCIAL
RETURNS

Some simple examples of the loss function for evaluating
the point forecasts of financial returns are the out-of-sam-
ple mean of the following loss functions studied in
Yongmiao Hong and Tae-Hwy Lee (2003): the squared
error loss c (y, f ) = (y – f )2; absolute error loss c (y, f ) = |y
– f |; trading return c (y, f ) = –sign(f ) · y (when y is a
financial asset return); and the correct direction c (y, y) =
–sign(f ) · sign(y), where sign(x) = 1(x > 0) – 1(x < 0) and
1(·) takes the value of 1 if the statement in the parenthe-
ses is true and 0 otherwise. The negative signs in the lat-
ter two are to make them the loss to minimize (rather than
to maximize). The out-of-sample mean of these loss func-
tions are the mean squared forecast errors (MSFE), mean
absolute forecast errors (MAFE), mean forecast trading
returns (MFTR), and mean correct forecast directions
(MCFD):

These loss functions may further incorporate issues such
as interest differentials, transaction costs, and market
depth. Because the investors are ultimately trying to max-
imize profits rather than minimize forecast errors, MSFE

and MAFE may not be the most appropriate evaluation
criteria. Granger (1999) emphasizes the importance of
model evaluation using economic measures such as
MFTR rather than statistical criteria such as MSFE and
MAFE. Note that MFTR for the buy-and-hold trading
strategy with sign (ft, 1) = 1 is the unconditional mean
return of an asset because MFTRBuy&Hold = –P–1ΣT

t = RYt + 1

→ –µ in probability as P → ∞, where µ ≡ �(Yt). MCFD
is closely associated with an economic measure as it relates
to market timing. Mutual fund managers, for example,
can adjust investment portfolios in a timely manner if
they can predict the directions of changes, thus earning a
return higher than the market average.

LOSS FUNCTIONS FOR
ESTIMATION AND EVALUATION

When the forecast is based on an econometric model, to
the construction of the forecast, a model needs to be esti-
mated. Inconsistent choices of loss functions in estimation
and forecasting are often observed. We may choose a sym-
metric quadratic objective function to estimate the
parameters of the model, but the evaluation of the model-
based forecast may be based on an asymmetric loss func-
tion. This logical inconsistency is not inconsequential for
tests assessing the predictive ability of the forecasts. The
error introduced by parameter estimation affects the
uncertainty of the forecast and, consequently, any test
based on it.

However, in applications, it is often the case that the
loss function used for estimation of a model is different
from the one(s) used in the evaluation of the model. This
logical inconsistency can have significant consequences
with regard to comparison of predictive ability of compet-
ing models. The uncertainty associated with parameter
estimation may result in invalid inference of predictive
ability (West 1996). When the objective function in esti-
mation is the same as the loss function in forecasting, the
effect of parameter estimation vanishes. If one believes
that a particular criteria should be used to evaluate fore-
casts, then it may also be used at the estimation stage of
the modeling process. Gloria González-Rivera, Tae-Hwy
Lee, and Emre Yoldas (2007) show this in the context of
the VaR model of RiskMetrics, which provides a set of
tools to measure market risk and eventually forecast the
value-at-risk (VaR) of a portfolio of financial assets. A VaR
is a quantile return. RiskMetrics offers a prime example in
which the loss function of the forecaster is very well
defined. They point out that a VaR is a quantile, and thus
the check loss function can be the objective function to
estimate the parameters of the RiskMetrics model.

MSFE � P �1 (Yt�1 � ft,1)2, g
t �R

T

MAFE � P �1 |Yt�1 � ft,1|, g
t �R

T

MFTR � �P �1 sign( ft,1) 
 Yt�1 , g
t �R

T

MCFD � �P �1 1(sign( ft,1) 
 sign(Yt�1) � 0) . g
t �R

T

c(e) � c1(e, �) � c1(e, ��),

� exp(�e) � exp(��e) � (� � �)e � 2

� � 0, � � 0,
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LOSS FUNCTION FOR BINARY
FORECAST AND MAXIMUM SCORE

Given a series {Yt}, consider the binary variable Gt + 1 ≡
1(Yt + 1 > 0). We consider the asymmetric risk function to
discuss a binary prediction. To define the asymmetric risk
with A1 ≠ A2 and p = 1, we consider the binary decision
problem of Clive Granger and Hashem Pesaran (2000b),
and Tae-Hwy Lee and Yang Yang (2006) with the follow-
ing 2 × 2 payoff or utility matrix:

