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ABSTRACT
We investigate the predictive performance of various classes of value-at-risk
(VaR) models in several dimensions—unfiltered versus filtered VaR models,
parametric versus nonparametric distributions, conventional versus extreme
value distributions, and quantile regression versus inverting the conditional dis-
tribution function. By using the reality check test of White (2000), we compare
the predictive power of alternative VaR models in terms of the empirical cov-
erage probability and the predictive quantile loss for the stock markets of five
Asian economies that suffered from the 1997–1998 financial crisis. The results
based on these two criteria are largely compatible and indicate some empirical
regularities of risk forecasts. The Riskmetrics model behaves reasonably well
in tranquil periods, while some extreme value theory (EVT)-based models do
better in the crisis period. Filtering often appears to be useful for some models,
particularly for the EVT models, though it could be harmful for some other
models. The CaViaR quantile regression models of Engle and Manganelli
(2004) have shown some success in predicting the VaR risk measure for various
periods, generally more stable than those that invert a distribution function.
Overall, the forecasting performance of the VaR models considered varies over
the three periods before, during and after the crisis. Copyright © 2006 John
Wiley & Sons, Ltd.

key words CaViaR; coverage probability; filtering; quantile loss; reality
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INTRODUCTION

Increasing financial fragility in emerging markets and the extensive use of derivative products in
developed countries can be characterized as two distinct features of the financial world over the last
decade. Consequently, effective use of risk measurement tools has been suggested as a main panacea
for mitigating growing financial risks. A uniform risk measurement methodology called value-at-
risk (VaR) has received a great deal of attention from both regulatory and academic fronts.1 During
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a short span of time, numerous papers have studied various aspects of VaR methodology. The recent
research in this field has progressed so rapidly that comparing the relative predictive performance
of different VaR models has not yet been matched. This comparison will provide valuable informa-
tion, since precise risk forecasts are vital for risk practitioners and regulators.

Consider a financial return series {rt}T
t=1, generated by the probability law Pr (rt £ r|Ft-1) ∫ Ft(r)

conditional on the information set Ft-1 (s-field) at time t - 1. Suppose {rt} follows the stochastic
process

(1)

where mt = E(rt|Ft-1), s 2
t = E(e2

t |Ft-1) and {zt} ∫ {et/st} has the conditional distribution function Gt(z)
∫ Pr(zt £ z|Ft-1). The VaR with a given tail probability a Œ (0, 1), denoted by qt(a), is defined as the
conditional quantile

(2)

which can be estimated by inverting the distribution function

(3)

Hence a VaR model involves the specification of Ft(·), or mt, s 2
t, Gt(·). For a given model with the

conditional mean mt, this paper considers different approaches to modelling the conditional variance
s 2

t and conditional distribution Ft(·) or Gt(·). See Table I, where the various models are classified as
‘unfiltered’ if a VaR model involves the specification of Ft(·), or ‘filtered’ if a VaR model involves
the specification of mt, s 2

t, Gt(·). The filtered VaR models are computed using the standardized return
series zt = (rt - mt)/st with s 2

t estimated by a GARCH(1, 1) model.
If the dependence structure of {rt} can be fully described by the first two conditional moments,

that is, Ft(·) belongs to a location-scale family, {zt} may be independently and identically distributed
(IID) so that Gt(·) = G(·), for which a parametric distribution may be used: e.g., the normal distri-
bution, the Student-t distribution, the generalized error distribution (Nelson, 1991), the exponential
generalized beta distribution (Wang et al., 2001), the stable Paretian distribution (Mittnik et al., 2002)
and the mixture of normal distributions (Venkataraman, 1997). We can also estimate the distribution
nonparametrically: e.g., the semi-parametric model of Engle and González-Rivera (1991), the his-
torically simulated density and the nonparametric density. When {zt} is not IID, its time-varying con-
ditional distribution Gt(·) may be modelled parametrically (e.g., Hansen, 1994; Harvey and Siddique,
1999, 2000), nonparametrically (e.g., Gallant et al., 1991; Hall et al., 1999; Cai, 2002), or via a time-
varying mixture of some distributions.

The popularity of the parametric models stems mainly from their intuitive appeal and simplicity.
However, most conventional parametric specifications and some nonparametric distributions have
failed in capturing some rare events that took place in emerging financial markets over the last
decade. This inadequacy has led researchers to model directly the tail behaviour of a distribution
parametrically rather than the whole distribution. To fill this gap, recent studies on risk modelling
have found an interesting avenue in this direction, leading the extreme value theory (EVT) distri-
butions to become popular. The most commonly used EVT distributions in the literature include the
generalized extreme value (GEV) distribution of von Mises (1936) and Jenkinson (1955), the gen-
eralized Pareto (GP) distribution of Balkema and de Haan (1974) and Pickands (1975), and the Hill

q F Gt t t t ta a m s a( ) = ( ) = + ( )- -1 1

F qt t a a( )( ) =

r zt t t t t t= + = +m e m s
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(1975) estimator. While EVT was developed under the IID assumption on the series in question, the
theory has been extended to serially dependent observations provided that the dependence is weak.
See Berman (1964) and Leadbetter et al. (1983). Hence EVT distributions could be directly appli-
cable to the return series which has long as well as short memory. Recently, serious research has
been conducted in this field. See Longin (1996), Danielsson and de Vries (1997), Pownall and
Koedijk (1999) and Neftçi (2000). Certain problems with the EVT methodology have also been 
documented in Diebold et al. (2000).

Another question is how to model s 2
t . The conditional variance s 2

t can be estimated with various
volatility models. We can estimate it nonparametrically (e.g., Bühlman and McNeil, 2001), para-
metrically (e.g., Engle, 1982; Bollerslev, 1986; Taylor, 1986). See Poon and Granger (2003) for an
excellent survey and references therein. In light of the fact that VaR is essentially a quantile of some
distribution, we do not include various volatility models in this paper and focus instead on the dis-
tribution Gt(·) or Ft(·). González-Rivera et al. (2004) and Hansen and Lunde (2004) found that in
terms of out-of-sample predictive ability some simple volatility models often perform as well as
more complex models, while their relative performance varies with users’ evaluation criteria. There-
fore, we consider only a simple GARCH(1,1) model for s 2

t.

Table I. VaR models and mnemonics

Unfiltered Filtered

Normal distribution Normal*
Historical distribution HS HS*
Monte Carlo distribution MC MC*
NP distribution NP NP*
EVT distributions* GP GP*

GEV GEV*
HILL HILL*

No distribution CaViaRS

CaViaRA

Notes:
(1) This table defines mnemonics for the models used in this paper.
(2) The filtered VaR models (using z) are computed using the standardized returns
zt = rt/st where s 2

t is estimated by a GARCH(1, 1) model. The filtered models are
denoted with *.
(3) The acronyms stand for the following methods: HS = historical simulation; MC
= Monte Carlo; NP = nonparametrically estimated distribution of Hall et al. (1999)
and Cai (2002); GP = generalized Pareto distribution; GEV = generalized extreme
value distribution; Hill = method based on Hill (1975); CaViaRS = symmetric
CaViaR model of Engle and Manganelli (2004); CaViaRA = asymmetric CaViaR
model of Engle and Manganelli (2004).
(4) CaViaR models do not need a distribution as they are not based on inversion
of the distribution to estimate quantiles. We do not consider the filtered version of
CaViaR models for zt because {zt} is nearly IID and its quantiles may not exhibit
any dependence.
(5) In addition to the above models, we also include the popular Riskmetrics model
in Tables III and IV as a benchmark. The Riskmetrics model is similar to Normal*
as it uses the normal distribution, but different from Normal* as its s 2

t is updated
by EWMA instead of s 2

t being estimated by GARCH(1, 1) as we do for Normal*.
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The essential problem is that we usually do not know the true data generating process (DGP).
While the conventional VaR models (assuming normality or its extensions) have been criticized for
their inadequacy during the recent Asian financial turmoil, models based on the EVT distributions
are claimed to perform better during the crisis period. On the other hand, the nonparametric model
of Hall et al. (1999) and Cai (2002) requires very weak assumptions and has a generic advantage
compared with the EVT or parametric distributions to capture higher-order dependency beyond that
specified in some particular parametric models or the simplest IID assumption, and hence avoid
potential misspecifications. However, this generality does not necessarily guarantee the superior pre-
dictive performance of the nonparametric model, especially in small samples.

