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Abstract

Bootstrap aggregating or Bagging, introduced by Breiman (1996a. Bagging predictors.

Machine Learning 24, 123–140), has been proved to be effective to improve on unstable

forecast. Theoretical and empirical works using classification, regression trees, variable

selection in linear and non-linear regression have shown that bagging can generate substantial

prediction gain. However, most of the existing literature on bagging has been limited to the

cross sectional circumstances with symmetric cost functions. In this paper, we extend the

application of bagging to time series settings with asymmetric cost functions, particularly for

predicting signs and quantiles. We use quantile predictions to construct a binary predictor and

the majority-voted bagging binary prediction. We show that bagging may improve the binary

prediction in small sample, but it does not improve in large sample. Various bagging forecast

combination weights are used such as equal weighted and Bayesian model averaging (BMA)

weighted combinations. For demonstration, we present results from Monte Carlo experiments

and from empirical applications using monthly S&P500 and NASDAQ stock index returns.
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1. Introduction

To improve forecasts over individual forecasting models, combining forecasts has
been suggested. Bates and Granger (1969), Granger et al. (1994), Granger and Jeon
(2004), Stock and Watson (1999, 2005), Yang (2004), and Timmermann (2005) show
that forecast combinations can improve forecast accuracy over a single model.
Combining forecasts diversifies risk of forecast errors, analogous to investing on
portfolios rather than individual securities. On the other hand, to improve forecasts
of a given model, combination can also be formed over a set of training sets. While
usually we have a single training set, it can be replicated via bootstrap. Combining
forecasts trained over the bootstrap-replicated training sets is the idea of bootstrap
aggregating (or bagging), introduced by Breiman (1996a).

In this paper we examine how bagging may improve binary predictions and
quantile predictions. It is well known that, while financial returns fY tg may not be
predictable, their variance, sign, and quantiles may be predictable. Christofferson
and Diebold (2003) show that binary variable Gtþ1 � 1ðY tþ140Þ is predictable when
some conditional moments are time varying, where 1ð�Þ takes the value of 1 if the
statement in the parenthesis is true, and 0 otherwise. Hong and Lee (2003), Hong
and Chung (2003), Linton and Whang (2004), Pesaran and Timmermann (2002a),
among many others, find some evidence that the directions of stock returns and
foreign exchange rate changes are predictable. While there remains much work to be
done in the literature, many theoretical and numerical works have shown that
bagging is effective to improve forecasts.1

Bagging is a device to improve the accuracy of unstable predictors. A predictor is
said to be unstable if perturbing the training sample can cause significant change in
the predictor (Breiman, 1996b). Bagging smooths instabilities by averaging over
bootstrap predictors and thus lowering predictors’ sensitivity to training samples. It
has been shown that bagging is effective thanks to the variance reduction stemming
from the averaging and so it is most effective if the volatility of the predictor is very
high, as is the case for highly non-linear models (Friedman and Hall, 2000; Buja and
Stuetzle, 2002; Bühlmann and Yu, 2002).

However, while classifier prediction (binary prediction as a special case) has been
empirically shown to be very successful in the machine learning literature, it has not
been analytically explained. As noticed by some researchers bagging may outper-
form unbagged predictor, but this may not be always the case. The aim of this paper
is to show how and why bagging binary prediction may work or fail to work. To
demonstrate our analytical results, Monte Carlo experiments and empirical
applications are also presented. We construct binary predictors based on quantile
predictors so that binary and quantile predictions are linked. Various bagging
forecast combinations with equal weights and weights based on Bayesian model
averaging (BMA) are considered.
1Most bagging research has been in statistics and engineering. Recent bagging research in econometrics

includes Kitamura (2001), Inoue and Kilian (2005), and Stock and Watson (2005).
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There are some limitations in the already substantial bagging literature. One is
that most of the existing bagging literature deals with independent data. With the
obvious dynamic structures in most economic and financial variables, it is important
to see how bagging works for time series. One concern of applying bagging to time
series is whether a bootstrap can provide a sound simulation sample for dependent
data. Fortunately, it has been shown that the block bootstrap can provide consistent
densities for moment estimators and quantile estimators (Fitzenberger, 1997).
Another limitation of current bagging research is the use of symmetric cost functions
(such as mean squared forecast error) as prediction evaluation criteria. However, it is
widely accepted that asymmetric cost functions are more relevant (Granger,
1969,1999a,b,2002; Granger and Pesaran, 2000; Elliott et al., 2003a,b). That is,
our utility changes differently with positive and negative forecast error, or with false-
alert and failure-to-alert. In this paper, we analyze bagging binary predictors formed
via majority voting, for weakly dependent time series, under asymmetric cost
functions.

The plan of this paper is as follows. Section 2 explains ensemble aggregating
predictor and bootstrap aggregating predictor. We show how ensemble aggregating
predictor can improve predictive ability of a conditional mean model for time series

under a symmetric L2-cost function. In Section 3 we set up a binary prediction
problem based on utility maximization behavior of an economic agent. We introduce
a way to form a binary predictor through a quantile predictor. In Section 4,
extending the results in Section 2, we show that the ensemble aggregating predictors
can improve predictive ability of the conditional quantile model and conditional
binary model for time series under asymmetric L1-cost functions. In Section 5 we
show how bagging for binary predictions works as the training sample size grows. In
Section 6 we examine bagging for quantile predictions. Section 7 presents Monte
Carlo experiments. Section 8 reports empirical results on binary and quantile
predictions using the monthly returns in S&P500 and NASDAQ stock indexes.
Section 9 concludes the paper.
2. Aggregating predictor

2.1. Ensemble aggregating predictor jAðXtÞ

To improve forecasts of a model, a combination can be formed over a set of
training sets. Let

Dt � fðY s;Xs�1Þg
t

s¼t�Rþ1 ðt ¼ R; . . . ;TÞ

be a training set at time t, and jðXt;DtÞ be a forecast of Y tþ1 using this training
set Dt and input vector Xt. Suppose each training set Dt consists of R observations
drawn from strictly stationary probability distribution P. Our mission is to use
the Dt to get a better predictor than the single training set predictor jðXt;DtÞ.
Ideally, if P is known and multiple training sets DðjÞt ðj ¼ 1; . . . ; JÞ may be drawn
from P, an obvious procedure is to replace jðXt;DtÞ by the weighted
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average of jðXt;D
ðjÞ

t Þ over j, i.e.,

jAðXtÞ � EDtjðXt;DtÞ �
XJ

j¼1

wj;tjðXt;D
ðjÞ

t Þ, (1)

where EDtð�Þ denotes the expectation over P, wj;t is the weight function withPJ

j¼1wj;t ¼ 1, and the subscript A in jA denotes ‘‘aggregation’’. We call jAðXtÞ the
ensemble aggregating predictor.

From the first sight, it may be hard to understand the meaning of multiple training
set DðjÞt in the time series circumstances since time is not repeatable. However,
considering an example of the estimation and forecast procedure with panel data
may be helpful. Suppose we want to forecast consumption of a household in next
period. When the historical observations of the interested household is very limited,
our parameters estimated and the predictors will have rather large variances,
especially for non-linear regression models. If we can find some other households
that have similar consumption patterns (similar underlying probability distribution
P), it would be better to use historical observations from all similar households than
just from this interested household in the estimation process, though we only use
data of this interested households to do forecast. Therefore, the ensemble
aggregating predictor is just like to find similar households.

We now show that jAðXtÞ has no larger mean squared forecast error than
jðXt;DtÞ, extending Breiman’s (1996a, p. 129) proof for the time series case.

Proposition 1. The ensemble aggregating predictor jAðXtÞ has no larger symmetric L2-

cost of the forecast error than the original predictor jðXt;DtÞ, i.e.,

EDt ;Ytþ1 ;Xt ðY tþ1 � jðXt;DtÞÞ
2
XEYtþ1 ;Xt ½ðY tþ1 � jAðXtÞÞ

2
�, (2)

where EDt ;Ytþ1 ;Xt ð�Þ � EXt ½EYtþ1jXtfEDtð�ÞjXtg� denotes the expectations taken over the

training set Dt first conditioning on Y tþ1 and Xt, then taking an expectation of Y tþ1

conditioning on Xt, and finally taking an expectation of Xt, and similarly

EYtþ1 ;Xtð�Þ � EXt ½EYtþ1 jXtð�ÞjXt�.

Proof. Let etþ1 ¼ Y tþ1 � jðXt;DtÞ. Taking expectations on the squared forecast
error cðetþ1Þ ¼ e2

tþ1 gives

EDt ;Ytþ1 ;Xt ðY tþ1 � jðXt;DtÞÞ
2

¼ EYtþ1 ;Xt ½Y
2
tþ1 � 2Y tþ1EDtjðXt;DtÞ þ EDtj

2ðXt;DtÞ�

XEYtþ1 ;Xt ½Y
2

tþ1 � 2Y tþ1EDtjðXt;DtÞ þ ðEDtjðXt;DtÞÞ
2
�

¼ EYtþ1 ;Xt ½ðY tþ1 � jAðXtÞÞ
2
�, ð3Þ

where we recall jAðXtÞ � EDtjðXt;DtÞ, and the inequality comes from (conditional
on the values of Xt)

EDtj
2ðXt;DtÞXðEDtjðXt;DtÞÞ

2: & (4)

We see that aggregating over training sets will lower the expected cost. How
much this aggregating predictor can improve depends on the variance of the
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prediction function

VDt ½jðXt;DtÞ� � EDt ½jðXt;DtÞ � EDtjðXt;DtÞ�
2

¼ EDtj
2ðXt;DtÞ � ðEDtjðXt;DtÞÞ

2. ð5Þ

Therefore, the effect of instability is clear. A predictor is said to be unstable if
perturbing the training sample can cause significant changes in the predictor
(Breiman, 1996b), i.e., VDt ½jðXt;DtÞ� is large.
2.2. Bootstrap aggregating predictor jBðXtjDtÞ

In reality, P is unknown, and we only have a single training set. In this case, Pmay
be estimated by its empirical distribution of a given Dt, from which multiple training
sets may be drawn by bootstrap method. A combined forecast can then be formed
using the bootstrap-replicated training sets. Take bootstrap samples fD�ðjÞt g

J

j¼1 from
the empirical distribution P̂ðDtÞ of Dt, and form fjðXt;D

�ðjÞ

t Þg. Therefore, the
ensemble aggregating predictor jAðXtÞ can be approximated by

jBðXtjDtÞ � ED�
t
jðXt;D

�

t Þ �
XJ

j¼1

wj;tjðXt;D
�ðjÞ

t Þ. (6)

We call jBðXtjDtÞ the bootstrap aggregating or bagging predictor. Note that jAðXtÞ

does not depend on the training setDt because an expectation has been taken over P,
but jBðXtjDtÞ still depends on the training set Dt since all the bootstrap training
samples are drawn from P̂ðDtÞ.