where uij is the utility when Gt, 1(Xt ) = j is predicted and
Gt + 1 = I is realized (i, j = 1, 2). Assume u11 > u10 and 
u00 > u01, and uij are constant over time; (u11 – u10) > 0 is
the utility gain from taking correct forecast when Gt, 1(Xt )
= 1; and (u00 – u01) > 0 is the utility gain from taking cor-
rect forecast when Gt, 1(Xt ) = 0. Denote

π(Xt ) ≡ �Yt + 1
(Gt + 1|Xt ) = Pr (Gt + 1 = 1|Xt ).

The expected utility of Gt, 1(Xt ) = 1 is u11π(Xt ) + u01(1 –
π(Xt )), and the expected utility of Gt, 1(Xt ) = 0 is 
u10π(Xt ) + u00(1 – π(Xt )). Hence, to maximize utility,
conditional on the values of Xt, the prediction Gt, 1(Xt ) = 1
will be made if

u11π(Xt ) + u01(1 – π(Xt )) > u10π(Xt ) + u00(1 – π(Xt )),

or

By making a correct prediction, our net utility gain is (u00

– u01) when Gt + 1 = 0, and (u11 – u10) when Gt + 1 = 1. Put
another way, our opportunity cost (in the sense that you
lose the gain) of a wrong prediction is (u00 – u01) when 
Gt + 1 = 0 and (u11 – u10) when Gt + 1 = 1. Since a multiple
of a utility function represents the same preference, (1 –
α) can be viewed as the utility gain from correct predic-
tion when Gt + 1 = 0, or the opportunity cost of a false
alert. Similarly,

can be treated as the utility gain from correct prediction
when Gt + 1 = 1 is realized, or the opportunity cost of a fail-
ure-to-alert. We thus can define a cost function 
c(et + 1) with et + 1 = Gt + 1 – Gt, 1(Xt ):

That is,

which can be equivalently written as c(et + 1) = ρα(et + 1),
where ρα(e) ≡ [α – 1(e < 0)e] is the check function.
Hence, the optimal binary predictor G†

t, 1(Xt) = 1(π(Xt) >
1 – α) maximizing the expected utility minimizes the
expected cost E(ρα(et + 1)|Xt).

The optimal binary prediction that minimizes 
�Yt + 1

(ρα(et + 1)|Xt) is the conditional α-quantile of Gt + 1,
denoted as

This is a maximum score problem of Charles Manski
(1975).

Also, as noted by James Powell (1986), using the fact
that for any monotonic function h (·), Qα(h (Yt + 1)|Xt ) =
h (Qα(Yt + 1|Xt )), which follows immediately from observ-
ing that Pr (Yt + 1 < y|Xt ) = Pr [h (Yt + 1) < h (y)|Xt ], and
noting that the indicator function is monotonic, 
Qα(Gt + 1|Xt ) = Qα(1(Yt + 1 > 0)|Xt ) = 1(Qα(Yt + 1|Xt ) > 0).
Hence,

G†
t, 1(Xt ) = 1(Q †

α(Yt + 1|Xt ) > 0).
where Qα(Yt + 1|Xt ) is the α-quantile function of Yt + 1 con-
ditional on Xt. Note that Q †

α(Gt + 1|Xt ) = argmin 
�Yt + 1

(ρα(et + 1)|Xt ) with et + 1 ≡ Gt + 1 – Qα(Gt + 1|Xt ), 
and Q †

α(Yt + 1|Xt) = arg min �Yt + 1
(ρα(ut + 1)|Xt ) with ut + 1

≡ Yt + 1 – Qα(Yt + 1|Xt ). Therefore, the optimal binary pre-
diction can be made from binary quantile regression for
Gt + 1. Binary prediction can also be made from a binary
function of the α-quantile for Yt + 1.