The aim of our paper is to compare various VaR models in the following dimensions: (i) Whether
to filter or not?2 (ii) Whether to model the distribution Gt(·) or Ft(·) parametrically or nonparametri-
cally? (iii) Whether to model the whole distribution or the tails only? (iv) Whether to model quan-
tiles directly or to estimate the quantiles via the inverse of Ft(·) or Gt(·) as in (3)? A direct way to
estimate the conditional quantile is the CaViaR model of Engle and Manganelli (2004), where an
autoregressive quantile model is used to estimate the conditional quantile of unfiltered data.

We apply these different approaches to VaR modelling to the stock markets of five Asian
economies (Indonesia, Korea, Malaysia, Taiwan and Thailand), that suffered the 1997–1998 finan-
cial crisis. Thus our exercise can be regarded as a ‘stress testing’ under different market scenarios.
See Table II. Various VaR models are compared in terms of the predictive likelihood function for
quantile forecasts using the reality check tests of White (2000) and Hansen (2001), and also in terms
of the tail interval forecast (empirical tail coverage probability), for the one-step-ahead VaR predic-
tions at a = 0.01 and 0.05.

Our results indicate some empirical regularities of risk forecasts. The Riskmetrics model behaves
reasonably well in tranquil periods, while some EVT models do better in the crisis period. Filtering
often appears to be useful for some models (particularly the EVT models), though it could be harmful
for some other models. The CaViaR models have shown some success in predicting the VaR risk
measure for various periods, generally comparable to the VaR models that invert a distribution func-
tion. Overall, the forecasting performance of the VaR models considered varies for different tails,
over the three different periods, and for the five different economies.

Table II. Three out-of-sample evaluation periods

Period 1 Period 2 Period 3
(before crisis) (during crisis) (after crisis)

Out-of-sample period 1/1/1996–12/31/1996 7/1/1997–6/30/1998 1/1/1999–12/31/1999
P = 261 P = 261 P = 261

In-sample period 1/1/1988–12/31/1995 1/1/1988–6/30/1997 1/1/1988–12/31/1998
R = 2086 R = 2476 R = 2869

2 Following Hull and White (1998) and Barone-Adesi et al. (2002), a VaR model in this paper is said to be ‘filtered’ if it is
applied to zt = (rt - mt)/st, the standardized demeaned return series using a time-varying volatility model. A VaR model is
said to be ‘unfiltered’ if it is applied to rt or if the volatility is assumed to be a constant (s 2

t = s2). One exception to this 
terminology is for the Monte Carlo distribution.
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The organization of this paper is as follows. In the next section we discuss various VaR models.
In the third section forecast evaluation criteria and the predictive ability tests are discussed. The
fourth section presents the empirical results, and a final section concludes.

VAR MODELS

As defined in equations (1)–(3), the computation of qt(a) amounts to computing the quantile of the
distribution of {zt} or {rt}. Given the specifications of mt and s 2

t , it can be seen from (3) that VaR
models will be determined by the choice of Gt(·) or Ft(·). We consider five types of distribution:
namely, normal distribution, historically simulated distribution (HS), Monte Carlo simulated distri-
bution (MC), nonparametrically estimated distribution (NP) and EVT-based distribution. We also
consider the CaViaR model of Engle and Manganelli (2004), that is to estimate the VaR from a quan-
tile regression rather than from inverting Gt(·) or Ft(·).

The various models described in this section are summarized in Table I. We use an asterisk * to
denote a filtered model. For example, NP* denotes that VaR is estimated by applying the non-
parametric distribution to the filtered series {zt}.

Throughout, for the purpose of comparison, we include the Riskmetrics model of J.P. Morgan
(1995) as a benchmark model

(4)

where F(·) is the standard normal distribution function so that F-1(0.01) = -2.326 and F-1(0.05) =
-1.645, and t is given recursively by the exponentially weighted moving average (EWMA)

(5)

with .3

Normal distribution
We consider the standard normal distribution F(·) for Gt(·) so that qt(a) = mt + stF-1(a) with s 2

t esti-
mated by the GARCH(1, 1) model s 2

t = a0 + a1r 2
t-1 + a2s 2

t-1 with mt = 0. This model is denoted as
Normal* in Table I. Normal* and Riskmetrics differ in s 2

t and mt, with the same F(·) for Gt(·).

Historical distribution
One approach to VaR modelling is to estimate the quantile nonparametrically. A conventional way
is to use the historically simulated distribution (HS). The idea behind historical simulation is to
assume that the distribution of returns {rt} will remain the same in the past and in the future, and
hence the empirical distribution of historical returns will be used in forecasting VaR. See Jorion
(2000, p. 221) for more details.

m̂t jj

t

t
r=

- =

-Â1

1 1

1

ˆ . ˆ . ˆs s mt t t tr2
1

2
1

2
0 94 0 06= + -( )- -

ŝ

ˆ ˆ ˆqt t ta m s a( ) = + ( )-F 1

3 We use for the Riskmetrics model and for MC models following the convention for these two models. 

For the other models in this paper, we set mt = 0.
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j
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The key assumption of HS is that the series under consideration is IID. For periods of greater
turmoil, it can turn out to be a very bad measure of risk since risk can change significantly. There-
fore, a more appropriate path to pursue is to put different weights on historical observations of {rt}.
The ideas of volatility updating (Hull and White, 1998) and filtering (Barone-Adesi et al., 2002) are
in the direction of using the filtered series {zt} instead of {rt}. The filtered HS model will be denoted
as HS* when s 2

t is estimated from a GARCH(1, 1) model. See Table I.

Monte Carlo distribution
The underlying stochastic process that governs the dynamics of asset prices may be calibrated for
the asset’s future values. A popular, simple stochastic process is the geometric Brownian motion
given by

(6)

where St is the asset price at time t, Wt is a standard Wiener process, and mt and st are the drift and
volatility parameters, respectively. The solution to this stochastic differential equation is St =

S0 exp([mt - s 2
t]t + stWt). See Broadie and Glasserman (1998). Thus, simulating St amounts to  

simulating Wt. Since we are predicting one-step-ahead VaR, it can be written as

where zt is simulated from a standard normal distribution. We do it N times, from which the empir-
ical ath quantile of rt ∫ log(St/St-1) is estimated. Later, we set N = 1000.

When s 2
t is estimated from the unconditional variance with , 

the VaR model will be denoted as MC. When s 2
t is estimated by the conditional variance model of

GARCH(1, 1) it will be denoted as MC*. See Table I.

