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Abstract

Using different loss functions in estimation and forecast evaluation of econometric models can cause sub-
optimal parameter estimates and inaccurate assessment of predictive ability. Though there are not general
guidelines on how to choose the loss function, the modeling of Value-at-Risk is a rare instance is which the
loss function for forecasting evaluation is well defined. Within the context of the RiskMetrics™ method-
ology, which is the most popular to calculate Value-at-Risk, we investigate the implications of considering
different loss functions in estimation and forecasting evaluation. Based on U.S. equity, exchange rates, and
bond market data we find that there can be substantial differences on the estimates under alternative loss
functions. On calculating the 99% VaR for a 10-day horizon, the RiskMetrics™ model for equity markets
overestimates substantially the decay factor. However, the out-of-sample performance is not systematically
superior by using the estimates under the correct loss function.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In applied time series it is often the case that the loss function used for estimation of the
parameters of the model is different from the one(s) used in the evaluation of the model. This
is a logical inconsistency that is difficult to justify. If the researcher knows her loss function
and her objective is to minimize the loss, then optimality—either optimal parameter estimates
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and/or optimal forecasts—must be understood with respect to that loss function. The reality is
that there is little knowledge on what loss function we should choose since this choice is specific
to the particular economic questions under analysis. Mostly we resort to symmetric quadratic
loss functions because of their simplicity and easy mathematical treatment. The optimal forecast
associated with this type of loss function is simply the conditional mean, but if the loss function
is asymmetric, the optimal forecast is more complex as it depends not only on the loss function
but also on the probability density function of the forecast error (Granger, 1999), which may be
also unknown.

The aforementioned logical inconsistency—using different loss functions in estimation and
evaluation—has also significant statistical consequences with regard to the assessment of the pre-
dictive ability of competing models, e.g. Christoffersen and Jacobs (2004). When a single loss
function is used in both stages (estimation and forecasting), innovation uncertainty is asymptoti-
cally the only source of variability in the forecast error if the model is correctly specified. Under
correct specification, estimation uncertainty vanishes asymptotically. For misspecified models,
the uncertainty associated with parameter estimation becomes also relevant, and not taking it
into account may result in an incorrect assessment of the predictive ability of the models.1

In financial econometrics, the modeling of Value-at-Risk (VaR) is a rare instance in which the
loss function of the forecaster is well defined as opposed to many applications in which there are
no clear guidelines as to which loss functions to use for estimation and/or model validation. The
VaR is a conditional quantile and so can be directly estimated from minimizing the check func-
tion of Koenker and Bassett (1978), which in turn is also the loss function for evaluation of the
conditional quantile forecast. However, in many studies of VaR models, different loss functions
in estimation and forecasting are still chosen. Our objective is to investigate the implications of
this practice by focusing on the RiskMetrics (henceforth RM) model, which due to its simplicity
is widely accepted among practitioners.2

Using U.S. equity, exchange rate, and bond data, we estimate the RM model under the two
loss functions—the squared error loss and the check loss functions. Under correct model specifi-
cation, a suitable loss function will lead to consistent estimation. However, when misspecification
is present, the choice of the loss function for estimation is most important. It is very likely that
the RM model is misspecified, especially when it is indiscriminately used in a variety of data
sets. We investigate how much we may gain by using the same loss function for estimation and
for validation of the RM model. Our findings indicate that for a 10-day horizon there can be
substantial differences especially for equities under Student-t distribution.

The rest of the paper is organized as follows. In Section 2 we review the optimality of a
forecast for a squared loss function and for a check loss function. In this context, we also review
the RM model. We show that the relevant loss function for VaR calculations is the check function
and discuss the estimation of the RM model under the two aforementioned loss functions. In

1 West (1996) studies the effect of parameter estimation uncertainty on the asymptotic inference in comparing the
loss values of competing models. As long as the parameter values are consistently estimated the parameter estimation
uncertainty vanishes asymptotically in the loss. For the consistency under squared error loss see White (1994), and for
the consistency under the check loss see Komunjer (2005).