Bagging is a device to improve the accuracy of unstable predictors. The
unstableness of predictors may come from many sources—discrete choice regressions
(e.g. decision trees and classification problem), non-smooth target functions (e.g.
median or quantile function involving indicator function), small sample size, outliers
or extreme values, etc. Under these circumstances the model uncertainty in the
prediction function j and/or parameter estimation uncertainty using the training
sample Dt may render an unstable prediction.

Why does bagging work? Bagging is effective thanks to the variance reduction
stemming from averaging predictors and so it is most effective if the volatility of the
predictors is very high. Friedman and Hall (2000) and Buja and Stuetzle (2002)
decompose a predictor or an estimator into linear and higher order parts by Taylor-
expansion. They show that bagging reduces the variance for the higher order non-
linear component by replacing it with an estimate of its expected value, while leaving
the linear part unaffected. Therefore bagging works most successfully with highly
non-linear estimators such as decision trees and neural network.

Bühlmann and Yu (2002) consider the cases that bagging can transform a hard-
thresholding function into a soft-thresholding function and thus decrease the
instabilities of predictors. However, the relevance of this argument depends on how
the bagging predictor is formed. As discussed in Breiman (1996a), bagging predictors
can be formed via voting instead of averaging. If the target variable of interest is
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continuous (as for quantile prediction in this paper), we can form a bagging
predictor by an average over bootstrap predictors. However, if the target variable
takes only discrete values, then a voting scheme over the discrete values is to be
called for from the bootstrap predictors (as for binary prediction in this paper). Both
averaging and voting can be weighted. Bagging transforms a hard-thresholding
function into a soft-thresholding function only for averaged-bagging, but not for the
voted-bagging because a voted-bagging predictor will remain as a binary hard-
thresholding function.

Even so, the ability of the voted-bagging to stabilize classifier prediction has been
proved to be very successful in the machine learning literature (Bauer and Kohavi,
1999; Kuncheva and Whitaker, 2003; Evgeniou et al., 2004). The method for voting
classification or voted-bagging is now an established research area known under
different names in the literature—combining classifiers, classifier ensembles,
committees of learners, a team of classifiers, consensus of learners, mixture of
experts, etc. In the next three sections, we attempt to understand how voted-bagging
(bagging binary prediction) may work and when it fails.
3. Binary prediction

3.1. Cost function

Granger (2002) notes that a conditional risk measure of financial return Y tþ1

that has a conditional predictive distribution PYtþ1
ðyjXtÞ ¼ PrðY tþ1oyjXtÞ may be

written as

RðXtÞ ¼ A1

Z 1

0

jy�mjp dPYtþ1
ðyjXtÞ þ A2

Z 0

�1

jy�mjp dPYtþ1
ðyjXtÞ, (7)

with A1, A2 both 40 and some p40, where m is the predictor of y that minimizes
the risk. One problem raised here is how to choose optimal Lp-norm in empirical
works. Granger (2002) considers the absolute return (p ¼ 1) as a preferable
measure given that returns from the stock market are known to come from a
distribution with particularly long tails. In particular, Granger (2002) refers to a
trio of papers (Nyguist, 1983; Money et al., 1982; Harter, 1977) who find that
the optimal p ¼ 1 from Laplace and Cauchy distribution, p ¼ 2 for Gaussian and
p ¼ 1 (min/max estimator) for a rectangular distribution. Granger (2002) also
notes that in terms of the kurtosis k, Harter (1977) suggests to use p ¼ 1 for k43:8;
p ¼ 2 for 2:2pkp3:8; and p ¼ 3 for ko2:2. In finance, the kurtosis of returns
can be thought of as being well over 4 and so p ¼ 1 is preferred. In this paper,
we follow Granger (2002) to consider binary and quantile predictions with A1aA2

and p ¼ 1.
We consider the asymmetric risk function to discuss a binary prediction. Let

Gtþ1 � 1ðY tþ140Þ. To define the asymmetric risk with A1aA2 and p ¼ 1, we consider
binary decision problem of Granger and Pesaran (2000) with the following 2� 2
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payoff or utility matrix:

(8)

where uij is the utility when Gt;1ðXtÞ ¼ j is predicted and Gtþ1 ¼ i is realized
ði; j ¼ 1; 2Þ. Assume u114u10 and u004u01, and uij are constant over time. ðu11 �

u10Þ40 is the utility gain from taking correct forecast when Gt;1ðXtÞ ¼ 1, and ðu00 �

u01Þ40 is the utility gain from taking correct forecast when Gt;1ðXtÞ ¼ 0. Denote

pðXtÞ � EYtþ1
ðGtþ1jXtÞ ¼ PrðGtþ1 ¼ 1jXtÞ. (9)

The expected utility of Gt;1ðXtÞ ¼ 1 is u11pðXtÞ þ u01ð1� pðXtÞÞ, and the expected
utility of Gt;1ðXtÞ ¼ 0 is u10pðXtÞ þ u00ð1� pðXtÞÞ. Hence, to maximize utility,
conditional on the values of Xt, the prediction Gt;1ðXtÞ ¼ 1 will be made if

u11pðXtÞ þ u01ð1� pðXtÞÞ4u10pðXtÞ þ u00ð1� pðXtÞÞ,

or

pðXtÞ4
ðu00 � u01Þ

ðu11 � u10Þ þ ðu00 � u01Þ
� 1� a.

Proposition 2 (Granger and Pesaran, 2000). The optimal predictor that can maximize

expected utility is

Gyt;1ðXtÞ ¼ 1ðpðXtÞ41� aÞ. (10)

By making correct prediction, our net utility gain is ðu00 � u01Þ when Gtþ1 ¼ 0, and
ðu11 � u10Þ when Gtþ1 ¼ 1. We can put it in another way, our opportunity cost (in the
sense that you lose the gain) of wrong prediction is ðu00 � u01Þ when Gtþ1 ¼ 0 and
ðu11 � u10Þ when Gtþ1 ¼ 1. Since a multiple of a utility function represents the same
preference, (1� a) can be viewed as the utility-gain from correct prediction when
Gtþ1 ¼ 0, or the opportunity cost of a false-alert. Similarly,

a �
ðu11 � u10Þ

ðu11 � u10Þ þ ðu00 � u01Þ
(11)

can be treated as the utility-gain from correct prediction when Gtþ1 ¼ 1 is realized, or
the opportunity cost of a failure-to-alert. We thus can define a cost function cðetþ1Þ

with etþ1 ¼ Gtþ1 � Gt;1ðXtÞ

That is

cðetþ1Þ ¼

a if etþ1 ¼ 1;

1� a if etþ1 ¼ �1;

0 if etþ1 ¼ 0;

8><
>:
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which can be equivalently written as cðetþ1Þ ¼ raðetþ1Þ, where

raðzÞ � ½a� 1ðzo0Þ�z (12)

is the check function of Koenker and Basset (1978). Hence we have obtained the
following result.

Proposition 3. The optimal binary predictor Gyt;1ðXtÞ ¼ 1ðpðXtÞ41� aÞ maximizing

the expected utility (obtained in Proposition 2) minimizes the expected cost

EYtþ1
ðraðetþ1ÞjXtÞ.

Proof. From Proposition 2 the optimal predictor that can maximize expected utility
is Gyt;1ðXtÞ ¼ 1ðpðXtÞ41� aÞ. We need to show that this minimizes the expected cost.
The cost function may be written as

cðetþ1Þ ¼ aGtþ1 þ ð1� a� Gtþ1ÞGt;1ðXtÞ (13)

and the expected cost (or the conditional risk) is

EYtþ1
ðcðetþ1ÞjXtÞ ¼ apðXtÞ þ ½1� a� pðXtÞ�Gt;1ðXtÞ. (14)

When pðXtÞ41� a, the minimizer of EYtþ1
ðcðetþ1ÞjXtÞ is Gyt;1ðXtÞ ¼ 1. When

pðXtÞo1� a, the minimizer of EYtþ1
ðcðetþ1ÞjXtÞ is Gyt;1ðXtÞ ¼ 0. Hence, Gyt;1ðXtÞ ¼

1ðpðXtÞ41� aÞ is the minimizer of the expected cost. &

In other words, the optimal binary prediction that minimizes EYtþ1
ðraðetþ1ÞjXtÞ is

the conditional a-quantile of Gtþ1, denoted as

Gyt;1ðXtÞ ¼ QyaðGtþ1jXtÞ ¼ arg min
Gt;1ðXtÞ

EYtþ1
ðraðGtþ1 � Gt;1ðXtÞÞjXtÞ. (15)

This is the maximum score problem of Manski (1975, 1985), Manski and Thompson
(1989), and Kordas (2005).