Nonparametrically estimated distribution
We also use a nonparametrically estimated conditional distribution following Hall et al. (1999) and
Cai (2002). If Y and X are stationary, the conditional distribution function of Y given X = xt can be
estimated through the ‘weighted’ Nadaraya–Watson estimator

(7)

where Kh(·) is a kernel function with bandwidth parameter h, 1(·) is an indicator function, and the
weights pi ∫ pi(xt) are obtained from a constrained maximization problem

max log pii

n

=Â 1

F y x

p k x x Y y

p k x x
t

i h i t i

i

n

i h i t
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subject to

where gi ∫ (xi - xt)Kh(xi - xt).4 The weights pi in (7) can be regarded as the local empirical likeli-
hoods. See Owen (2001). The solution to the above constrained maximization problem is pi = n-1

(1 + lgi)-1, where the Lagrangian multiplier l is chosen to maximize Ln(l) = (nh)-1Sn
i=1log(1 + lgi)

The quantile function can then be found as

(8)

where (y|xt) is estimated using the optimal bandwidth h selected by the standard cross-validation
based on the quantile estimation loss function of Koenker and Bassett (1978). See equation (29)
later. We report the results using the Gaussian kernel Kh(u) = (2p)-1/2exp(-(u/h)2/2), while other
kernels give similar results.

The NP distribution in (7) is the ‘conditional’ distribution. Of course, when we have an IID series,
the conditional distribution should be the same as the unconditional distribution; otherwise, the NP
method may capture some unknown higher-order dependency structure of a non-IID series. There-
fore, we employ the NP method to both unfiltered and filtered data, and we denote them as NP and
NP*, respectively, as summarized in Table I. Later, we set (yt xt) = (rt rt-1) for NP, and (yt xt) =
(zt zt-1) for NP*.5

Extreme value distributions
All the previous methods estimate the quantiles using information from the whole distribution. Alter-
natively, since the quantiles at 1% or 5% are ‘extreme’ values for a distribution, we can focus on
modelling the tails directly. That brings us to the extreme value theory. Embrechts et al. (1997) pro-
vided a treatise on various aspects of EVT; Longin (1996, 2000) used the generalized extreme value
distribution to estimate the tail index; McNeil and Frey (2000) and Neftçi (2000) used the general-
ized Pareto distribution. In the following discussion, we assume that the series in question, {yt}n

t=1,
is IID. Nevertheless, as mentioned before, we can apply the EVT models to weakly dependent series
(unfiltered data) too.

Generalized extreme value distribution
For a series {yt}, consider the ordered series {y(t)} in increasing order y(t) £ y(t+1) for all t. The sample
minimum is y(1) over an n-sample period. If {yt} is IID with the CDF FY(y), then the CDF of the
minimum, denoted by GY(y), is given by

F̂

ˆ inf ˆq y F y xt ta a( ) = Œ ( ) ≥{ }�

p g p pii

n

i i ii

n

= =Â Â= = ≥
1 1

0 1 0, and

4 The first constraint Sn
i=1pi(xi - xt)Kh(xi - xt) = 0 is the so-called ‘discrete moment condition’, which is not satisfied by the

Nadaraya–Watson estimator. This equation makes an extra term in the asymptotic bias of the Nadaraya–Watson estimator
in comparison to the local linear estimator. That is why this constraint is imposed. See Fan and Gijbels (1996, p. 63) and
Cai (2002, p. 172). We thank Zongwu Cai for pointing this out to us.
5 This choice is not in favour of the NP* method because {zt} is likely to exhibit the near-IID property. Nevertheless, we
choose xt = zt-1 and consider only the univariate case in this paper. We expect the NP and NP* models would perform better
when xt is chosen from some relevant variables that explain the returns. For example, Fama and French (1993) and Lakon-
ishok et al. (1994) identify factors like firm size, book to market ratio and earnings–growth extrapolation for the variable xt.
We do not consider these factors in the present study.
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(9)

Since GY(y) degenerates as n Æ •, we seek a limit law HX(x) with which a normalization 
xn = (y(1) - bn)/dn does not degenerate as n Æ • for some suitable normalizing constants bn and dn

> 0. The limiting distribution of xn is the generalized extreme value distribution of von Mises (1936)
and Jenkinson (1955) of the form

(10)

for 1 + tx > 0. The corresponding limiting density function of {xn} as n Æ •, obtained by differ-
entiating Hx(x), is given by

(11)

so that the approximate density of y(1) for given n, by change of variables, is

(12)

Hence the three parameters qn = (t bn dn)¢ may be estimated by maximum likelihood. To implement
it, Longin (1996, 2000) partitioned the sample into g non-overlapping subsamples each with m obser-
vations. In other words, if n = gm, the ith subsample of the series is {y(i-1)m+j}m

j=1 for i = 1, . . . , g. If
n < gm, we drop some observations in the first subsample so that it has fewer than m observations.
The collection of subperiod minima is then {ym,i}, where ym,i = min1£j£m{y(i-1)m+j}, i = 1, . . . , g. The
likelihood function of {ym,i} is

(13)

Assuming q i
m = qm for all subperiods, i = 1, . . . , g, we can estimate qm from a numerical optimiza-

tion of the (log) likelihood.
Next, consider the probability that the subperiod minimum ym,i is less than y*m under the limit law 

(10). Denoting , we have

(14)

which is therefore equal to
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(15)

where the second equality holds if y*m = q(a). Hence, equating (14) and (15), we get

(16)

which yields

(17)

Later, we use m = 10. We employ the GEV distribution to both unfiltered (yt = rt) and filtered data
(yt = zt).

Generalized Pareto distribution
An alternative EVT approach is based on exceedances over threshold (Smith, 1989; Davison and
Smith, 1990). According to this approach, we fix some low threshold u and look at all exceedances
e over u. To be consistent with the other part of this paper, we discuss here the exceedance distri-
bution for the left tail. The distribution of excess values is given by

(18)

Balkema and de Haan (1974) and Pickands (1975) showed that the asymptotic form of 
Pr(Y > u - e|Y < u) is

(19)

where d > 0 and 1 - te/d > 0. This is known as the generalized Pareto distribution with density

For {yt}n
t=1, we can estimate (t, d)¢ by maximizing Pm

i=1h(ei), where {ei}m
i=1 is the sample of exceedances

over the threshold u. Denote the MLE of (t, d)¢ by ( , )¢. Then from (18) and (19),

which gives, if we estimate F(u) by m/n,
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or equivalently for y < u,

(20)

Immediately, the ath quantile can be estimated by setting (y) = a and hence

(21)

An important issue in implementing the GP approach is how to choose the threshold u. For example,
if we are interested in the 5% quantile, then the chosen u must be larger (enough) than q(0.05). We
follow Neftçi (2000) and use the empirical 10% quantile. One possible extension is that we may
estimate the threshold value u to decide which extremes are really extremes, see Gonzalo and Olmo
(2004).

Hill estimator
Denote the ordered series as {y(t)}n

t=1 in increasing order. Suppose y(m) < 0 and y(m+1) > 0 so that m is
the number of negative observations in the sample. The GEV distribution (10) with t < 0 is known
as the Fréchet distribution with the CDF F(y) = exp(-|y|1–t ), y < 0. As shown in Embrechts et al. (1997,
p. 325), it reduces to

(22)

where C = u-1/t is a slowly varying function with u being the known threshold. A popular estimator
of t is due to Hill (1975), who showed that its maximum likelihood estimator is

(23)

where k ∫ k(m) Æ • and k(m)/m Æ 0. It is known that as m Æ • (Mason, 1982). We can
choose the sample fraction k using a bootstrap method of Danielsson et al. (2001). Once t is esti-
mated, the VaR estimate can be found from

(24)

See Embrechts et al. (1997, p. 347).