2 Perignon and Smith (2006) find that the most commonly used approach for VaR computation among commercial
banks is Historical Simulation, which is essentially a parameter free method based on the unconditional empirical dis-
tribution. Andersen et al. (2006) emphasize the importance of the conditional perspective and the exclusive modeling of
dependence among various assets for effective risk management. In this regard, RM provides a simple yet informative
solution.
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Section 3, we implement our approach with an extensive data set and we discuss the empirical
results. Finally, in Section 4 we conclude.

2. Optimal forecast and the RiskMetrics model

Consider a stochastic process Zt ≡ (Yt ,X
′
t ) where Yt is the variable of interest and Xt is

a vector of other variables. Suppose that there is a model for Yt , i.e. Yt = m(Xt ,λ) where λ

needs to be estimated, and assume that there are T ≡ (R + P) observations. We generate P

forecasts using the model. For each time t + 1 in the prediction period, we use either a rolling
sample {Zt−R+1, . . . ,Zt } of size R or the whole past sample {Z1, . . . ,Zt } to estimate the pa-
rameter λ. Let λ̂t denote this estimator, then we can generate a sequence of one-step-ahead
forecasts {f (Zt , λ̂t )}T −1

t=R .
Suppose that there is a decision maker who takes the one-step point forecast ft,1 ≡ f (Zt , λ̂t )

of Yt and uses it in some relevant decision. The one-step forecast error et+1 ≡ Yt+1 − ft,1 will
result in a cost of c(et+1) where the function c(e) will increase as e increases in size, but not
necessarily symmetrically or continuously. The optimal forecast f ∗

t,1 will be chosen to produce
the forecast errors that minimize the expected loss

(1)min
ft,1

∞∫

−∞
c(y − ft,1)dFt (y),

where Ft (y) ≡ Pr(Yt+1 � y|It ) is the conditional cumulative distribution function of Yt+1 and It

is some proper information set at time t including Zt−j , j � 0. The corresponding optimal fore-
cast error is e∗

t+1 = Yt+1 −f ∗
t,1. From the first order condition of (1), it can be shown that the con-

dition for forecast optimality is that the “generalized forecast error,” gt+1 ≡ ∂c(y − f ∗
t,1)/∂ft,1,

has the martingale difference (MD) property, i.e. E(gt+1|It ) = 0 a.s. (Granger, 1999).
Now let us consider the two functions for c(e). The first is the squared error loss c(e) = e2. In

this case, the generalized forecast error is gt+1 = −2e∗
t+1, which is an MD process. Therefore,

the optimal forecast f ∗
t,1 is the conditional mean f ∗

t,1 = E(Yt+1|It ). The second loss function to
consider is the check function c(e) = ρα(e) where ρα(e) ≡ [α − 1(e < 0)] × e, for α ∈ (0,1),
and 1(·) is the indicator function. The optimal forecast f ∗

t,1 for a given α may be estimated from

minft,1

∫ ∞
−∞ ρα(y − ft,1)dFt(y). It can be shown (see, e.g., Giacomini and Komunjer, 2005,

Lemma 1) that E(α − 1(Yt+1 < f ∗
t,1)|It ) = 0 a.s. In this case, the generalized forecast error

is gt+1 = α − 1(Yt+1 < f ∗
t,1), which is an MD process. Therefore, the optimal forecast is the

conditional α-quantile f ∗
t,1 ≡ qα(Yt+1|It ) ≡ qα,t .

Let {Yt }Tt=1 be a time series of continuously compounded daily returns on a financial asset.
The VaR is simply a conditional quantile return which serves as an indicator of the maximum
loss associated with a financial asset (or a portfolio) at a given confidence level. That is, f ∗

t,1 ≡
qα(Yt+1|It ) ≡ qα,t is the VaR at (1 − α) confidence level, which means that with probability
(1 − α), the return will not be lower than the VaR.