Also, as noted by Powell (1986), using the fact that for any monotonic function
hð�Þ, QaðhðY tþ1ÞjXtÞ ¼ hðQaðY tþ1jXtÞÞ, which follows immediately from observing that
PrðY tþ1oyjXtÞ ¼ Pr½hðY tþ1ÞohðyÞjXt�, and noting that the indicator function is
monotonic, QaðGtþ1jXtÞ ¼ Qað1ðY tþ140ÞjXtÞ ¼ 1ðQaðY tþ1jXtÞ40Þ. Hence

Gyt;1ðXtÞ ¼ 1ðQyaðY tþ1jXtÞ40Þ, (16)

where QaðY tþ1jXtÞ is the a-quantile function of Y tþ1 conditional on Xt. Note that

QyaðGtþ1jXtÞ ¼ arg min EYtþ1
ðraðetþ1ÞjXtÞ with etþ1 � Gtþ1 �QaðGtþ1jXtÞ, and

QyaðY tþ1jXtÞ ¼ arg min EYtþ1
ðraðutþ1ÞjXtÞ with utþ1 � Y tþ1 �QaðY tþ1jXtÞ.

Proposition 3 indicates that the optimal binary prediction can be made from
binary quantile regression for Gtþ1 as shown in Eq. (15). Binary prediction can also
be made from a binary function of the a-quantile for Y tþ1 in Eq. (16). In the next
section where we consider bagging binary predictors, we choose to use Eq. (16)
instead of Eq. (15) due to the following reasons.

First, Manski (1975, 1985) and Kim and Pollard (1990) show that parameter
estimators obtained from minimizing

P
raðetþ1Þ has a slower n1=3-convergence rate

and has a non-normal limiting distribution. This is unattractive for our subsequent
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analysis (Proposition 5) in Section 5, where we need asymptotic normality. Instead,
minimizing

P
raðutþ1Þ gives n1=2-consistency and asymptotic normality. See Kim and

White (2003), Chernozhukov and Umantsev (2001), and Komunjer (2005). Second,
quantile-based binary regression models allow more structure than the maximum
score regression models. We may have much more information than just an
indicator. In the maximum score literature, Y tþ1 is usually latent and unobservable.
In our case, however, Y tþ1 is not latent but observable. Information could be lost
when one reduces Y tþ1 to binary data. If the sufficient statistics are functions of
binary variable Gtþ1 then there would be no information loss. If the sufficient
statistics are functions that cannot be written as binary data there is information loss
if binary variables are used and hence using the more informative variable Y tþ1 in
quantile regression may give better prediction than just using binary variable
Gtþ1. Finally, quantile itself is a very interesting topic. Quantile prediction is not only
used in generating binary prediction, but also quantile itself is often the objective of
interests in finance and economics, e.g., value-at-risk (VaR). For this reason, in
addition to bagging binary predictors, we also consider bagging quantile predictors
in Section 6.

3.2. Training binary predictor

We consider a simple univariate polynomial quantile regression function of
Chernozhukov and Umantsev (2001):

QaðY tþ1jXtÞ ¼ ~X
0

tba, (17)

with Xt ¼ Y t, ~Xt ¼ ð1 Y t Y 2

t Þ
0, and ba ¼ ½ba;1 ba;2 ba;3�

0. Denote the optimal binary
predictor as

Gyt;1ðXtÞ � 1ðQyaðY tþ1jXtÞ40Þ ¼ 1ð ~X
0

tb
y

a40Þ,

where bya � arg minba EYtþ1
ðraðutþ1ÞjXtÞ is the pseudo-true value of the parameter ba

that minimizes the expected out-of-sample cost.
We estimate bya recursively using the ‘‘rolling’’ in-sample of size R. Suppose there

are T þ 1 ð� Rþ PÞ observations in total. We use the most recent R observations
available at time t, RptoT þ 1, as a training sample Dt � fðY s;Xs�1Þg

t

s¼t�Rþ1. We
then generate P ð¼ T þ 1� RÞ one-step-ahead forecasts for the remaining validation
sample. For each time t in the P prediction periods, we use a rolling training sample
Dt of size R to estimate model parameters

b̂aðDtÞ � arg min
ba

R�1
Xt

s¼t�Rþ1

raðusÞ; t ¼ R; . . . ;T , (18)

where us � Y s �QaðY sjXs�1Þ ¼ Y s � ~X
0

s�1ba.
We can then generate a sequence of one-step-ahead forecast Q̂aðY tþ1jXt;DtÞ ¼

~X
0

tb̂aðDtÞ and

Ĝt;1ðXt;DtÞ � 1ðQ̂aðY tþ1jXt;DtÞ40Þ ¼ 1ð ~X
0

tb̂aðDtÞ40Þ; t ¼ R; . . . ;T . (19)
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Note that the notation, Ĝt;1ðXt;DtÞ, is to indicate the parameter estimation
uncertainty in b̂aðDtÞ due to the training of the unknown parameter ba using the
training sample Dt.
4. Ensemble aggregating predictors for binary and quantile variables

We now extend Proposition 1 and show how the ensemble aggregating predictor
can improve the predictive ability of the conditional quantile model and conditional
binary model in time series under asymmetric L1-cost functions.

Proposition 4. (a) The ensemble aggregating binary predictor jAðXtÞ ¼ EDt Ĝt;1ðXt;DtÞ

has no larger asymmetric L1-cost than the original predictor jðXt;DtÞ ¼ Ĝt;1ðXt;DtÞ,
i.e.,

EDt ;Ytþ1 ;Xt ½cðGtþ1 � Ĝt;1ðXt;DtÞÞ�XEYtþ1 ;Xt ½cðGtþ1 � EDt Ĝt;1ðXt;DtÞÞ�.

(b) The ensemble aggregating quantile predictor jAðXtÞ ¼ EDt Q̂aðY tþ1jXt;DtÞ has no

larger asymmetric L1-cost than the original predictor jðXt;DtÞ ¼ Q̂aðY tþ1jXt;DtÞ, i.e.,

EDt ;Ytþ1 ;Xt ½cðY tþ1 � Q̂aðY tþ1jXt;DtÞÞ�XEYtþ1 ;Xt ½cðY tþ1 � EDt Q̂aðY tþ1jXt;DtÞÞ�.

Proof. See Proposition 1 for the notation of EDt ;Ytþ1 ;Xtð�Þ and EYtþ1 ;Xtð�Þ. Since both

Ĝt;1ðXt;DtÞ and Q̂aðY tþ1jXt;DtÞ are quantile predictors, we prove just for (b). The
proof of (a) is similar. Using (12), the cost function for the original predictor

jðXt;DtÞ ¼ Q̂aðY tþ1jXt;DtÞ is

cðY tþ1 � jðXt;DtÞÞ

¼ ½a1ðY tþ1XjðXt;DtÞÞ þ ð1� aÞ1ðY tþ1ojðXt;DtÞÞ� � jY tþ1 � jðXt;DtÞj,

and the cost function for the ensemble aggregating predictor jAðXtÞ ¼

EDt Q̂aðY tþ1jXt;DtÞ is

cðY tþ1 � jAðXtÞÞ

¼ ½a1ðY tþ1XjAðXtÞÞ þ ð1� aÞ1ðY tþ1ojAðXtÞÞ� � jY tþ1 � jAðXtÞj.

With some algebra, it can be shown that

EDt cðY tþ1 � jðXt;DtÞÞ

¼ EDt cðY tþ1 � jAðXtÞÞ þ EDtðY tþ1 � jðXt;DtÞÞ1ðY tþ14jðXt;DtÞÞ

þ EDtðjðXt;DtÞ � Y tþ1Þ1ðY tþ1ojðXt;DtÞÞ,

where the first term EDt cðY tþ1 � jAðXtÞÞ ¼ cðY tþ1 � jAðXtÞÞ, and the second and the

third terms are non-negative. Therefore, EDt cðY tþ1 � jðXt;DtÞÞXcðY tþ1 � jAðXtÞÞ.

Taking expectations with respect to Y tþ1 and Xt gives the desired result. &
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Actually, for any convex cost function cð�Þ, we will have

EDt ;Ytþ1 ;Xt cðẑtþ1ÞXEYtþ1 ;Xt cðEDtðẑtþ1ÞÞ,

where EDtðẑtþ1Þ is the aggregating forecast error, and ẑtþ1 is either êtþ1 ¼ Gtþ1 �

Ĝt;1ðXt;DtÞ or ûtþ1 ¼ Y tþ1 � Q̂aðY tþ1jXt;DtÞ. Therefore, the aggregating predictor will
always have no larger expected cost than the original predictor for convex cost
functions.
5. Bootstrap aggregating predictor for binary variable

Proposition 4 (for the ensemble aggregating predictors) is derived based on the
assumption that we can infinitely draw random samples from the true data
generating process P. In practice, we do not have such luxury. Given a training setDt

at time t, the predictor can be formed from the bootstrap training sets drawn from
the empirical distribution P̂ðDtÞ of Dt. If the target variable is continuous as for the
stock returns Y tþ1 or for its quantiles QaðY tþ1jXtÞ, bagging procedure is to take an
average of the forecasts from the bootstrap training samples. If the target variable is
a class as for binary variable Gtþ1, then a method of aggregating the bootstrap-
trained forecasts is a voting.

One of the most representative unstable predictor studied in bagging literature is
the classifier predictor. What we focus here is a basic case (two classes) of
classification problem—binary prediction. Since all multi-classification problems can
be decomposed into many binary predictions, our analysis on binary prediction can
be easily extended to multi-classifier problems. In this section we first discuss how to
form the voted-bagging binary predictor Ĝ

B

t;1ðXtjDtÞ (defined below) and then we
compare it with the original unbagged predictor Ĝt;1ðXt;DtÞ.

5.1. How to form bagging binary predictor

The procedure of bagging for binary predictors can be conducted in the following
steps:
1.
 Given a training set of data at time t, Dt � fðY s;Xs�1Þg
t

s¼t�Rþ1, construct the jth

bootstrap sample D�ðjÞt � fðY
�ðjÞ

s ;X�ðjÞs�1Þg
t

s¼t�Rþ1, j ¼ 1; . . . ; J, according to the

empirical distribution of P̂ðDtÞ of Dt. P �ðjÞ0

2.
 For each j, estimate b̂aðD

�ðjÞ

t Þ � arg minba R�1
t

s¼t�Rþ1raðY
�ðjÞ

s �
~Xs�1baÞ,

t ¼ R; . . . ;T .