Conditional autoregressive VaR
Engle and Manganelli (2004) suggested that VaR can be estimated by modelling the quantiles directly
rather than inverting a distribution. The idea is similar to the GARCH modelling and VaR is 
modelled autoregressively as
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(25)

where xt Œ Ft-1, q is a parameter vector and h(·) is a function to explain the VaR model. This model
is called the CaViaR model. In our study two specifications of the CaViaR model are chosen:
Symmetric CaViaR (CaViaRS)

(26)

Asymmetric CaViaR (CaViaRA)

(27)

The estimation can be made via quantile regression. Due to the nondifferentiable absolute function
the estimation can be achieved by a genetic algorithm. See Price and Storn (1997). Following 
Engle and Manganelli (2004), we apply the CaViaR model directly to the return series {rt} (not to
{zt}).

COMPARING VAR MODELS

We compare VaR models through their performance in terms of out-of-sample one-step-ahead pre-
dictive ability. Suppose we have a sample of total T observations and we split it into an in-sample
part of size R and an out-of-sample part of size P so that T = P + R. We use a rolling window scheme.
That is, the (t - R)th prediction is based on observations t - R through t - 1, t = R + 1, . . . , T. Let
a benchmark model be indexed by k = 0 and the l competing models by k = 1, . . . , l. Let qk,t (a, bk)
be the VaR forecast using Model k (k = 0, . . . , l), for which a loss function L(qk,t (a, bk)) will be
defined. Then the loss differential between Model 0 (benchmark) and Model k is

where t-1 collects the estimated parameters using the information up to time t - 1 from both models. 
When the pseudo-true parameter vector b† (the probability limit of the estimator t-1) and the cor-
responding pseudo-true quantiles are used, we may define analogously f †

k,t. Stacking k,t and f †
k,t for

k = 1, . . . , l gives the l ¥ 1 vectors t and f †
t. Testing for the unconditional predictive ability hypoth-

esis can be conducted in terms of E( f †
t) (or E( f †) assuming stationarity) as in West (1996), while

the conditional predictive ability testing in terms of E( f †
t |Ft-1) as in Giacomini and White (2003).

Evaluation criteria
We evaluate and compare various VaR forecast models in terms of the predictive quantile loss and
the empirical coverage probability.

We use the ‘check’ function of Koenker and Bassett (1978). As we conduct an out-of-sample
analysis to compare predictive ability of the various VaR models, the check function may be regarded
as a ‘predictive’ quasi-likelihood, as discussed in Bertail et al. (2004) and Komunjer (2004). In what
follows, the index k may be suppressed to simplify notation. Hence, the expected loss of qt(a) for a
given a is:
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(28)

The loss Q(a) can provide a measure of the lack-of-fit of a quantile model. The expected check func-
tion Q(a) can be evaluated from the out-of-sample VaR forecasts

(29)

where t(a) = t
-1(a) = t + t t

-1(a) with t
-1(·), t, t, t

-1(·) estimated using the information 
Ft-1. A model that gives the VaR forecast t(a) with the minimum value of P(a) is the preferred
model.

If F(yt) is continuous in a neighbourhood of qt(a), qt(a) minimizes Q(a) and makes a condition
for the correct conditional coverage probability

(30)

i.e., {a - 1 (rt < qt(a))} is a martingale difference sequence (MDS).6 Given the nominal conditional
coverage probability a = E[1(rt < qt(a))|Ft-1], the empirical conditional coverage probability con-
structed for the VaR forecasts { t(a)}T

t=R+1 can be computed from

(31)

A model that gives the VaR forecast t(a) with P closest to its nominal value a is the preferred
model.

Reality check
When several models using the same data are compared in terms of predictive ability, it is crucial
to take into account the dependence among the models. Failing to do so will result in the data-
snooping problem, which occurs when a model is searched extensively until a match with the given
data is found. Conducting inference without taking specification search into account can be extremely
misleading (see Lo and MacKinlay, 1999, chapter 8). White (2000) developed a noble test of 
superior unconditional predictive ability among multiple models accounting for specification search,
built on Diebold and Mariano (1995) and West (1996).

Our interest is to compare all the models with a benchmark. An appropriate null hypothesis is that
all the models are no better than a benchmark, i.e., H0 :max1£k£l E( f †

k) £ 0. This is a multiple hypoth-
esis, the intersection of the one-sided individual hypotheses E(f †

k) £ 0, k = 1, . . . , l. The alternative
is that H0 is false, that is, the best model is superior to the benchmark. If the null hypothesis is
rejected, there must be at least one model for which E( f †

k) is positive. Suppose that ( - E(f †)) Æd

N(0, W) as P(T) Æ • when T Æ •, for W positive semi-definite. White’s (2000) test statistic for H0

is formed as ∫ max1£k£l k, where k = P-1/2ST
t=R+1 k,t. However, as the null limiting distribution

of is unknown, White (2000, theorem 2.3) showed that the distribution of ( * - ) converges
to that of ( - E(f†)), where * is obtained from the stationary bootstrap of Politis and RomanoffP
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6 See, e.g., Giacomini and Komunjer (2002). The MDS property has been used in forming a conditional moment test for the
quantile models. See, e.g., Zheng (1998), Engle and Manganelli (2004), Bierens and Ginther (2001).
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(1994). By the continuous mapping theorem this result extends to the maximal element of the vector
( * - ), so that the empirical distribution of

(32)

may be used to compute the p-value of (White, 2000, corollary 2.4). This p-value is called the
‘reality check p-value’.

We note that White’s reality check is conservative when a poor model is included in the set of l
competing models. The inclusion of k in (32) guarantees that the statistic satisfies the null hypoth-
esis E( *k - k) = 0 for all k. This setting makes the null hypothesis the least favourable to the alter-
native and consequently, it renders a very conservative test. When a poor model is introduced, the
reality check p-value for Model k becomes very large and, depending on the variance of k, it may
remain large even after the inclusion of better models. Hansen (2001) considered the following 
modification to (32):

(33)

where different g(·) functions will produce different bootstrap distributions that are compatible with
the null hypothesis. Hansen (2001) recommended setting g(·) as a function of the variance of k, i.e.

(34)

where with the variance estimated from the bootstrap samples. In our 

empirical section, we report two reality check p-values: with g( k) = k as in (32) (denoted as White)
and with g( k) determined from (34) (denoted as Hansen). When E(f †

k) = 0 for all 1 £ k £ l, then the
reality check p-value of White (2000) will provide an asymptotically correct size. However, when
some models are dominated by the benchmark model, i.e., E( f †

k < 0 for some 1 £ k £ l, then the
reality check p-value of White (2000) will make a conservative test. So, when bad models are
included in the set of competing models, White’s test tends to behave conservatively. Hansen’s (2001)
modification is basically to remove those (very) bad models in the comparison. Hansen (2001) con-
tains two modifications. One is what we employ here. The other is to take a maximum over the stan-
dardized statistics. There might be additional gains in power from the standardization, as noted in
Hansen (2001, 2003).