The RM model is based on the assumption that the return series follows a stochastic process
of the form

(2)Yt = μt(λ) + εt = μt(λ) + σt (λ)zt ,

where λ is the vector that fully parameterizes the process, {zt } is an i.i.d. Gaussian sequence with
zero mean and unit variance, μt(λ) = E[Yt |It−1] and σ 2

t (λ) = E[ε2
t |It−1]. The RM model sets



140 G. González-Rivera et al. / Finance Research Letters 4 (2007) 137–145
μt(λ) ≡ 0 ∀t due to difficulties associated with precise estimation of expected returns. Then, the
conditional α-quantile is

(3)VaRα ≡ qα,t = Φ−1(α)σt (λ),

where Φ(·) is the Gaussian distribution function, and the conditional variance is modeled as an
exponentially weighted moving average (EWMA) of squared past returns

(4)σ 2
t (λ) = (1 − λ)

t−1∑
j=1

λj−1Y 2
t−j

with decay factor λ ∈ (0,1). For large t , (4) is well approximated by σ 2
t = λσ 2

t−1 + (1 − λ)Y 2
t−1,

which allows easy incorporation of new information into volatility and VaR forecasts.
Regulators usually require the calculation of VaR for a 10-day horizon. RM uses the “square

root of time” rule to extend daily VaR forecasts to horizons containing multiple trading days. Let
qh
α,t denote the h-day VaR at (1 − α) confidence level, then we have qh

α,t = √
hqα,t where qα,t is

given above. Hence, the 10-day VaR is simply obtained by multiplying the daily VaR by
√

10.3

J.P. Morgan (1996) originally estimated the decay factor by minimizing the squared error loss
for the conditional variance

(5)λ̂h
t = arg min

λ∈(0,1)

1

t − h + 1

t−h+1∑
j=1

[
hσ 2

j (λ) − (
Yh

j

)2]
,

where Yh
j = ∑h−1

l=0 Yj+l (i.e. continuously compounded h-day return). Since the VaR qα,t is a
constant multiple of the estimated conditional volatility under the location-scale assumption (3),
the loss function associated with the square of the VaR forecast is also the squared error loss
function. However, the purpose of VaR analysis is forecasting the conditional quantile rather
than volatility, thus the loss function for the estimation of λ should reflect this fact. In other
words, the check loss function ρα(e) ≡ [α − 1(e < 0)] × e should be used to estimate λ instead
of the squared error loss c(e) = e2. The optimal forecast f ∗

t,1 ≡ qα(Yt+1|It ) ≡ qα,t is derived
from the martingale property of the generalized forecast error.

Therefore, we consider estimating the RM model by minimizing the check loss, in which case
the optimal decay factor is given by

(6)λ̃h
t,α = arg min

λ∈(0,1)

1

t − h + 1

t−h+1∑
j=1

ρα

(
eh
j

)
,

where eh
j = Yh

j − qh
α,j .

3 Note that the square root of time rule is exact only when RM model is correctly specified and normality holds as
noted by Tsay (2005). When we consider other specifications for conditional volatility and/or heavy tailed distributions,
this rule serves as an approximation. There is not a generally agreed method to construct multiple day VaR forecasts
under heavy tailed distributions. Danielsson and Vries (1997) suggest a scaling rule of the form h1/τ where τ is the tail
index. However, McNeil and Frey (2000) question the usefulness of this rule and argue that the scaling factor depends
on the level of conditional volatility and provide some estimates. According to their results using h1/2 is a very good
approximation when volatility is high and is not too far from optimal for average volatility levels. Thus, when we con-
struct the 10-day VaR forecasts under Student-t distribution below, we follow the square root of time rule. The interested
reader is referred to Diebold et al. (1998) for a detailed discussion of the scaling issue in VaR modeling.



G. González-Rivera et al. / Finance Research Letters 4 (2007) 137–145 141
3. Empirical implementation

We have two aims in this note. The first aim is to quantify the differences in the estimates of
the optimal decay factor using the check loss as opposed to the squared error loss function. The
second aim is to examine how much we may lose in forecasting VaR by estimating the decay
factor under squared error loss instead of using the check loss, or simply fixing it at 0.94, the
value originally proposed by RiskMetrics.

As for the first aim, we estimate λ for the RM model by a simple grid search based on the
aforementioned two loss functions.4 We use the first 500 observations to get an initial condi-
tional variance estimate from (4) and then use the recursive approximation to (4) to obtain the
conditional variance (and thus VaR) forecasts for the rest of the sample. This yields T − 500
conditional variances and VaR forecasts which are then used to evaluate the respective loss func-
tions. This exercise is repeated for all 99 values of λ ∈ Λ = {0.01,0.02, . . . ,0.99} to estimate λ

(i.e., choose λ that minimizes the loss function in Eq. (5) or Eq. (6)). Note that for 10-day horizon
we use overlapping 10-day returns.