3.
 For each j, compute the bootstrap binary predictor

Ĝ
�ðjÞ

t;1 ðXt;D
�ðjÞ

t Þ � 1ðQ̂
�ðjÞ

a ðY tþ1jXt;D
�ðjÞ

t Þ40Þ ¼ 1ð ~X
0

tb̂aðD
�ðjÞ

t Þ40Þ. (20)

Note that here we use ~Xt instead of ~X
�ðjÞ

t so that only the parameter b̂aðD
�ðjÞ

t Þ is

trained on the bootstrap samples D�ðjÞt , but the forecast is formed using the

original predictor variables ~Xt.
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4.
 Construct an average over the J bootstrap predictors

ED�
t
Ĝ
�

t;1ðXt;D
�

t Þ ¼
XJ

j¼1

ŵj;tĜ
�ðjÞ

t;1 ðXt;D
�ðjÞ

t Þ

with
PJ

j¼1ŵj;t ¼ 1. We will discuss how to decide ŵj;t in calculating both binary
bagging predictors and quantile bagging predictors in Appendix. ED�

t
ð�Þ denotes

the expectation over P̂ðDtÞ, that is the average over the bootstrap training samples
D�t . This is a key step in bagging to smooth out the instability of the predictor due
to the parameter estimation (training or learning). The weights ŵj;t is typically set
equal to J�1, but can be computed via a Bayesian approach (see Appendix). J is
often chosen in the range of 50, depending on sample size and on the
computational cost to evaluate the predictor. See Breiman (1996a, Section 6.2).
Our Monte Carlo results and empirical results reported in Sections 7 and 8
suggest J ¼ 50 is more than sufficient, and even J ¼ 20 is often good enough.
5.
 Take a majority voting over the J bootstrap predictors, i.e.,

Ĝ
B

t;1ðXtjDtÞ � 1ðED�
t
Ĝ
�

t;1ðXt;D
�

t Þ4
1
2
Þ.
5.2. Evaluating bagging binary predictor

We compare the expected cost of bagging binary predictor and the original
unbagged binary predictor. We need to find out the expected cost of these predictors.

First, the minimum possible expected cost is that of the optimal predictor Gyt;1ðXtÞ.
See Proposition 3. Plugging Gyt;1ðXtÞ into the conditional risk function in (14), we
have

EYtþ1
ðcðeytþ1ÞjXtÞ ¼ apðXtÞ þ ½1� a� pðXtÞ�G

y

t;1ðXtÞ, (21)

where eytþ1 � Gtþ1 � Gyt;1ðXtÞ. As defined in Eq. (7), the conditional expectation
EYtþ1
ð�jXtÞ is taken over PYtþ1

ðyjXtÞ, the conditional distribution of Y tþ1 given the
values of the predictor Xt. Recall that Gtþ1 � 1ðY tþ140Þ is a transform of Y tþ1.

Once the unknown parameters are trained, the conditional risks of
unbagged predictor and bagging predictors (for a given value of XtÞ can be
written as

EDt ;Ytþ1
ðcðêtþ1ÞjXtÞ ¼ apðXtÞ þ ½1� a� pðXtÞ�EDt Ĝt;1ðXt;DtÞ, ð22Þ

EDt ;Ytþ1
ðcðê

B

tþ1ÞjXtÞ ¼ apðXtÞ þ ½1� a� pðXtÞ�EDt Ĝ
B

t;1ðXtjDtÞ, ð23Þ

where êtþ1 � Gtþ1 � Ĝt;1ðXt;DtÞ and ê
B

tþ1 � Gtþ1 � Ĝ
B

t;1ðXtjDtÞ.
From (21), (22), and (23), it is easy to see the following result. Comparison of the

predictive ability of unbagged predictor and bagging predictor can be done by
comparing the conditional risks in (22) and (23). Conditional on the values of Xt, if

EDt ;Ytþ1
ðcðêtþ1ÞjXtÞ4EDt ;Ytþ1

ðcðê
B

tþ1ÞjXtÞ, we say bagging ‘‘works’’ for binary predic-

tor. Hence, when 1� a� pðXtÞ 4 0, (i.e., Gyt;1ðXtÞ ¼ 0), bagging works if
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EDt Ĝt;1ðXt;DtÞ 4 EDt Ĝ
B

t;1ðXtjDtÞ X Gyt;1ðXtÞ ¼ 0. When 1� a� pðXtÞ o 0, (i.e.,

Gyt;1ðXtÞ ¼ 1), bagging works if EDt Ĝt;1ðXt;DtÞo EDt Ĝ
B

t;1ðXtjDtÞ p Gyt;1ðXtÞ ¼ 1.

Depending on this condition, bootstrap aggregating predictor may not always be
better than the original unbagged predictor. We note that this is different from the
ensemble aggregating predictor, which is always no worse than the original predictor
as shown in Proposition 4. We also note that if the conditional risk of unbagged
predictor (22) is very close to the minimum possible conditional risk in (21), that
occurs when EDt Ĝt;1ðXt;DtÞ is very close to Gyt;1ðXtÞ, then there is little room for
improvement by bagging.

5.3. Asymptotic behavior of bagging binary predictor

Given a 2 ð0; 1Þ, let ut � Y t �QaðY tjXt�1Þ ¼ Y t � ~X
0

t�1ba. Let bya be the pseudo-

true value of the parameter ba of interest, in the sense that

bya � arg minba2Y EYtþ1
ðraðutþ1ÞjXtÞ. Let b̂aðDtÞ � arg minba2Y R�1

Pt

s¼t�Rþ1raðusÞ. Let

Q̂aðY tþ1jXt;DtÞ ¼ ~X
0

tb̂aðDtÞand QyaðY tþ1jXtÞ ¼ ~X
0

tb
y

a.

We now compare EDt Ĝt;1ðXt;DtÞ and EDt Ĝ
B

t;1ðXtjDtÞ when R is large to examine the
large sample behavior of bagging binary predictor. We make the following
assumptions, sufficient for the asymptotic normality of quantile estimator
Q̂aðY tþ1jXt;DtÞ, and the consistency of the block bootstrap for the distribution of
Q̂aðY tþ1jXt;DtÞ.

Assumption 1. The conditional a-quantile model of Y t given Xt�1 is Y t ¼ ~X
0

t�1ba þ ut,
where ba is identified on Y, a compact subset of Rk.

Assumption 2. bya is an interior point of Y.

Assumption 3. The sequence fY t; ~Xt�1gis strong mixing with size �r=ðr� 2Þ for r42.

Assumption 4. The distribution of futg is absolutely continuous and has a conditional
density f tðutjXt�1Þ, where f tðutjXt�1Þ is Lipschitz a.s., f tðutjXt�1Þ is bounded a.s., and
f tð0jXt�1Þ40 a.s., for all t.

Assumption 5. (i) For some d40, EDt
~Xti

�� ��2rþd
o1 a.s. for all t and i ¼ 1; . . . ; k. (ii)

MR ¼ EDtðR
�1
Pt

s¼t�Rþ1
~Xs�1

~X
0

s�1Þ and LR ¼ EDtðR
�1
Pt

s¼t�Rþ1f sð0jXs�1Þ ~Xs�1
~X
0

s�1Þ are
uniformly positive definite a.s. in R.

Assumption 6. Let uyt � Y t � ~X
0

t�1b
y

a. (i) EDt ½a� 1ðuyto0Þ� ~Xt�1 ¼ 0 a.s. for every t. (ii)

JR ¼ VDtðR
�1=2
Pt

s¼t�Rþ1½a� 1ðuyto0Þ� ~Xs�1Þ is uniformly positive definite a.s. in R,

where VDtð�Þ is the variance as defined in Eq. (5). (iii) The sequence f½a�
1ðuyto0Þ� ~Xt�1g satisfies the conditions of a central limit theorem (e.g., White, 1994,

Theorem A.3.7; Newey and McFadden, 1994, Theorem 7.2).

Our result on the asymptotic behavior of bagging binary predictor in Proposition
5 is based on the following two results.
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Asymptotic normality (Fitzenberger, 1997, Theorem 2.2; Komunjer, 2005,

Theorem 4). Let Assumptions 1–6 hold. Then, (i) D�1=2R R1=2
ðb̂aðDtÞ � byaÞ!

dNð0; IkÞ

as R!1, where DR ¼ L�1R JRL�1R and Ik is the k � k identity matrix. (ii)

Conditioning on the values of Xt,

ẐR j Xt!
dNð0; 1Þ, (24)

as R!1, where ẐR � R1=2
ð ~X
0

tb̂aðDtÞ � ~X
0

tb
y

aÞ=sRðXtÞ and s2
RðXtÞ ¼ VDtðR

1=2

ð ~X
0

tb̂aðDtÞ � ~X
0

tb
y

aÞÞ ¼
~X
0

tDR
~Xt.

Given a training set of data at time t, Dt � fðY s;Xs�1Þg
t

s¼t�Rþ1, construct a

bootstrap sample D�t � fðY
�

s ;X
�

s�1Þg
t

s¼t�Rþ1 according to the empirical distribution

of P̂ðDtÞ of Dt. Estimate b̂aðD
�

t Þ � arg minba R�1
Pt

s¼t�Rþ1 raðY
�

s �
~X
�0

s�1baÞ,

t ¼ R; . . . ;T . The bootstrap binary predictor is Q̂
�

aðY tþ1jXt;D
�

t Þ ¼
~X
0

tb̂aðD
�

t Þ.

Bootstrap consistency (Fitzenberger, 1997, Theorem 3.3). Let Assumptions 1–6
hold. Then, conditioning on the values of Xt,

Z�R j Xt!
dNð0; 1Þ,

as R!1, where Z�R � R1=2
ð ~X
0

tb̂aðD
�

t Þ �
~X
0

tb̂aðDtÞÞ=sRðXtÞ. That is, if we let F�RðzÞ �
PrðZ�RozÞ and FðzÞ be the Nð0; 1Þ distribution function, then

sup
z2R

kF�RðzÞ � FðzÞk ¼ OpðR
�1
Þ, (25)

as ẐR is asymptotically pivotal (Hall, 1992).