Remarks: White’s theorem 2.3 is obtained under the assumption of differentiability of the loss
function (as in West, 1996, assumption 1). Also, White’s theorem 2.3 is obtained under the assump-
tion that either (a) the same loss function is used for estimation and prediction, or (b) (P/R) log logR
Æ 0 as T Æ • so that the effect of parameter estimation vanishes asymptotically (as in West, 1996,
theorem 4.1(a)). Thus White’s theorem 2.3 does not immediately apply to the nonsmooth functions
and the presence of estimated parameters. Nevertheless, it is noted in White (2000, p. 1113) that the
results analogous to theorem 2.3 can be established under similar conditions used in deriving the
asymptotic normality of the least absolute deviations estimator. When no parameter estimation is
involved, White’s (2000) procedure is applicable to nondifferentiable f. We expect that the approach
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of Randles (1982) and McCracken (2000, assumption 4) may be useful here, where the condition
E(∂ f †/∂b) = 0 is modified to ∂(Ef†)/∂b = 0 to exploit the fact that the expected loss function may
be differentiable even when the loss function is not. We conjecture that when parameter estimation
is involved, White’s (2000) procedure continues to hold either when ∂(Ef†)/∂b = 0 or when P grows
at a suitably slower rate than R. Since we are using different criteria for in-sample estimation and
forecast evaluation, there is no reason to expect that ∂(Ef†)/∂b = 0. Hence it is important to have
very large R compared to P. In our empirical section, we thus have R = 2086, 2476 or 2869, which
are much larger than P = 261.

EMPIRICAL RESULTS

From Datastream, we retrieve the Indonesia Jakarta Stock Exchange Composite Price Index, Korea
Stock Exchange Composite Price Index, Malaysia Kuala Lumpur Stock Exchange Composite,
Taiwan Weight Index and Thailand S.E.T. Price Index. The return series is given by the log differ-
ence of price indices, then multiplied by 100. To investigate the performance of VaR models under
different circumstances, we use three out-of-sample evaluation periods, which we denote as the
before-crisis period, the crisis period and the after-crisis period, respectively. Thus our exercise can
be regarded as a ‘stress testing’ under different scenarios. The three periods are summarized in Table
II.

For all three periods the estimation sample (in-sample) starts from January 1, 1988. For each
period, we split the whole sample into an in-sample period and an out-of-sample period for one year
(P = 261). The first period ends at December 31, 1996 with total T(= R + P) = 2347 observations;
the second period, which covers the 1997–1998 Asian financial crisis, ends at June 30, 1998 with
total T = 2737 observations; the third period, after the crisis, ends at December 31, 1999 with total
T = 3130 observations.

Tail coverage probability
In Tables IIIA–C, we present the empirical coverage probability P (the relative frequency of the
violations) for Periods 1, 2 and 3, respectively.7 We investigate the three periods in order to compare
the potential changes in the risk forecast precision across the three different periods.

As shown in Table IIIA, for the pre-crisis period (Period 1) with a = 0.05, the conventional Risk-
metrics model has a satisfactory forecast. For most countries the predicted coverage probabilities
are very close to the nominal coverage. Both the symmetric and asymmetric CaViaR models do well.
Unfiltered EVT models behave rather poorly for this tail probability level a = 0.05. Most of the EVT
models perform rather poorly. The result marginally improves when filtering is applied, but is still
far from being satisfactory. The same finding is also applicable for HS and NP, even though these
nonparametric models have better forecasting performance than that of the EVT-based models. As
in the case of EVT models, filtering also improves the prediction quality of the HS, MC and NP
models. Both symmetric and asymmetric CaViaR models are quite satisfactory.

During the pre-crisis period with a = 0.01, the risk forecasts of Riskmetrics are fine but there are
many other alternative models which do better. For instance, filtered nonparametric (both HS* and
NP*), filtered Monte Carlo (MC*) and filtered GP (GP*) models provide good empirical coverage

â

7 When 1 (yt < t(a)) = 1, it will be said that a violation occurs.q̂
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probabilities. Unfiltered methods, on the other hand, mostly overstate the VaR forecasts (i.e., under-
state the coverage probability). Both CaViaR models are quite satisfactory. Overall, no model appears
to be particularly superior to Riskmetrics, which works reasonably well for both a = 0.05 and 0.01
in Period 1.

In Table IIIB, we observe different findings for the crisis period (Period 2). Most models fail to
generate correct coverage probabilities. Unlike the findings obtained in Period 1, most models under-
state the VaR forecasts (i.e., overstate the coverage probability). The Riskmetrics, MC, HS and other
conventional models here produce rather poor coverage for a = 0.05. For this quantile level and
period, a consistent risk forecasting across the five countries is not a trivial task. Among all the
models, the filtered Hill is relatively better but not satisfactory. CaViaR’s coverage performance here
is also less satisfactory.

Table IIIA. Empirical coverage probability, Period 1

Indonesia Korea Malaysia Taiwan Thailand

5% Riskmetrics 0.0460 0.0651 0.0421 0.0307 0.0728
Normal* 0.0383 0.0575 0.0192 0.0192 0.0498
HS 0.0383 0.0460 0.0153 0.0115 0.0383
HS* 0.0498 0.0766 0.0268 0.0192 0.0536
MC 0.0077 0.0192 0.0153 0.0115 0.0192
MC* 0.0383 0.0307 0.0192 0.0192 0.0421
NP 0.0383 0.0498 0.0153 0.0115 0.0613
NP* 0.0498 0.0766 0.0268 0.0230 0.0536
GP 0.0920 0.0766 0.0268 0.0192 0.0805
GP* 0.0805 0.0766 0.0345 0.0192 0.0690
GEV 0.0000 0.0000 0.0000 0.0000 0.0038
GEV* 0.0077 0.0077 0.0038 0.0077 0.0077
HILL 0.0383 0.0115 0.0153 0.0038 0.0077
HILL* 0.0421 0.0230 0.0153 0.0153 0.0153
CaViaRS 0.0536 0.0421 0.0307 0.0192 0.0498
CaViaRA 0.0766 0.0421 0.0307 0.0192 0.0498

1% Riskmetrics 0.0268 0.0115 0.0230 0.0153 0.0153
Normal* 0.0230 0.0115 0.0153 0.0153 0.0153
HS 0.0077 0.0000 0.0000 0.0038 0.0077
HS* 0.0230 0.0077 0.0115 0.0115 0.0115
MC 0.0038 0.0038 0.0153 0.0038 0.0077
MC* 0.0230 0.0115 0.0153 0.0153 0.0153
NP 0.0077 0.0000 0.0000 0.0038 0.0077
NP* 0.0230 0.0077 0.0115 0.0115 0.0115
GP 0.0077 0.0038 0.0038 0.0038 0.0077
GP* 0.0230 0.0115 0.0115 0.0115 0.0115
GEV 0.0000 0.0000 0.0000 0.0000 0.0000
GEV* 0.0000 0.0000 0.0000 0.0038 0.0000
HILL 0.0000 0.0000 0.0000 0.0000 0.0000
HILL* 0.0077 0.0077 0.0038 0.0077 0.0077
CaViaRS 0.0077 0.0077 0.0115 0.0115 0.0077
CaViaRA 0.0192 0.0077 0.0115 0.0115 0.0115

Note: The number in each cell refers to the frequency at which the actual return falls short of the VaR forecast in the 
out-of-sample period (1/1/1996–12/31/1996).
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For a = 0.01, some EVT-based methods, filtered GP (GP*) and filtered Hill (HILL*), perform
better than the other filtered VaR methods and Riskmetrics. The filtered NP (NP*) method produces
very poor coverage, much worse than the unfiltered NP. HS* is relatively fine too. During Period 2
and for a = 0.01, Taiwan appears to produce the best risk forecast precision among the five 
economies, perhaps because Taiwan suffered least from the crisis. The CaViaR models show an
improved coverage performance for a = 0.01 compared to their performance for a = 0.05 (although
not satisfactory either).