As for the second aim of the paper, we compare the out-of-sample performance of VaR fore-
casts based on the squared error loss and the forecasts based on the check loss function, which is
the appropriate criterion for estimation and forecast evaluation. We also consider the alternative
of simply fixing λ at 0.94, the value proposed by RM and commonly used in practice. We esti-
mate λ by minimizing the squared error loss and check loss functions using the most recent R

observations based on the procedure described above in Eqs. (5) and (6). Then, P = 1000 VaR
forecasts are obtained from (4) by using the most recent R observations for each prediction (i.e.
a rolling window scheme is adopted).5 These alternative strategies deliver three estimates of the
decay factor: {0.94, λ̂h

t , λ̃
h
t,α}. For each estimate, we compute the out-of-sample mean forecast

check loss (MFCL) given by

(7)MFCLh
α(λt ) = 1

P − h + 1

T −h∑
t=R

ρα

(
êh
t+1

)
, êh

t+1 = Yh
t+1 − kα

√
hσ̂t+1(λt ),

where P = T − R, λt ∈ {0.94, λ̂h
t , λ̃

h
t,α}, σ̂t+1(λt ) = λt σ̂t (λt ) + (1 − λt )Y

2
t , and the scaling

factor kα is either Φ−1(α) (conditional normality) or kα = H−1(α)
√

(ν − 2)/ν (conditional
Student-t).6 Note also that in the estimation of λ̂h

t and λ̃h
t,α , described in (5) and (6), we use

a rolling window of observations {Yt−R+1, . . . , Yt }. We measure the departure of optimality (or
“non-optimality”) of the RM’s VaR forecasts with respect to the following criteria:

4 Estimation can also be performed by gradient based optimization methods under squared error loss or any other loss
function that is continuous and differentiable. However, the check loss is not fully differentiable and we need to use more
complicated methods like integer programming or the generic algorithm. Since the parameter of interest λ is bounded, a
grid search is the simplest procedure that is viable under both loss functions. This also allows us to observe the variation
in loss with respect to the entire range of the decay factor.

5 Note that here we use the first 250 observations, instead of 500, to get an initial variance estimate from (4) due to the
reduction in the size of the estimation sample.

6 The original RM model assumes normal distribution. In our analysis we also consider the Student-t distribution to
account for the well-known stylized fact that asset returns have leptokurtic distributions. We set the degrees of freedom
parameter equal to 6. We have also experimented with different degrees of freedom such as 5 and 7 and we have obtained
almost identical results. One can also estimate the degrees of freedom at the cost of implementing a more complex
estimation procedure.
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(8)L1(α,h) = MFCLh
α(0.94)/MFCLh

α

(
λ̃h

t,α

)
,

(9)L2(α,h) = MFCLh
α

(
λ̂h

t

)
/MFCLh

α

(
λ̃h

t,α

)
.

A value of L1(α,h) or L2(α,h) greater than unity indicates the non-optimality of the RM
model for VaR forecasting, which is due to the estimation of λ using the squared error loss
instead of the check loss.

We use daily return series from the three sets of data: (i) U.S. equity markets, (ii) foreign
exchange (FX) markets, and (iii) U.S. bond markets. For each of these three sets, we consider the
following three series. The three U.S. equity return series are the Dow-Jones Industrial index
(DJ), NYSE Composite index (NYSE), and NASDAQ Composite index (NASDAQ). The three
FX series considered are Swiss Frank (CHF), British Pound (GBP), and Japanese Yen (JPY).
The three U.S. bond market yield series are obtained for the T-Bills with three month (3M), six
month (6M), and one year (1Y) maturities.

The equity data starts on June 1, 1995 and ends on December 31, 2004 with a total of T =
2411 daily returns. For the FX data, the sample period is from January 3, 1995 to December 31,
2004 providing a total of T = 2514 observations. The bond data runs from January 3, 1995 to
December 31, 2004 providing T = 2501 observations.