Under the asymptotic normality and the bootstrap consistency, we show in

Proposition 5 that the difference between EDt Ĝt;1ðXt;DtÞ and EDt Ĝ
B

t;1ðXtjDtÞ, and thus

the difference between the expected costs of unbagged predictor and bagging

predictor, EDt ;Ytþ1
ðcðêtþ1ÞjXtÞ and EDt ;Ytþ1

ðcðê
B

tþ1ÞjXtÞ, vanish a.s. as R!1.

Proposition 5. Under Assumptions 1–6, EDt ;Ytþ1
ðcðêtþ1ÞjXtÞ � EDt ;Ytþ1

ðcðê
B

tþ1ÞjXtÞ ¼

OpðR
�1
Þ.

Proof. From (22) and (23),

EDt ;Ytþ1
ðcðêtþ1ÞjXtÞ � EDt ;Ytþ1

ðcðê
B

tþ1ÞjXtÞ

¼ ½1� a� pðXtÞ�½EDt Ĝt;1ðXt;DtÞ � EDt Ĝ
B

t;1ðXtjDtÞ�.

Thus, it suffices to show EDt Ĝt;1ðXt;DtÞ � EDt Ĝ
B

t;1ðXtjDtÞ ¼ OpðR
�1
Þ. Let us set up

some notation: d
y

R ¼ �
ffiffiffiffi
R
p

QyaðY tþ1jXtÞ=sRðXtÞ, d
�

R � �
ffiffiffiffi
R
p

Q̂
�

aðY tþ1jXt;D
�

t Þ=sRðXtÞ,

and d̂R � �
ffiffiffiffi
R
p

Q̂aðY tþ1jXt;DtÞ=sRðXtÞ. Note that ẐR � d
y

R � d̂R and Z�R � d̂R � d
�

R.
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First, for the original binary predictor, conditioning on the values of Xt,

EDt Ĝt;1ðXt;DtÞ ¼ PrðĜt;1ðXt;DtÞ ¼ 1Þ

¼ PrðQ̂aðY tþ1jXt;DtÞ40Þ

¼ Prðd̂Ro0Þ

¼ PrðẐR4d
y

RÞ

¼ 1� PrðẐRod
y

RÞ ð26Þ

! 1� FðdyRÞ a:s: as R!1, ð27Þ

where the third equality follows from the definition of d̂R, the fourth equality follows
from the definition of ẐR, and the last line follows from the asymptotic normality ẐR

as shown in (24).
Next, we examine the bootstrap binary predictor. For each bootstrap forecast,

ED�
t
Ĝ
�

t;1ðXt;D
�

t Þ ¼ PrðĜ
�

t;1ðXt;D
�

t Þ ¼ 1Þ

¼ PrðQ̂
�

aðY tþ1jXt;D
�

t Þ40Þ

¼ Prðd�Ro0Þ

¼ PrðZ�R4d̂RÞ

¼ 1� F�Rðd̂RÞ

¼ 1� Fðd̂RÞ � BiasRðd̂RÞ, ð28Þ

where BiasRðzÞ � F�RðzÞ � FðzÞ. Therefore, for the voted-bagging predictor, con-
ditioning on the values of Xt,

EDt Ĝ
B

t;1ðXtjDtÞ ¼ PrðĜ
B

t;1ðXt;D
�

t Þ ¼ 1Þ

¼ PrðED�
t
Ĝ
�

t;1ðXt;D
�

t Þ4
1
2
Þ

¼ Prð1� Fðd̂RÞ � BiasRðd̂RÞ41
2
Þ

¼ Prðd̂RoF�1ð1
2
� BiasRðd̂RÞÞÞ

¼ PrðdyR � ẐRoF�1ð1
2
� BiasRðd̂RÞÞÞ

¼ 1� PrðẐRod
y

R � F�1ð1
2
� BiasRðd̂RÞÞÞ

! 1� FðdyRÞ a:s: as R!1. ð29Þ

Comparing (26) and (29), we get EDt Ĝt;1ðXt;DtÞ � EDt Ĝ
B

t;1ðXtjDtÞ ¼ OpðR
�1
Þ, as

BiasRðd̂RÞ ¼ OpðR
�1
Þ from (25). &

From the above analysis, we see that bagging can push a predictor to its optimal
value and also see that ability of bagging to improve predictability is limited. If there
is no predictability at all, if unbagged predictor is already very close to the optimal
predictor, or if we have a large enough sample, then there will be no room for
improvement by bagging. Therefore, we cannot expect bagging to still improve
unbagged predictor when sample size is very large. We also note that bagging can be
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worse than unbagged predictors. Therefore, we cannot arbitrarily select a prediction
model and expect bagging to work like magic and to give a better prediction
automatically. In case of classification (as in our binary predictors), bagging
predictor is formed via voting, for which case Breiman (1996a, Section 4.2) also
shows that it is possible that a bagging predictor could be worse than an unbagged
predictor. As we will see from the Monte Carlo experiment in Section 7 and the
empirical applications in Section 8, bagging could be worse for binary predictors and
quantile predictions, although in general it works well particularly with a small R.

Remark 1. As noted before, if EDt Ĝt;1ðXt;DtÞ is very close to Gyt;1ðXtÞ, there is no
room for improvement by bagging. According to (27), when d

y

R is close to 0, FðdyRÞ is
most away from 1 or 0. That means when the pseudo-true conditional a-quantile
QyaðY tþ1jXtÞ is close to 0, there is largest room for bagging to work. This is because
when QyaðY tþ1jXtÞ ¼ 0 unbagged predictor Ĝt;1ðXt;DtÞ ¼ 1ðQ̂aðY tþ1jXt;DtÞ40Þ will be
most ‘‘unstable’’ (This is when the sign of the estimated quantile can come out either
way due to sample variation). Notice that QyaðY tþ1jXtÞ is a function of Xt, we can
expect that the instability of binary predictor will also depend on how much mass the
distribution of Xt puts in the regions where QyaðY tþ1jXtÞ is close to zero. If the
distribution of Xt is dense where QyaðY tþ1jXtÞ is close to zero, Q̂aðY tþ1jXtÞ will be less
volatile, so unbagged predictor will perform relatively well. Otherwise, Q̂aðY tþ1jXtÞ

will be more volatile, so unbagged predictor will be very unstable. By adding more
observations to that point through bootstrap, bagging will generate a more stable
predictor around QyaðY tþ1jXtÞ. Our Monte Carlo results with skewed error
distribution show this property clearly. Hence, for economic agents or financial
investors with the cost function parameter a that gives QyaðY tþ1jXtÞ ¼ 0, bagging
binary prediction could work most effectively.

Remark 2. The ‘‘voted-bagging’’ does not transform the hard-thresholding decision
into a soft-thresholding decision. As Bühlmann and Yu (2002) have shown,
‘‘averaged-bagging’’ transforms a hard-thresholding function (e.g., indicator) into a
soft-thresholding function (smooth function) and thus decreases the instabilities of

predictors.2 However,in the majority voting Ĝ
B

t;1ðXtjDtÞ ¼ 1ðED�
t
Ĝ
�

t;1ðXt;D
�

t Þ4
1
2
Þ, bag-

ging predictor is still a hard-thresholding decision. Bagging binary prediction remains
unstable (particularly around the thresholding value). Hence, the explanation of
Bühlmann and Yu (2002) does not apply to the voted-bagging binary predictor.
2If the bagging predictor is not via majority voting but via averaging, then the bagging can be effective.

Note that

ED�
t
Ĝ
�

t;1ðXt;D
�

t Þ ¼ 1�F�ðd̂RÞ ¼ 1� F�ðdyR � ẐRÞ.

In particular, consider the case when QyaðY tþ1jXtÞ ¼ 0 or d
y

R ¼ 0, so that the binary predictor Ĝt;1 ¼

1ðQ̂aðY tþ1jXtÞ40Þ is most unstable. Then

ED�
t
Ĝ
�

t;1ðXt;D
�

t Þ ¼ 1�F�ð�ẐRÞ�U ½0; 1�,

so that its mean is 1
2
and its variance 1

12
. This is clearly an improvement over the unbagged binary predictor

Ĝt;1ðXt;DtÞ that may have mean 1
2
and variance 1

2
ð1� 1

2
Þ ¼ 1

4
.
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6. Bootstrap aggregating predictor for quantile variable

Another unstable predictor used in bagging literature is non-linear predictors.
Quantile predictor is the minimizer of cost function rað�Þ as defined in (12), and is a non-
linear function of sample moments. According to Friedman and Hall (2000) and Buja
and Stuetzle (2002), bagging can increase the prediction accuracy for non-linear
predictors. Knight and Bassett (2002) show that under i.i.d. and some other assumptions,
bagged non-parametric quantile estimators and linear regression quantile estimators can
outperform their corresponding standard unbagged predictors. Therefore, we will
examine the effect of bagging on quantile predictions, by comparing unbagged predictor

Q̂aðY tþ1jXt;DtÞ and bagging predictor Q̂
B

a ðY tþ1jXt;DtÞ (defined below).

The procedure of bagging for quantile predictors can be conducted in the
following steps:
1.
3

hig

term

cos

Stu

pre

qua

the

squ
Construct the jth bootstrap sample D�ðjÞt , j ¼ 1; . . . ; J, the bootstrap samples,
according to the empirical distribution of Dt.P �ðjÞ0
2.
 Estimate b̂aðD
�ðjÞ

t Þ ¼ arg minba2Y R�1
t

s¼t�Rþ1raðY
�ðjÞ

s �
~Xs�1baÞ; t ¼ R; . . . ;T .
3.
 Compute the bootstrap quantile predictor from the jth bootstrapped sample, that is,

Q̂
�ðjÞ

a ðY tþ1jXt;D
�ðjÞ

t Þ �
~X
0

tb̂aðD
�ðjÞ

t Þ.
4.
 Finally, bagging predictor Q̂
B

a ðY tþ1jXt;DtÞ can be constructed by averaging over
the J bootstrap predictors, i.e.,

Q̂
B

a ðY tþ1jXt;DtÞ � ED�
t
Q̂
�

aðY tþ1jXt;D
�

t Þ,

where ED�
t
Q̂
�

aðY tþ1jXt;D
�

t Þ ¼
PJ

j¼1 ŵj;tQ̂
�ðjÞ

a ðY tþ1jXt;D
�ðjÞ

t Þ.