LOSS FUNCTIONS FOR
PROBABILITY FORECASTS

Francis Diebold and Glenn Rudebusch (1989) consider
the probability forecasts for business-cycle turning points.
To measure the accuracy of predicted probabilities, that is,
the average distance between the predicted probabilities
and observed realization (as measured by a zero-one
dummy variable). Suppose we have time series of P prob-
ability forecast {pt}

T
t = R +1, where pt is the probability of the

occurrence of a turning point at date t. Let {dt}
T
t = R +1 be the

Gt,1(Xt) � Q�(Gt�1|Xt)

Gt,1(Xt)
� arg min �Yt�1(��(Gt�1 � Gt,1(Xt))|Xt).

† †

c(et�1) � 1 � � if   et�1 �  �1 ,
0 if   et�1 �     0

� if   et�1 �     1

Gt�1 � 1

Gt,1(Xt) � 1 0 1 � �

� 0Gt,1(Xt) � 0

Cost Gt�1 � 0

� �
(u11 � u10)

—————————––—
(u11 � u10) � (u00 � u01)

 � 1 � �.�(Xt) �
(u00 � u01)

—————————––—
(u11 � u10) � (u00 � u01)

Gt�1 � 1

Gt,1(Xt) � 1 u11 u01
u10 u00Gt,1(Xt) � 0

Utility Gt�1 � 0
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corresponding realization with dt = 1 if a business-cycle
turning point (or any defined event) occurs in period t
and dt = 0 otherwise. The loss function analogous to the
squared error is Brier’s score based on the quadratic prob-
ability score (QPS):

The QPS ranges from 0 to 2, with 0 for perfect accuracy.
As noted by Diebold and Rudebusch (1989), the use of
the symmetric loss function may not be appropriate, as a
forecaster may be penalized more heavily for missing a call
(making a Type II error) than for signaling a false alarm
(making a Type I error). Another loss function is given by
the log probability score (LPS)

which is similar to the loss for the interval forecast. Major
mistakes are penalized more heavily under LPS than
under QPS. Further loss functions are discussed in
Diebold and Rudebusch (1989).

Another loss function useful in this context is the
Kuipers score (KS), which is defined by

KS = Hit Rate – False Alarm Rate,

where the hit rate is the fraction of the bad events that
were correctly predicted as good events (power, or 1—
probability of Type II error), and the false alarm rate is the
fraction of good events that have been incorrectly pre-
dicted as bad events (probability of Type I error).

LOSS FUNCTION FOR INTERVAL
FORECASTS

Suppose Yt is a stationary series. Let the one-period-ahead
conditional interval forecast made at time t from a model
be denoted as

Jt, 1(α) = (Lt, 1(α), Ut, 1(α)), t = R, …, T,

where Lt, 1(α) and Ut, 1(α) are the lower and upper limits
of the ex ante interval forecast for time t + 1 made at time
t with the coverage probability α. Define the indicator
variable Xt + 1(α) = 1[Yt + 1 � Jt, 1(α)]. The sequence 
{Xt + 1(α)}T

t = R is IID Bernoulli (α). The optimal interval
forecast would satisfy �(Xt + 1(α)|It ) = α, so that {Xt + 1(α)
– α} will be an MD. A better model has a larger expected
Bernoulli log-likelihood

�αXt + 1(α)(1 – α)[1 – Xt + 1(α)].

Hence, we can choose a model for interval forecasts with
the smallest out-of-sample mean of the negative predictive
log-likelihood defined by

LOSS FUNCTION FOR DENSITY
FORECASTS

Consider a financial return series {yt}
T
t = 1. This observed

data on a univariate series is a realization of a stochastic
process YT ≡ {Yτ: Ω → �, τ = 1, 2, …, T} on a complete
probability space (Ω, FT , P

T
0), where Ω = �T ≡ xT

τ = 1�

and FT = �(�T) is the Borel σ-field generated by the open
sets of �T, and the joint probability measure PT

0(B ) ≡
P0[YT � B], B � �(�T) completely describes the stochas-
tic process. A sample of size T is denoted as yT ≡ (y1, …,
yT )'.

Let σ-finite measure νT on �(�T) be given. Assume 
P T

0(B ) is absolutely continuous with respect to νT for all
T = 1, 2, …, so that there exists a measurable Radon-
Nikod8m density gT(yT) = dPT

0/dνT, unique up to a set of
zero measure-νT.