In Table 1 we report the estimation results of λ. In Panel A, we present the estimates
for a 1-day horizon and in Panel B for a 10-day horizon. For the check loss, we consider
α ∈ {0.01,0.05,0.10}. Overall, there are discrepancies between the RM estimates and those
based on the check loss function mostly for equities and bonds. The discrepancies are more noto-
rious for the estimates based on the check loss function with α = 0.01, which is the most relevant
because the financial regulators require the calculation of VaR at the 99% confidence level. For
exchange rates, both estimates are virtually identical with the exception of JPY at 1-day horizon.
For the 1-day horizon, the largest discrepancy occurs for the NASDAQ returns under the Normal
and the Student-t distributions. There are also substantial differences for 3M T-bill under both
distributions. For the 10-day horizon, the discrepancies get larger for the equities returns either
under normality or under Student-t with a tendency for the estimates of the RM model to over-
estimate the decay factor. For the NASDAQ returns, the RM model provides an estimate of 0.98
but the estimate based in the check loss (α = 0.01) is only 0.83, and therefore attaching a much
lower weight to the most recent variance.

In Table 2 we report the out-of-sample performance of VaR forecasts by comparing the MF-
CLs defined in Eqs. (8) and (9). Given the results of Table 1, we exclusively consider α = 0.01.
As before, in Panel A we present the results for a 1-day horizon and in Panel B for a 10-day
horizon. Theoretically the ratios should be greater than or equal to one, but in practice issues of
model uncertainty, parameter uncertainty, and model instability may deliver ratios smaller than
one. It is very likely that the RM specification is not the best model for all the data sets considered
in this paper so that the possibility of dealing with a misspecified model is not negligible. Under
model misspecification it can be proven that the uncertainty of the forecast error depends not
only on the variance of the innovation but also on the form of the misspecification, i.e. omitted
variables, wrong functional form, structural breaks, etc. and consequently parameter uncertainty
does not vanish even asymptotically. The weight of all these factors on the forecast error and
on its associated loss is data-dependent. Therefore, the issue of out-of-sample predictive ability
requires an empirical investigation. Roughly speaking, for the data sets considered we find that
the MFCLs provided by the estimates based on the check loss are smaller than those based on the
RM estimates (ratios (8) and (9) larger than one) in those instances for which we find the largest
estimation discrepancies in Table 1, that is, for NASDAQ, JPY, and one-year T-bills. However an
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Table 1
Decay factor estimates

Panel A. 1-day horizon

Normal distribution Student-t distribution

λ̂1
T

λ̃1
T ,0.01 λ̃1

T ,0.05 λ̃1
T ,0.10 λ̂1

T
λ̃1
T ,0.01 λ̃1

T ,0.05 λ̃1
T ,0.10

DJ 0.92 0.94 0.95 0.93 0.92 0.90 0.95 0.95
NYSE 0.91 0.95 0.93 0.95 0.91 0.96 0.95 0.96
NASDAQ 0.92 0.85 0.96 0.97 0.92 0.81 0.96 0.97

CHF 0.99 0.97 0.98 0.98 0.99 0.99 0.98 0.98
GBP 0.96 0.96 0.95 0.96 0.96 0.98 0.96 0.96
JPY 0.94 0.98 0.97 0.97 0.94 0.98 0.97 0.97

3M 0.91 0.88 0.91 0.84 0.91 0.86 0.91 0.85
6M 0.93 0.99 0.91 0.89 0.93 0.93 0.92 0.90
1Y 0.97 0.99 0.98 0.95 0.97 0.99 0.98 0.96

Panel B. 10-day horizon

Normal distribution Student-t distribution

λ̂10
T

λ̃10
T ,0.01 λ̃10

T ,0.05 λ̃10
T ,0.10 λ̂10

T
λ̃10
T ,0.01 λ̃10

T ,0.05 λ̃10
T ,0.10

DJ 0.99 0.99 0.99 0.99 0.99 0.88 0.99 0.99
NYSE 0.98 0.92 0.99 0.95 0.98 0.89 0.99 0.99
NASDAQ 0.98 0.89 0.95 0.96 0.98 0.83 0.96 0.96