Table IIIC shows that the post-crisis period (Period 3) is somewhat similar to the pre-crisis period
(Period 1). For a = 0.05 filtering helps HS and NP. HS* and NP* produce better forecasting accu-
racy than the filtered EVT-based models. Both CaViaR specifications do well, as in the case of the
pre-crisis period. For the a = 0.01 probability level, as in the case of Period 1, many models produce
good coverage probability.

Table IIIB. Empirical coverage probability, Period 2

Indonesia Korea Malaysia Taiwan Thailand

5% Riskmetrics 0.0920 0.1111 0.0805 0.0843 0.0690
Normal* 0.0766 0.1073 0.0958 0.0651 0.0881
HS 0.2337 0.2644 0.2682 0.0192 0.1686
HS* 0.1149 0.1111 0.1379 0.0613 0.0881
MC 0.1379 0.2222 0.2490 0.0192 0.1494
MC* 0.0766 0.1034 0.0958 0.0613 0.0766
NP 0.2337 0.2644 0.2682 0.0192 0.1686
NP* 0.2759 0.2989 0.3142 0.1456 0.2989
GP 0.2950 0.2720 0.3142 0.0421 0.2261
GP* 0.1609 0.1226 0.1533 0.0690 0.0958
GEV 0.0421 0.0805 0.0345 0.0000 0.0077
GEV* 0.0077 0.0153 0.0153 0.0077 0.0038
HILL 0.1648 0.1571 0.1686 0.0038 0.0230
HILL* 0.1034 0.0498 0.0651 0.0192 0.0383
CaViaRS 0.1418 0.0920 0.1303 0.0613 0.0996
CaViaRA 0.1992 0.0843 0.1264 0.0613 0.1034

1% Riskmetrics 0.0421 0.0268 0.0230 0.0230 0.0115
Normal* 0.0383 0.0421 0.0460 0.0192 0.0307
HS 0.0843 0.1034 0.0843 0.0038 0.0192
HS* 0.0383 0.0307 0.0153 0.0115 0.0077
MC 0.0805 0.1456 0.1303 0.0115 0.0498
MC* 0.0421 0.0383 0.0498 0.0192 0.0192
NP 0.0843 0.1034 0.0881 0.0038 0.0192
NP* 0.1648 0.2261 0.1686 0.0421 0.1571
GP 0.1073 0.1379 0.1149 0.0077 0.0307
GP* 0.0307 0.0307 0.0192 0.0115 0.0077
GEV 0.0077 0.0153 0.0038 0.0000 0.0038
GEV* 0.0077 0.0038 0.0000 0.0000 0.0000
HILL 0.0421 0.0805 0.0345 0.0000 0.0077
HILL* 0.0077 0.0153 0.0153 0.0077 0.0038
CaViaRS 0.0690 0.0383 0.0230 0.0192 0.0077
CaViaRA 0.0575 0.0307 0.0153 0.0192 0.0115

Note: The number in each cell refers to the frequency at which the actual return falls short of the VaR forecast in the 
out-of-sample period (7/1/1997–6/30/1998).
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Overall, filtering is often useful, sometimes marginally, but sometimes it can make matters worse.
The Riskmetrics model is not much worse than the best of the other competing models in all three
periods including Period 2. Most of the models fail for Period 2, while HILL* works well for Period
2, particularly for a = 0.01. The CaViaR models work well in Periods 1 and 3.

Quantile loss
In Tables IVA–C, for each of Periods 1, 2 and 3, we present the out-of-sample average quantile loss
values P(0.05) and P(0.01) as defined in (29). The reality check p-values of White (2000) and
Hansen (2001) are also reported, with the Riskmetrics model as our benchmark model since it is the
most widely used model for practitioners. The null hypothesis is that none of the 15 competing
models can beat the Riskmetrics model. A significant (small) reality check p-value is in favour of
the alternative hypothesis that there is a model that beats the Riskmetrics benchmark in terms of the

Q̂Q̂

Table IIIC. Empirical coverage probability, Period 3

Indonesia Korea Malaysia Taiwan Thailand

5% Riskmetrics 0.0268 0.0613 0.0421 0.0498 0.0230
Normal* 0.0268 0.0690 0.0460 0.0421 0.0268
HS 0.1073 0.1303 0.0460 0.0230 0.0498
HS* 0.0421 0.0766 0.0575 0.0421 0.0268
MC 0.0383 0.1111 0.0345 0.0230 0.0460
MC* 0.0268 0.0575 0.0421 0.0421 0.0230
NP 0.1111 0.1303 0.0460 0.0307 0.0958
NP* 0.0421 0.0766 0.0575 0.0421 0.0383
GP 0.1609 0.1648 0.1111 0.0421 0.0958
GP* 0.0843 0.0805 0.0728 0.0460 0.0421
GEV 0.0000 0.0077 0.0038 0.0000 0.0000
GEV* 0.0077 0.0038 0.0038 0.0038 0.0000
HILL 0.0575 0.0230 0.0345 0.0038 0.0077
HILL* 0.0345 0.0192 0.0268 0.0153 0.0077
CaViaRS 0.0728 0.0421 0.0575 0.0460 0.0307
CaViaRA 0.0843 0.0536 0.0651 0.0460 0.0307

1% Riskmetrics 0.0038 0.0038 0.0115 0.0153 0.0000
Normal* 0.0115 0.0115 0.0192 0.0230 0.0000
HS 0.0077 0.0153 0.0115 0.0038 0.0000
HS* 0.0115 0.0038 0.0115 0.0077 0.0000
MC 0.0115 0.0230 0.0153 0.0038 0.0077
MC* 0.0115 0.0115 0.0192 0.0192 0.0000
NP 0.0077 0.0192 0.0115 0.0038 0.0000
NP* 0.0115 0.0038 0.0115 0.0038 0.0000
GP 0.0268 0.0230 0.0192 0.0038 0.0077
GP* 0.0077 0.0115 0.0115 0.0115 0.0000
GEV 0.0000 0.0000 0.0000 0.0000 0.0000
GEV* 0.0000 0.0000 0.0000 0.0000 0.0000
HILL 0.0000 0.0077 0.0038 0.0000 0.0000
HILL* 0.0077 0.0038 0.0038 0.0038 0.0000
CaViaRS 0.0115 0.0000 0.0115 0.0115 0.0000
CaViaRA 0.0153 0.0038 0.0077 0.0153 0.0000

Note: The number in each cell refers to the frequency at which the actual return falls short of the VaR forecast in the 
out-of-sample period (1/1/1999–12/31/1999).
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Copyright © 2006 John Wiley & Sons, Ltd. J. Forecast. 25, 101–128 (2006)
DOI: 10.1002/for

out-of-sample average loss values P(a). The best model in P(a) is indicated in bold font in the
tables for each country and for each a. Riskmetrics is selected several times as the best model (three
times out of 10 in Period 1, once out of 10 in Period 2, and twice out of 10 in Period 3), while there
are models with lower loss values. However, the reality check p-values are generally quite large and
insignificant, indicating that Riskmetrics is not dominated by any other models for all three periods.