Following Halbert White (1994), we define a proba-
bility model � as a collection of distinct probability meas-
ures on the measurable space (Ω, FT ). A probability model
� is said to be correctly specified for YT if � contains PT

0.
Our goal is to evaluate and compare a set of parametric
probability models {PT

θ }, where PT
θ(B ) ≡ Pθ[Y

T � B].
Suppose there exists a measurable Radon-Nikod8m density
f T(yT) = dPT

θ /dνT for each θ � Θ, where θ is a finite-
dimensional vector of parameters and is assumed to be
identified on Θ, a compact subset of �k (see White 1994,
Theorem 2.6).

In the context of forecasting, instead of the joint den-
sity gT(yT), we consider forecasting the conditional density
of Y t, given the information Ft – 1 generated by Yt – 1. Let
ϕt(yt) ≡ ϕt(yt|Ft – 1) ≡ gt(yt)/g

t – 1(yt – 1) for t = 2, 3, … and
ϕ1(y1) ≡ ϕ1(y1|F0) ≡ g1(y1) = g1(y1). Thus the goal is to
forecast the (true, unknown) conditional density ϕt(yt).

For this, we use a one-step-ahead conditional density
forecast model ψt(yt; θ) ≡ ψt(yt|Ft – 1; θ) ≡ ft(yt)/f

t – 1(yt – 1)
for t = 2, 3, … and ψ1(y1) ≡ ψ1(y1|F0) ≡ f1(y1) = f1(y1). If
ψt(yt; θ0) = ϕt(yt) almost surely for some θ0 � Θ, then the
one-step-ahead density forecast is correctly specified, and
it is said to be optimal because it dominates all other den-
sity forecasts for any loss functions as discussed in the pre-
vious section (see Granger and Pesaran 2000a, 2000b;
Diebold et al. 1998; Granger 1999).

In practice, it is rarely the case that we can find an
optimal model. As it is very likely that “the true distribu-
tion is in fact too complicated to be represented by a sim-
ple mathematical function” (Sawa 1978), all the models
proposed by different researchers can be possibly misspec-
ified and thereby we regard each model as an approxima-
tion of the truth. Our task is then to investigate which

�P �1 ln  �xt �1(�)(1 � �)[1�xt �1(�)]  .g
t �R

T

�                  �

LPS � �P �1 ln  pdt (1 � pt)(1�dt)  , g
t �R

T

�            �t

QPS � P �1 2(pt � dt)2. g
t �R

T
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density forecast model can approximate the true condi-
tional density most closely. We have to first define a met-
ric to measure the distance of a given model to the truth,
and then compare different models in terms of this 
distance.

The adequacy of a density forecast model can be
measured by the conditional Kullback-Leibler informa-
tion criterion (KLIC) (1951) divergence measure between
two conditional densities,

�t(ϕ: ψ, θ) = �ϕt
[ln ψt(yt) – ln ψt(yt; θ)],

where the expectation is with respect to the true con-
ditional density ϕt(·|Ft – 1), �ϕt

ln ψt(yt|Ft – 1) < ∞, and �ϕt
ln ψt yt|Ft – 1; θ) < ∞. Following White (1994), we define
the distance between a density model and the true density
as the minimum of the KLIC

�t(ϕ: ψ, θ*
t – 1) = �ϕt

[ln ψt(yt) – ln ψt(yt; θ
*
t – 1)],

where θ*
t – 1 = arg min �t(ϕ: ψ, θ) is the pseudotrue value of

θ (Sawa 1978). We assume that θ*
t – 1 is an interior point of

Θ. The smaller this distance is, the closer the density fore-
cast ψt(·|Ft – 1; θ

*
t – 1) is to the true density ϕt(·|Ft – 1).

However, �t(ϕ: ψ, θ*
t – 1) is unknown since θ*

t – 1 is not
observable. We need to estimate θ*

t – 1. If our purpose is to
compare the out-of-sample predictive abilities among
competing density forecast models, we split the data into
two parts, one for estimation and the other for out-of-
sample validation. At each period t in the out-of-sample
period (t = R + 1, …, T ), we estimate the unknown
parameter vector θ*

t – 1 and denote the estimate as œt – 1.
Using {œt – 1}

T
t = R + 1, we can obtain the out-of-sample esti-

mate of �t(ϕ: ψ, θ*
t – 1) by

where P = T – R is the size of the out-of-sample period.
Note that

where the first term in �P(ϕ: ψ) measures model uncer-
tainty (the distance between the optimal density ϕt(yt )
and the model ψt(yt; θ