CHF 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.97
GBP 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.98
JPY 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99

3M 0.99 0.98 0.96 0.88 0.99 0.97 0.96 0.89
6M 0.92 0.98 0.97 0.94 0.92 0.97 0.97 0.93
1Y 0.99 0.96 0.98 0.99 0.99 0.95 0.98 0.99

Notes. This table reports decay factor estimates based on Eqs. (5) and (6). We use daily return series from the three sets
of data: (i) U.S. equity markets (DJ, NYSE, NASDAQ), (ii) FX markets (CHF, GBP, JPY), and (iii) U.S. bond markets
(3M, 6M, 1Y). The sample period for the three assets is approximately 10 years, from the beginning of 1995 to the end
of 2004, with a sample size of about T = 2500. The scaling factor, kα ≡ qα,t /σt (λ), is computed from the α-quantile of
the normal distribution [kα = Φ−1(α)], and from the α-quantile of the Student-t distribution [kα = H−1(α)

√
(ν − 2)/ν

with ν = 6]. The bold-font values indicate the largest discrepancies between the estimates provided by the RM model
and those based on the check loss function.

overall assessment of the results of Table 2 indicates that the out-of-sample forecasting perfor-
mance of VaR forecasts based on the RM specification under both loss functions, check loss and
the squared error loss, is very similar, that is, the mean statistical losses are roughly equivalent.

4. Concluding remarks

Our objective has been to investigate the implications from considering different loss func-
tions in the estimation and the forecasting stages. Though there are not general guidelines
regarding the choice of the loss function, in the VaR modeling we find an instance in which
the loss function for forecasting evaluation is well defined. Focusing on the popular RM model
we have addressed two issues in this paper. First, we have quantified the differences in the es-
timates of the optimal decay factor using the check loss as opposed to the squared error loss.
Second, we have compared the out-of-sample performance of VaR forecasts for which the decay
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Table 2
Out-of-sample performance of VaR forecasts comparison of loss functions

Panel A. 1-day horizon

Normal distribution Student-t distribution

L1(0.01,1) L2(0.01,1) L1(0.01,1) L2(0.01,1)

DJ 0.997 0.997 1.002 0.999
NYSE 0.969 0.989 0.955 0.961
NASDAQ 1.001 0.998 1.019 1.011

CHF 1.010 0.981 1.012 0.999
GBP 0.957 0.975 0.950 0.967
JPY 1.037 1.021 1.047 1.035

3M 0.939 0.942 0.930 0.927
6M 0.981 0.977 0.981 0.976
1Y 1.072 1.054 1.061 1.040

Panel B. 10-day horizon

Normal distribution Student-t distribution

L1(0.01,10) L2(0.01,10) L1(0.01,10) L2(0.01,10)

DJ 1.022 1.005 1.065 1.061
NYSE 0.992 1.007 0.910 0.909
NASDAQ 1.009 0.969 1.019 1.007

CHF 1.002 0.975 1.001 0.990
GBP 1.003 1.000 0.988 1.000
JPY 0.993 0.888 0.972 0.884

3M 0.941 1.081 0.896 1.076
6M 0.858 0.910 0.874 0.912
1Y 0.948 1.003 0.981 1.023

Notes. This table reports the ratios of the out-of-sample mean forecast check loss (MFCL) defined in Eqs. (8) and (9).
A value greater than one indicates that the RM model is suboptimal. The scaling factor, kα ≡ qα,t /σt (λ), is computed
from the α-quantile of the normal distribution [kα = Φ−1(α)], and from the α-quantile of the Student-t distribution
[kα = H−1(α)

√
(ν − 2)/ν with ν = 6]. The bold-font values indicate the largest discrepancies between the MFCLs

provided by the estimates of the RM model and by those based on the check loss function.

factor is estimated under squared error loss or simply fixed at 0.94 instead of estimating it using
the check loss. Our empirical results indicate that on calculating the 99% VaR, the RM model
for the equity markets tends to overestimate the decay factor for a 10-day horizon. However, the
out-of-sample forecasting results show that one may not necessarily gain in terms of predictive
ability on a systematic basis by estimating λ using the check loss function.
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