Why does bagging work for quantile prediction? There have been several papers that
are useful to answer this question. It is generally explained in two ways. The first
explanation why bagging works for quantile prediction is different than for the
classification problem as we discussed in the previous section. Friedman and Hall
(2000), Buja and Stuetzle (2002), and Knight and Bassett (2002) all use a certain kind of
Taylor-expansion to rewrite interested estimators, and show that bagging predictors are
first order equivalent to the standard unbagged predictors, but will lower the non-
linearities of the predictor. Bagging can drive an estimator towards its linear
approximation, which usually has a lower variance.3 The second explanation why
Friedman and Hall (2000) use a Taylor-expansion to decompose statistical estimators into linear and

her order parts, or decompose the objective function that they optimize into quadratic and higher order

s. To apply a Taylor-expansion, the estimator must be a smooth function of sample moments and the

t function is differentiable. Therefore this does not help analyzing bagging quantile predictor. Buja and

etzle (2002) extend the application of bagging regression to more general circumstance by expressing

dictors as statistical functionals (especially those can be written as U-statistics). They show how

ntile estimators can be written as U-statistics. Since a Taylor expansion is no longer applicable now,

y use the von Mises expansion technique to prove that the leading effects of bagging on variance,

ared bias, and MSE are of order R�2, where R is the estimation sample size. So, bagging may works for
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bagging works for quantile prediction has to do with the unstableness of quantile
prediction. One source of unstableness is the non-differentiable feature in the objective
function (12). The sample objective function used in regression as an estimator of the
objective function will be even worse behaved because of the limitation of sample size.
There may be several equivalent minimizers for sample objective function, and the
numerical searching method may stop at any of these minimizers, or even a local
minimizer depending on the beginning point of the search. So quantile estimator may
have a very high volatility.Bagging can smooth the sample objective function, so that
bagging predictor will converge to the global minimizer of the sample objective function.

For the above reasons, we conjecture that bagging will also improve quantile
prediction with time series data. However, we leave more rigorous analytical work for
our future research. For now, we show the performance of bagging for quantile
predictions via simulation and empirical analysis in the next two sections. These results
show that bagging would be very useful in improving quantile prediction (e.g., VaR
forecasts in financial risk management and the fan-chart of the Bank of England).
7. Monte Carlo

In this section, we use a set of Monte Carlo simulations to gain further insights
of conditions under which bagging works. From both binary and quantile predic-
tions, we can obtain the out-of-sample average costs for unbagged predictors (S1)
and bagging predictors (S2). We consider the asymmetric cost parameter
a ¼ 0:1,0:3,0:5,0:7,and 0:9. It will be said that bagging ‘‘works’’ if S14S2. To
rule out the chance of pure luck by a certain criterion, we compute the following
four summary performance statistics from 100 Monte Carlo replications

(r ¼ 1; . . . ; 100): T 1 �
1
100

P100

r¼1S
r

a, T 2 � ð
1
100

P100

r¼1ðS
r

a � T 1ÞÞ
1=2, T 3 �

1
100

P100

r¼11ðS
r

14Sr

2Þ,

and T 4 �
1
100

P100

r¼11ðS
r

1 ¼ Sr

2Þ, where a ¼ 1 for the non-bagged predictor and a ¼ 2 for

bagging predictor. T 1 measures the Monte Carlo mean of the out-of-sample cost, T 2

measures the Monte Carlo standard deviation of the out-of-sample cost, T 3 measures
the Monte Carlo frequency that bagging works, and ðT 3 þ T 4Þ measures the Monte
Carlo frequency that bagging is no worse than unbagged predictors. (T 4 is usually zero
for quantile prediction, but usually non-zero for binary prediction.)

We generate the data from

Y t ¼ rY t�1 þ et,

et ¼ zt ð1� yÞ þ ye2t�1
� �1=2

zt�i.i.d.MW i
(footnote continued)

non-smooth target functions, such as median predictors and quantile predictors. Knight and Bassett

(2002) illustrate that if quantile estimator is asymptotically normal, we can decompose quantile estimator

into linear and non-linear part using the Bahadur–Kiefer representation. They show that bagging quantile

estimators are first-order equivalent to the standard unbagged quantile predictor, however, bagging can

reduce the non-linearity of the sample quantile.
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where the i.i.d. innovation zt is generated from the first eight mixture normal
distributions of Marron and Wand (1992, p. 717), each of which will be denoted as
MW i ði ¼ 1; . . . ; 8Þ.4 In Table 1, we consider the data generating processes for
ARCH-MW1 with y ¼ 0:5 ðand r ¼ 0Þ, while in Tables 2–5, we consider the data
generating processes for AR-MWi ði ¼ 1; . . . ; 4Þ with r ¼ 0:6 ðand y ¼ 0Þ. Therefore,
our data generating processes fall into two categories: the (mean-unpredictable)
martingale-difference ARCH(1) processes without AR structure and the mean-
predictable AR(1) processes without ARCH structure.

For each series, 100 extra series is generated and then discarded to alleviate
the effect of the starting values in random number generation. We consider one
fixed out-of-sample size P ¼ 100 and a range of estimation sample sizes
R ¼ 20; 50; 100; 200. Our bagging predictors are generated by voting or by
averaging over J ¼ 50 bootstrap predictors (the results with J ¼ 20, not reported
here, basically tell the same story).

Our binary predictors are based on quantile predictors as suggested before:
Ĝt;1ðXt;DtÞ � 1ðQ̂aðY tþ1jXt;DtÞ40Þ, and we are using univariate quantile regression
model as discussed in Section 3. Quantile model is estimated using the interior-point
algorithm used by Portnoy and Koenker (1997).

To generate bootstrap samples, we use the block bootstrap for both Monte Carlo
experiments in this section and the empirical application in the next section. We
choose the block size that minimizes the in-sample average cost recursively and
therefore we use a different block size at each forecasting time and for the cost
function with different a’s.

The Monte Carlo results are reported in Tables 1–5. For both binary predictions
and quantile predictions, bagging works well when the sample size is small. The
improvement of bagging predictors over unbagged predictors becomes less
significant when the sample size increases. This is true in terms of all three criteria,
T 1;T 2, and T 3. When R ¼ 20, bagging gives the largest reduction in the mean cost,
the largest reduction in the variance of the cost, and the highest frequency of out-
performance.

In the previous sections, we introduced several weights ŵj;t to form bagging
predictors: equal weight and the BMA-weights with lags k ¼ 1; 5, and R, defined in
(31) in Appendix. In Tables 1–5, EW and W k denote the weighted-bagging with
equal weights and with BMA-weights using k-most recent in-sample observations.
The BMA is to give a large weight to the jth bootstrap predictor at each period t

when it has forecast well over the past k periods, and gives a small weight to the jth
bootstrap predictor at period t when it forecasted poorly over the past k periods.
With smaller k, we intend to focus on the most recent performance of each bootstrap
predictor. According to our simulation results, the BMA-weight with k ¼ 1 performs
4MW 1 is Gaussian, MW 2 is skewed unimodal, MW 3 strongly skewed, MW 4 kurtoic unimodal, MW 5

outlier, MW 6 bimodal, MW 7 separated bimodal, and MW 8 is skewed bimodal. See Marron and Wand

(1992, p. 717). To save space we report only for MW i ði ¼ 1; . . . ; 4Þ. The other four results for i ¼ 5; . . . ; 8
are basically similar in the pattern how the bagging works, and are available upon request.
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Table 1

r ¼ 0; y ¼ 0:5, and MW 1 (Gaussian)

R ¼ 20 R ¼ 50 R ¼ 100 R ¼ 200

J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50

EW W 1 W R EW W 1 W R EW W 1 W R EW W 1 W R

Binary

a ¼ :1 T 1 6.89 5.71 5.56 5.63 5.41 5.11 5.08 5.09 5.10 5.05 5.05 5.05 5.04 5.04 5.04 5.04

T 2 1.28 1.09 0.98 1.05 0.80 0.54 0.52 0.53 0.55 0.51 0.51 0.51 0.54 0.54 0.54 0.54

T 3 0.80 0.80 0.81 0.35 0.36 0.34 0.08 0.08 0.08 0.00 0.00 0.00

T 4 0.08 0.09 0.07 0.55 0.56 0.56 0.90 0.90 0.90 1.00 1.00 1.00

a ¼ :3 T 1 18.42 15.50 15.20 15.48 16.36 15.28 15.27 15.31 15.56 15.17 15.18 15.16 15.25 15.14 15.13 15.13

T 2 2.44 2.28 2.13 2.19 1.94 1.69 1.62 1.71 1.74 1.50 1.50 1.51 1.66 1.65 1.64 1.65

T 3 0.89 0.95 0.91 0.80 0.83 0.79 0.39 0.37 0.40 0.16 0.16 0.16

T 4 0.01 0.00 0.02 0.07 0.08 0.08 0.51 0.53 0.51 0.82 0.81 0.82

a ¼ :5 T 1 25.56 21.26 21.24 21.48 25.17 22.63 22.67 22.69 25.04 23.22 23.22 23.27 24.93 23.23 23.33 23.24

T 2 2.29 3.38 3.11 3.32 2.20 2.49 2.36 2.38 2.60 2.35 2.48 2.31 2.56 2.78 2.54 2.77

T 3 0.93 0.97 0.93 0.81 0.82 0.82 0.80 0.80 0.80 0.70 0.72 0.65

T 4 0.04 0.00 0.03 0.09 0.06 0.09 0.07 0.03 0.06 0.07 0.03 0.14

a ¼ :7 T 1 17.80 15.57 15.41 15.60 15.82 14.93 14.88 14.95 15.15 14.88 14.87 14.87 14.98 14.87 14.86 14.88