*
t – 1), and the second term measures

parameter estimation uncertainty due to the distance
between θ*

t – 1 and œt – 1.
Since the KLIC measure takes on a smaller value

when a model is closer to the truth, we can regard it as a
loss function and use �P(ϕ: ψ) to formulate the loss-differ-
ential. The out-of-sample average of the loss-differential
between model 1 and model 2 is

which is the ratio of the two predictive log-likelihood
functions. With treating model 1 as a benchmark model
(for model selection) or as the model under the null
hypothesis (for hypothesis testing), �P(ϕ: ψ1) – �P(ϕ: ψ2)
can be considered as a loss function to minimize. To sum
up, the KLIC differential can serve as a loss function for
density forecast evaluation as discussed in Yong Bao, Tae-
Hwy Lee, and Burak Saltoglu (2007).

LOSS FUNCTIONS FOR VOLATILITY
FORECASTS

Gloria González-Rivera, Tae-Hwy Lee, and Santosh
Mishra (2004) analyze the predictive performance of vari-
ous volatility models for stock returns. To compare the per-
formance, they choose loss functions for which volatility
estimation is of paramount importance. They deal with
two economic loss functions (an option pricing function
and a utility function) and two statistical loss functions
(the check loss for a value-at-risk calculation and a predic-
tive likelihood function of the conditional variance).

LOSS FUNCTIONS FOR TESTING
GRANGER-CAUSALITY

In time series forecasting, a concept of causality is due to
Granger (1969), who defined it in terms of conditional
distribution. Tae-Hwy Lee and Weiping Yang (2007) use
loss functions to test for Granger-causality in conditional
mean, in conditional distribution, and in conditional
quantiles. The causal relationship between money and
income (output) has been an important topic that has
been extensively studied. However, those empirical studies
are almost entirely on Granger-causality in the conditional
mean. Compared to conditional mean, conditional quan-
tiles give a broader picture of a variable in various scenar-
ios. Lee and Yang (2007) explore whether forecasting the
conditional quantile of output growth may be improved
using money. They compare the check (tick) loss func-
tions of the quantile forecasts of output growth with and
without using the past information on money growth,
and assess the statistical significance of the loss-differential
of the unconditional and conditional predictive abilities.
As conditional quantiles can be inverted to the condi-
tional distribution, they also test for Granger-causality in
the conditional distribution (using a nonparametric cop-
ula function). Using U.S. monthly series of real personal
income and industrial production for income, and M1
and M2 for money, for 1959 to 2001, they find that out-
of-sample quantile forecasting for output growth, particu-

�P(� :�1) � �P(� :�2) � 

g
t �R�1

T1––
P ln	�2

  (yt ;�t�1)
�t (yt ;�t�1)� , t
2 1

�P(� :�) � ln	�t (yt )
�t (yt ;�t�1)�  g
t �R�1

T1––
P

� ln	�t (yt ;�t�1)
�t (yt ;�t�1)� , g
t �R�1

T1––
P

*

*

�P(� :�) � g
t �R�1

T1––
P ln	�t (yt )
�t (yt ;�t�1)�  
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larly in tails, is significantly improved by accounting for
money. On the other hand, money-income Granger-
causality in the conditional mean is quite weak and unsta-
ble. Their results have important implications for
monetary policy, showing that the effectiveness of mone-
tary policy has been underestimated by merely testing
Granger-causality in mean. Money-income Granger-
causality is stronger than it has been known, and therefore
the information on money growth can (and should) be
more widely utilized in implementing monetary policy.

SEE ALSO Autoregressive Models; Generalized Least
Squares; Least Squares, Ordinary; Logistic Regression;
Maximum Likelihood Regression; Optimizing
Behavior; Regression; Regression Analysis; Time Series
Regression
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LOST CAUSE
SEE Vindication.

LOTTERIES
Lotteries are most frequently government-sponsored alter-
natives to primarily illegal numbers games whereby the
participants win cash prizes if they match a series of num-
bers or symbols. It can be argued that lotteries date back

Lost Cause

502 INTERNATIONAL ENCYCLOPEDIA  OF  THE SOCIAL  SCIENCES ,  2ND EDITION