Q̂Q̂

Table IVA. Predictive quantile loss, Period 1

Indonesia Korea Malaysia Taiwan Thailand

5% Riskmetrics 0.1268 0.1152 0.0998 0.1540 0.1459
Normal* 0.1295 0.1181 0.1065 0.1663 0.1440
HS 0.1189 0.1152 0.1093 0.2231 0.1486
HS* 0.1253 0.1204 0.1011 0.1684 0.1437
MC 0.1585 0.1220 0.1194 0.2198 0.1575
MC* 0.1305 0.1189 0.1075 0.1705 0.1446
NP 0.1188 0.1165 0.1091 0.1969 0.1407
NP* 0.1253 0.1205 0.1009 0.1629 0.1404
GP 0.1246 0.1149 0.0993 0.1861 0.1490
GP* 0.1269 0.1203 0.0987 0.1637 0.1442
GEV 0.2311 0.1988 0.2218 0.3770 0.2921
GEV* 0.1805 0.1692 0.1681 0.2497 0.2160
HILL 0.1231 0.1356 0.1201 0.3159 0.2270
HILL* 0.1265 0.1271 0.1228 0.2002 0.1660
CaViaRS 0.1160 0.1222 0.1049 0.1626 0.1416
CaViaRA 0.1519 0.1227 0.1050 0.1626 0.1420

White 0.362 0.891 0.597 1.000 0.703
Hansen 0.194 0.601 0.426 0.595 0.582

1% Riskmetrics 0.0417 0.0311 0.0374 0.0580 0.0494
Normal* 0.0377 0.0329 0.0348 0.0597 0.0491
HS 0.0392 0.0332 0.0329 0.0683 0.0573
HS* 0.0399 0.0332 0.0332 0.0588 0.0470
MC 0.0422 0.0315 0.0317 0.0615 0.0535
MC* 0.0378 0.0330 0.0347 0.0592 0.0486
NP 0.0391 0.0331 0.0328 0.0682 0.0465
NP* 0.0399 0.0332 0.0332 0.0588 0.0471
GP 0.0389 0.0314 0.0313 0.0645 0.0543
GP* 0.0380 0.0331 0.0333 0.0590 0.0470
GEV 0.0915 0.0583 0.0748 0.0892 0.1020
GEV* 0.0605 0.0464 0.0525 0.0696 0.0636
HILL 0.0451 0.0399 0.0427 0.0718 0.0627
HILL* 0.0377 0.0344 0.0332 0.0598 0.0484
CaViaRS 0.0300 0.0339 0.0329 0.0583 0.0437
CaViaRA 0.0552 0.0337 0.0319 0.0599 0.0440

White 0.095 0.888 0.226 0.892 0.433
Hansen 0.090 0.863 0.222 0.837 0.363

Note: The number in each cell refers to the out-of-sample (1/1/1996–12/31/1996) average quantile loss; ‘White’ refers to
the bootstrap reality check p-value of White (2000); ‘Hansen’ refers to the bootstrap reality check p-value of Hansen (2001).
We use 1000 bootstrap samples and the stationary bootstrap smoothing parameter q = 0.25. Riskmetrics is the benchmark
in the reality check. The best model for each country with the smallest out-of-sample average quantile loss is in bold font.
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(Only one exception is for Period 3, Thailand, a = 0.01, for which case MC is the best and signifi-
cantly better than Riskmetrics.)

In Table IVA, CaViaRS, GP, GP* and NP* generate (marginally but not significantly) better quan-
tile loss than Riskmetrics, while many models (particularly GEV and GEV*) are much worse. None
of the models can produce a significantly better risk forecast than Riskmetrics. Even though there

Table IVB. Predictive quantile loss, Period 2

Indonesia Korea Malaysia Taiwan Thailand

5% Riskmetrics 0.3885 0.3461 0.3123 0.2071 0.2689
Normal* 0.3713 0.3499 0.3166 0.1996 0.2745
HS 0.5743 0.6358 0.4979 0.2165 0.3072
HS* 0.3959 0.3589 0.3303 0.1992 0.2750
MC 0.4191 0.5712 0.4491 0.2087 0.2846
MC* 0.3732 0.3475 0.3186 0.1988 0.2711
NP 0.5746 0.6361 0.4984 0.2164 0.3074
NP* 0.6395 0.7765 0.5954 0.2346 0.4708
GP 0.6664 0.6897 0.5997 0.1928 0.3750
GP* 0.4291 0.3666 0.3474 0.2007 0.2788
GEV 0.3556 0.3568 0.3034 0.3549 0.3033
GEV* 0.4868 0.3861 0.4027 0.2672 0.3950
HILL 0.4680 0.4700 0.3743 0.3038 0.2559
HILL* 0.3799 0.3326 0.3128 0.2196 0.2889
CaViaRS 0.4644 0.3480 0.3242 0.1982 0.2746
CaViaRA 0.5438 0.3422 0.3217 0.1979 0.2815

White 0.599 0.749 0.862 0.498 0.786
Hansen 0.267 0.510 0.662 0.268 0.581

1% Riskmetrics 0.1284 0.0935 0.0926 0.0577 0.0721
Normal* 0.1352 0.1118 0.1072 0.0620 0.0717
HS 0.2245 0.2432 0.1656 0.0655 0.0773
HS* 0.1322 0.1042 0.0982 0.0577 0.0724
MC 0.2030 0.3164 0.2182 0.0611 0.1021
MC* 0.1373 0.1112 0.1087 0.0606 0.0704
NP 0.2258 0.2443 0.1664 0.0655 0.0775
NP* 0.3795 0.4937 0.2602 0.0834 0.1911
GP 0.2702 0.3046 0.1924 0.0621 0.0855
GP* 0.1290 0.1052 0.0973 0.0580 0.0720
GEV 0.1115 0.1040 0.0916 0.0858 0.0943
GEV* 0.1679 0.1046 0.1227 0.0691 0.1131
HILL 0.1502 0.1724 0.1209 0.0692 0.0755
HILL* 0.1284 0.0982 0.0916 0.0576 0.0821
CaViaRS 0.1913 0.1058 0.0937 0.0596 0.0744
CaViaRA 0.1669 0.0958 0.0858 0.0578 0.0748

White 0.739 0.996 0.886 0.935 0.900
Hansen 0.514 0.913 0.606 0.878 0.844

Note: The number in each cell refers to the out-of-sample (7/1/1997–6/30/1998) average quantile loss; ‘White’ refers to the
bootstrap reality check p-value of White (2000); ‘Hansen’ refers to the bootstrap reality check p-value of Hansen (2001).
We use 1000 bootstrap samples and the stationary bootstrap smoothing parameter q = 0.25. Riskmetrics is the benchmark
in the reality check. The best model for each country with the smallest out-of-sample average quantile loss is in bold font.
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are some models which produce smaller quantile loss values than Riskmetrics, this has not been
observed uniformly across countries. Filtering generally helps for Taiwan and Thailand, while it can
be harmful (e.g., for Malaysia).