T 2 2.19 2.08 2.09 2.11 1.96 1.63 1.61 1.63 1.68 1.60 1.58 1.60 1.70 1.63 1.63 1.62

T 3 0.88 0.91 0.86 0.73 0.75 0.73 0.37 0.37 0.37 0.16 0.17 0.14

T 4 0.00 0.01 0.00 0.11 0.11 0.11 0.54 0.57 0.54 0.80 0.79 0.81

a ¼ :9 T 1 6.94 5.89 5.83 5.92 5.22 4.96 4.97 4.96 5.03 4.95 4.95 4.96 4.96 4.96 4.96 4.96

T 2 1.49 1.45 1.39 1.47 0.69 0.50 0.52 0.50 0.62 0.51 0.51 0.52 0.54 0.54 0.54 0.54

T 3 0.77 0.78 0.77 0.29 0.28 0.29 0.09 0.09 0.09 0.00 0.00 0.00

T 4 0.07 0.09 0.07 0.62 0.64 0.62 0.89 0.89 0.89 0.99 0.99 0.99

Quantile

a ¼ :1 T 1 25.46 19.20 18.30 18.93 19.27 17.13 17.07 17.13 17.83 16.77 16.75 16.78 16.73 16.28 16.29 16.28

T 2 6.75 3.91 3.47 3.64 3.02 2.47 2.43 2.47 3.27 2.57 2.57 2.57 2.73 2.47 2.49 2.47

T 3 0.96 0.98 0.97 0.97 0.97 0.97 0.93 0.92 0.93 0.88 0.88 0.88

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :3 T 1 40.75 33.69 33.57 33.67 35.74 32.83 32.91 32.86 34.28 32.86 32.84 32.87 32.86 32.21 32.21 32.21

T 2 7.03 5.22 5.19 5.10 4.83 4.02 4.09 4.03 5.12 4.70 4.64 4.70 4.51 4.37 4.38 4.37

T 3 0.97 0.99 0.99 0.99 0.99 0.99 0.96 0.97 0.96 0.90 0.89 0.90

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :5 T 1 45.31 38.12 38.25 38.15 40.62 37.32 37.56 37.35 38.87 37.23 37.29 37.24 37.53 36.80 36.81 36.80

T 2 7.12 6.14 6.50 6.08 5.43 4.50 4.73 4.51 6.13 5.04 5.18 5.04 4.90 4.85 4.84 4.85

T 3 1.00 1.00 1.00 0.99 0.98 0.99 0.99 0.99 0.99 0.93 0.92 0.93

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :7 T 1 40.10 33.98 33.87 33.92 35.56 32.39 32.52 32.41 33.86 32.44 32.48 32.45 32.70 32.09 32.13 32.10

T 2 6.32 5.93 6.10 5.75 5.12 3.76 3.91 3.77 5.53 4.74 4.82 4.75 4.42 4.26 4.31 4.26

T 3 0.97 0.98 0.98 0.98 0.99 0.98 0.96 0.96 0.96 0.90 0.90 0.90

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :9 T 1 24.64 19.88 18.96 19.45 19.19 16.74 16.72 16.74 17.58 16.58 16.57 16.58 16.86 16.34 16.36 16.34

T 2 5.18 5.06 4.15 4.38 3.96 2.44 2.50 2.45 3.13 2.72 2.72 2.72 2.58 2.40 2.43 2.40

T 3 0.91 0.97 0.96 0.98 0.98 0.98 0.92 0.91 0.92 0.88 0.87 0.88

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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the best for our DGP’s, although all weights with different k often work quite
similarly.

Let us examine Table 1 in some details. The mean cost reduction (in terms of T 1Þ

for both binary prediction and quantile prediction can be as much as about 20% for
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Table 2

r ¼ 0:6; y ¼ 0, and MW 1 (Gaussian)

R ¼ 20 R ¼ 50 R ¼ 100 R ¼ 200

J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50

EW W 1 W R EW W 1 W R EW W 1 W R EW W 1 W R

Binary

a ¼ :1 T 1 6.52 5.66 5.36 5.55 4.97 4.78 4.78 4.78 5.09 4.95 4.93 4.94 4.91 4.94 4.94 4.94

T 2 1.45 1.54 1.28 1.44 1.08 0.86 0.86 0.86 0.98 0.90 0.88 0.89 0.92 0.84 0.84 0.84

T 3 0.72 0.78 0.76 0.43 0.43 0.43 0.31 0.34 0.32 0.18 0.19 0.18

T 4 0.01 0.03 0.02 0.15 0.15 0.15 0.28 0.24 0.28 0.21 0.21 0.21

a ¼ :3 T 1 14.46 13.35 13.11 13.33 12.94 12.63 12.64 12.64 12.91 12.87 12.85 12.86 12.06 12.35 12.35 12.35

T 2 2.41 2.24 2.14 2.22 2.57 2.24 2.28 2.25 1.90 2.00 1.97 1.99 2.28 2.21 2.22 2.20

T 3 0.76 0.82 0.79 0.55 0.56 0.53 0.39 0.39 0.41 0.33 0.32 0.33

T 4 0.01 0.00 0.00 0.00 0.01 0.00 0.08 0.08 0.08 0.05 0.06 0.04

a ¼ :5 T 1 17.44 16.26 15.91 16.32 15.32 15.24 15.05 15.22 15.79 15.80 15.71 15.80 14.76 14.75 14.76 14.73

T 2 2.73 2.68 2.64 2.76 2.80 2.78 2.70 2.78 2.32 2.21 2.15 2.18 2.50 2.39 2.42 2.42

T 3 0.69 0.73 0.66 0.46 0.57 0.51 0.36 0.40 0.35 0.36 0.30 0.36

T 4 0.10 0.13 0.13 0.18 0.16 0.16 0.27 0.25 0.29 0.33 0.38 0.36

a ¼ :7 T 1 14.08 13.12 12.94 13.21 12.50 12.36 12.26 12.35 12.79 12.89 12.81 12.85 12.33 12.47 12.50 12.46

T 2 2.46 2.40 2.25 2.45 2.38 2.14 2.24 2.26 2.47 2.36 2.28 2.31 2.05 2.06 2.10 2.05

T 3 0.69 0.73 0.68 0.55 0.57 0.54 0.45 0.43 0.43 0.41 0.39 0.41

T 4 0.02 0.04 0.02 1.00 0.03 0.04 0.05 0.03 0.07 0.03 0.06 0.06 0.06

a ¼ :9 T 1 6.22 5.18 5.00 5.21 5.12 4.92 4.90 4.92 4.96 4.87 4.88 4.88 5.01 4.91 4.90 4.91

T 2 1.53 1.36 1.13 1.37 1.01 0.91 0.89 0.92 1.00 0.83 0.84 0.84 0.96 0.84 0.84 0.85

T 3 0.73 0.77 0.73 0.45 0.48 0.44 0.36 0.34 0.34 0.32 0.32 0.32

T 4 0.02 0.03 0.02 0.14 0.12 0.15 0.11 0.13 0.12 0.20 0.22 0.22

Quantile

a ¼ :1 T 1 26.34 22.24 19.98 21.29 20.01 18.74 18.50 18.70 18.52 18.02 17.94 18.02 17.90 17.84 17.83 17.84

T 2 4.89 4.54 3.05 3.77 2.18 1.85 1.69 1.82 2.11 1.95 1.89 1.95 1.76 1.72 1.71 1.72

T 3 0.86 0.99 0.92 0.86 0.93 0.87 0.75 0.78 0.75 0.50 0.50 0.50

T 4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :3 T 1 42.30 38.84 37.17 38.31 37.52 36.62 36.29 36.58 35.85 35.60 35.49 35.60 35.29 35.26 35.21 35.26

T 2 4.41 4.19 3.59 3.87 3.22 3.11 2.97 3.10 3.36 3.28 3.22 3.28 2.92 3.00 2.97 3.00

T 3 0.90 0.99 0.94 0.82 0.85 0.83 0.60 0.67 0.60 0.57 0.57 0.57

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :5 T 1 47.65 43.98 42.47 43.60 42.35 41.33 41.02 41.29 40.76 40.48 40.34 40.48 40.23 40.18 40.13 40.17

T 2 4.56 4.54 3.82 4.22 3.27 3.23 3.06 3.21 3.52 3.48 3.45 3.47 3.11 3.15 3.13 3.15

T 3 0.87 0.99 0.89 0.82 0.91 0.85 0.63 0.73 0.63 0.58 0.62 0.58

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :7 T 1 42.57 39.18 37.46 38.68 36.74 35.99 35.68 35.96 35.43 35.26 35.15 35.25 34.93 34.92 34.88 34.92

T 2 4.10 4.48 3.79 4.12 2.85 2.76 2.63 2.74 3.24 3.11 3.08 3.11 2.65 2.63 2.62 2.63

T 3 0.84 0.98 0.90 0.68 0.77 0.71 0.68 0.71 0.68 0.55 0.58 0.55

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :9 T 1 25.92 21.52 19.70 20.74 19.61 18.36 18.16 18.33 18.30 17.87 17.83 17.86 17.80 17.71 17.69 17.70

T 2 4.29 4.07 2.83 3.42 2.26 1.89 1.77 1.87 2.11 1.88 1.88 1.88 1.60 1.43 1.42 1.43

T 3 0.85 0.98 0.93 0.85 0.89 0.86 0.74 0.76 0.74 0.55 0.56 0.55

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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all a’s; the variance of cost (in terms of T 2Þ can be reduced by as much as about 20%
for binary prediction and about 50% for quantile prediction; and T 3 is as high as
95% for binary prediction and 100% for quantile prediction. This result shows that
bagging can significantly mitigate the problem of the sample shortage.
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Table 3

r ¼ 0:6; y ¼ 0, and MW 2 (Skewed unimodal)