The result for Period 2 is reported in Table IVB. In the crisis period, more EVT models are selected
as the best models. For a = 0.05, the best models for all five countries are the EVT models—GP,

Table IVC. Predictive quantile loss, Period 3

Indonesia Korea Malaysia Taiwan Thailand

5% Riskmetrics 0.2079 0.2602 0.1956 0.1952 0.1916
Normal* 0.2200 0.2674 0.1919 0.1953 0.1949
HS 0.2353 0.3142 0.1918 0.2058 0.1939
HS* 0.2088 0.2707 0.1917 0.1965 0.1934
MC 0.2122 0.2807 0.1994 0.2057 0.1943
MC* 0.2251 0.2659 0.1928 0.1974 0.2008
NP 0.2340 0.3145 0.1918 0.1792 0.1990
NP* 0.2085 0.2708 0.1917 0.1846 0.1832
GP 0.2831 0.3601 0.2089 0.1870 0.2041
GP* 0.2116 0.2723 0.1942 0.1944 0.1897
GEV 0.3311 0.3187 0.3101 0.3531 0.3107
GEV* 0.3644 0.3484 0.2800 0.2784 0.3371
HILL 0.2103 0.2634 0.2033 0.3056 0.2348
HILL* 0.2166 0.2791 0.2026 0.2259 0.2249
CaViaRS 0.2448 0.2648 0.1856 0.1918 0.1857
CaViaRA 0.2741 0.2668 0.1893 0.1912 0.1871

White 0.991 0.994 0.677 0.284 0.614
Hansen 0.840 0.895 0.553 0.191 0.454

1% Riskmetrics 0.0588 0.0708 0.0554 0.0577 0.0560
Normal* 0.0641 0.0666 0.0558 0.0569 0.0501
HS 0.0540 0.0705 0.0548 0.0651 0.0531
HS* 0.0650 0.0673 0.0540 0.0541 0.0566
MC 0.0532 0.0786 0.0559 0.0574 0.0480
MC* 0.0645 0.0664 0.0550 0.0558 0.0519
NP 0.0540 0.0808 0.0550 0.0651 0.0527
NP* 0.0649 0.0673 0.0542 0.0531 0.0531
GP 0.0572 0.0787 0.0578 0.0596 0.0489
GP* 0.0659 0.0667 0.0535 0.0542 0.0570
GEV 0.1237 0.0909 0.1004 0.0862 0.0926
GEV* 0.1197 0.0900 0.0830 0.0714 0.0941
HILL 0.0635 0.0691 0.0616 0.0697 0.0650
HILL* 0.0716 0.0720 0.0548 0.0576 0.0664
CaViaRS 0.0807 0.0694 0.0532 0.0539 0.0625
CaViaRA 0.0901 0.0691 0.0526 0.0539 0.0601

White 0.568 0.654 0.720 0.314 0.000
Hansen 0.287 0.573 0.704 0.283 0.000

Note: The number in each cell refers to the out-of-sample (1/1/1999–12/31/1999) average quantile loss; ‘White’ refers to
the bootstrap reality check p-value of White (2000); ‘Hansen’ refers to the bootstrap reality check p-value of Hansen (2001).
We use 1000 bootstrap samples and the stationary bootstrap smoothing parameter q = 0.25. Riskmetrics is the benchmark
in the reality check. The best model for each country with the smallest out-of-sample average quantile loss is in bold font.
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GEV, HILL or HILL*. For a = 0.01, the best models are Riskmetrics, MC*, GEV, HILL* or CaViaRA.
However, none of these models are significantly better than the benchmark Riskmetrics model.
During this period, filtering works for HS*, MC*, GP* and HILL* in terms of the quantile loss. As
an unfiltered model assumes unconditional variance, it may be unlikely that an unfiltered model is
better than the filtered one. However, this could happen. For example, NP* is worse than NP in terms
of both the empirical tail coverage P and the predictive quantile loss P(a), during the crisis period,
for both a = 0.05, 0.01, for all five countries. For NP*, this may be due to the issue mentioned earlier
in footnote 5.

The post-crisis period result is presented in Table IVC, where the best models are often selected
from MC, MC*, NP or NP*. There are some forecasting improvements in terms of P(a) and more
so with a = 0.01. For Thailand with a = 0.01, MC makes a significantly better VaR forecasting than
the benchmark. For the other cases, Riskmetrics is not statistically dominated by any other models.

Figures 1–3 plot the out-of-sample loss values with a = 0.05

for each time of t = R + 1, . . . , T. This is the summand of the out-of-sample average loss P(a) in
equation (29). For the sake of space, we present only the figures for Korea with a = 0.05, while all
other figures for the five economies with a = 0.05, 0.01 are available upon request and deliver largely
the same features. Note that the larger weight 0.95 is given to the loss when a violation occurs and
thus once there is a violation the loss value increases at that time (generating a spike in plots).

Reading Figure 1 for Period 1, we note that when two models have the same number of viola-
tions and thus the same value for P, a model which produces a larger P(a) loss value is a worse
one. For instance, for Period 1 for Korea with a = 0.05, both GP and GP* produce the same number
of violations with P = 0.0766, while GP is better than GP* because they have P(a) = 0.1149 and
0.1203, respectively. This can be observed from Figure 1 where both GP and GP* have spikes at the
same points of time but the spikes for GP* are higher. When two models have the same quantile
loss P(a), a model which produces P closer to a is a better one. For instance, both Riskmetrics
and HS produce the same quantile loss P(0.05) = 0.1152. But HS is better than Riskmetrics because
HS has P = 0.0460 and Riskmetrics has P = 0.0651. On the other hand, some models can be bad
(or good) in terms of both P and P(a). For example, GEV, GEV* and HILL have shown no spikes
in the plots, i.e., none or few violations (and thus they produce bad empirical coverage probability),
but they also have the largest quantile loss values. They are less adequate models in both criteria of

P and P(a).
Similar interpretations of the plots can be drawn for the crisis period (Figure 2) and the post-crisis

period (Figure 3). It should be noted that the vertical scales of the graphs are different for Figures
1–3. If we look at the plots for HS, MC, NP, NP* and GP in the crisis period, there are a large
number of violations (which make P too large) and many large spikes in the loss (which make the
average loss P(a) quite large). The worst model in Period 2 is NP*, which has produced a very
volatile loss plot indicating a poor predictive performance, which can easily be verified by Table
IIIB ( P = 0.2989) and Table IVB ( P(0.05) = 0.7765). The best model in Period 2 is filtered Hill
(HILL*) that produces both very good coverage probability ( P = 0.0498) and the smallest average
quantile loss value ( P(0.05) = 0.3326). In Period 3, while the plots for HS, MC, NP, NP* and GP
remain very volatile, Riskmetrics becomes a good model again (as was the case for Period 1), with
a reasonable empirical coverage probability P = 0.0613 as shown in Table IIIC and with the small-â
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Q̂

a a a
a a
a a

- < ( )( )[ ] - ( )[ ] =
◊ - ( ) < ( )
◊ - ( ) ( ) <

ÏÌ
Ó

1
0 95

0 05
r q r q

r q r q

r q q r
t t t t

t t t t

t t t t

ˆ ˆ
. ˆ ˆ

. ˆ ˆ

if 

if 

Q̂

Q̂â
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est loss P(0.05) as shown in Table IVC. A final note on the figures for most of the comparable
models is that the dates in which the violations took place are similar. In other words, most models
capture the violations at the same time as they occur.

CONCLUSIONS

In this paper we have studied a comparative risk forecast experiment for five emerging markets. Our
findings are summarized as follows. (i) Based on P (the coverage probability or the number of vio-
lations), the Riskmetrics model behaves reasonably well before and after the crisis, while some EVT
models do better in the crisis period. Filtering appears to be useful for some models (particularly the
EVT models), though it may be harmful for other models. The forecasting performance of different
models varies with a = 0.05 and 0.01. (ii) The results based on P(a) (the predictive quantile loss)
are largely compatible with those based on P. While the Riskmetrics and other conventional models
work reasonably well before and after the crisis, the EVT models work better in the crisis period.
However, we cannot reject that the Riskmetrics model cannot be beaten even during the crisis period.
The CaViaR models have shown some success in predicting the VaR risk measure across various
periods.

Our experiment demonstrates that risk forecasting during the crisis period is more diffcult and
yields poorer results than during tranquil periods, and most VaR models generally behave similarly
before and after the crisis, but differently in the crisis period. Hence, it may be promising to con-
sider the regime-switching VaR models as in Guidolin and Timmermann (2003) and Li and Lin
(2004).
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