R ¼ 20 R ¼ 50 R ¼ 100 R ¼ 200

J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50

EW W 1 W R EW W 1 W R EW W 1 W R EW W 1 W R

Binary

a ¼ :1 T 1 7.36 6.00 5.71 5.88 5.57 5.14 5.13 5.14 5.51 5.29 5.29 5.29 5.28 5.27 5.27 5.27

T 2 1.77 1.69 1.27 1.53 1.12 0.84 0.83 0.85 1.12 0.97 0.97 0.97 0.95 0.88 0.88 0.88

T 3 0.78 0.83 0.81 0.60 0.60 0.60 0.42 0.42 0.41 0.24 0.24 0.24

T 4 0.04 0.04 0.03 0.09 0.08 0.09 0.25 0.23 0.24 0.33 0.32 0.32

a ¼ :3 T 1 15.14 14.50 14.05 14.50 13.68 13.48 13.43 13.46 13.16 13.17 13.10 13.19 12.88 12.98 12.95 12.98

T 2 2.57 2.71 2.53 2.70 2.41 2.20 2.25 2.18 2.34 2.25 2.30 2.24 2.34 2.46 2.47 2.47

T 3 0.66 0.68 0.66 0.52 0.55 0.52 0.51 0.54 0.48 0.48 0.49 0.48

T 4 0.01 0.02 0.01 0.03 0.05 0.03 0.03 0.03 0.03 0.02 0.03 0.02

a ¼ :5 T 1 16.61 16.01 15.50 15.98 15.33 15.17 15.07 15.21 14.62 14.71 14.65 14.70 14.24 14.23 14.22 14.22

T 2 2.84 2.55 2.36 2.48 3.07 2.83 2.80 2.83 3.00 3.16 3.06 3.21 2.46 2.41 2.41 2.43

T 3 0.56 0.65 0.60 0.48 0.51 0.44 0.43 0.41 0.38 0.31 0.30 0.32

T 4 0.08 0.10 0.04 0.15 0.19 0.20 0.17 0.22 0.19 0.40 0.44 0.40

a ¼ :7 T 1 12.80 12.04 11.85 12.09 11.41 11.40 11.40 11.38 10.83 10.85 10.83 10.83 11.20 11.31 11.27 11.29

T 2 2.43 2.24 2.17 2.27 2.21 2.14 2.18 2.16 2.33 2.11 2.08 2.09 2.20 2.23 2.22 2.21

T 3 0.64 0.71 0.63 0.50 0.46 0.50 0.50 0.52 0.49 0.46 0.45 0.44

T 4 0.01 0.00 0.01 0.04 0.07 0.05 0.05 0.06 0.06 0.04 0.06 0.05

a ¼ :9 T 1 5.46 4.79 4.69 4.85 4.50 4.48 4.47 4.48 4.29 4.41 4.40 4.40 4.35 4.46 4.43 4.44

T 2 1.62 1.46 1.33 1.48 1.11 0.94 0.96 0.96 0.94 0.92 0.92 0.93 0.93 0.79 0.80 0.80

T 3 0.64 0.70 0.63 0.39 0.37 0.37 0.26 0.25 0.25 0.23 0.25 0.24

T 4 0.05 0.02 0.04 0.05 0.07 0.07 0.07 0.07 0.07 0.09 0.08 0.09

Quantile

a ¼ :1 T 1 30.66 24.13 21.78 23.25 23.46 21.41 21.13 21.39 21.57 20.80 20.74 20.80 20.87 20.59 20.57 20.59

T 2 5.98 5.05 3.56 4.26 3.20 2.64 2.55 2.62 3.09 2.71 2.66 2.71 2.32 2.23 2.22 2.23

T 3 0.87 1.00 0.95 0.90 0.97 0.91 0.77 0.79 0.77 0.67 0.68 0.67

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :3 T 1 43.96 40.60 38.92 39.95 38.52 37.42 37.11 37.40 36.49 36.21 36.07 36.20 36.01 35.92 35.87 35.91

T 2 5.35 5.34 4.66 4.79 4.21 3.85 3.92 3.86 4.26 4.13 4.06 4.13 3.23 3.22 3.22 3.22

T 3 0.82 0.97 0.89 0.79 0.89 0.79 0.62 0.67 0.62 0.64 0.67 0.64

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :5 T 1 45.58 42.49 41.09 42.09 40.89 40.09 39.73 40.05 39.02 39.04 38.90 39.03 38.36 38.31 38.27 38.31

T 2 5.07 4.85 4.22 4.55 3.86 3.56 3.55 3.55 4.01 3.98 3.91 3.97 3.31 3.23 3.23 3.23

T 3 0.79 0.93 0.87 0.75 0.91 0.75 0.53 0.65 0.54 0.52 0.60 0.54

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :7 T 1 38.32 35.59 34.23 35.17 33.77 33.11 32.77 33.08 32.35 32.25 32.16 32.25 31.69 31.74 31.70 31.74

T 2 4.55 4.14 3.60 3.84 2.72 2.65 2.54 2.65 2.97 2.91 2.89 2.91 2.58 2.52 2.52 2.52

T 3 0.82 0.96 0.84 0.70 0.83 0.70 0.56 0.62 0.56 0.50 0.51 0.50

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :9 T 1 22.62 19.42 17.79 18.62 16.93 16.17 15.93 16.14 15.78 15.66 15.63 15.66 15.32 15.46 15.45 15.46

T 2 4.49 3.66 2.74 3.12 1.96 1.62 1.46 1.60 1.54 1.53 1.52 1.53 1.35 1.27 1.26 1.27

T 3 0.77 0.93 0.87 0.71 0.82 0.71 0.54 0.54 0.54 0.45 0.45 0.45

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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This function of bagging can also be observed by the performance of bagging on
tails. The scarcity of observations on tails usually will lead to the poor predictions,
however, the degree of improvement of bagging predictors are very significant for
a ¼ 0:1 and 0:9 according to our Monte Carlo results. We observe this fact using
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Table 4

r ¼ 0:6; y ¼ 0, and MW 3 (Strongly skewed)

R ¼ 20 R ¼ 50 R ¼ 100 R ¼ 200

J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50

EW W 1 W R EW W 1 W R EW W 1 W R EW W 1 W R

Binary

a ¼ :1 T 1 3.32 3.38 3.30 3.33 2.97 3.26 3.28 3.26 3.12 3.43 3.45 3.43 3.00 3.23 3.25 3.23

T 2 0.81 0.71 0.61 0.64 0.63 0.56 0.56 0.56 0.68 0.72 0.72 0.72 0.66 0.70 0.70 0.70

T 3 0.34 0.36 0.37 0.17 0.18 0.17 0.13 0.13 0.13 0.06 0.06 0.06

T 4 0.06 0.06 0.07 0.08 0.05 0.08 0.08 0.06 0.08 0.11 0.10 0.11

a ¼ :3 T 1 9.46 9.34 9.04 9.28 8.35 8.30 8.29 8.30 8.62 8.74 8.74 8.74 8.57 8.60 8.60 8.61

T 2 2.03 2.11 1.83 1.99 1.55 1.58 1.56 1.58 1.59 1.60 1.61 1.61 1.70 1.78 1.78 1.79

T 3 0.52 0.60 0.56 0.32 0.31 0.32 0.30 0.30 0.31 0.34 0.34 0.34

T 4 0.06 0.07 0.04 0.34 0.34 0.34 0.23 0.23 0.22 0.33 0.33 0.31

a ¼ :5 T 1 14.59 14.09 13.64 14.00 12.85 12.72 12.61 12.70 12.99 13.06 13.02 13.02 13.13 13.01 13.04 13.00

T 2 2.68 3.03 2.82 2.96 2.38 2.28 2.25 2.27 2.36 2.38 2.30 2.33 2.61 2.55 2.54 2.56

T 3 0.57 0.67 0.57 0.45 0.52 0.45 0.32 0.32 0.31 0.39 0.41 0.39

T 4 0.12 0.14 0.14 0.26 0.17 0.26 0.34 0.38 0.37 0.38 0.35 0.37

a ¼ :7 T 1 16.12 14.44 14.16 14.52 14.83 14.58 14.37 14.46 14.25 14.47 14.32 14.43 14.12 14.18 14.11 14.18

T 2 2.62 2.61 2.48 2.56 2.65 2.37 2.28 2.36 2.32 2.28 2.22 2.21 2.38 2.43 2.35 2.42

T 3 0.76 0.82 0.76 0.56 0.62 0.61 0.42 0.49 0.43 0.40 0.42 0.37

T 4 0.00 0.00 0.01 0.00 0.03 0.02 0.03 0.03 0.04 0.07 0.08 0.08

a ¼ :9 T 1 8.80 6.88 6.86 6.99 6.45 5.98 5.98 5.99 5.90 5.72 5.72 5.72 5.83 5.79 5.78 5.78

T 2 1.94 1.85 1.69 1.87 1.18 0.89 0.91 0.91 1.05 0.90 0.90 0.90 1.13 0.99 0.98 0.98

T 3 0.85 0.84 0.84 0.51 0.52 0.52 0.30 0.29 0.30 0.14 0.14 0.14

T 4 0.01 0.04 0.02 0.16 0.18 0.17 0.40 0.40 0.40 0.66 0.66 0.66

Quantile

a ¼ :1 T 1 12.96 13.34 11.83 12.30 9.52 10.31 10.23 10.28 9.39 10.16 10.12 10.15 9.19 9.74 9.72 9.74

T 2 2.70 2.96 1.66 1.79 1.01 1.14 1.12 1.13 1.07 1.35 1.33 1.34 0.98 1.18 1.18 1.18

T 3 0.46 0.66 0.61 0.05 0.08 0.06 0.07 0.08 0.08 0.03 0.03 0.03

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :3 T 1 30.27 29.96 28.27 29.10 25.85 25.89 25.71 25.86 25.50 25.65 25.58 25.64 25.07 25.16 25.14 25.15

T 2 4.04 4.34 3.46 3.54 2.47 2.54 2.47 2.53 2.90 2.94 2.91 2.93 2.68 2.65 2.65 2.65

T 3 0.61 0.76 0.69 0.49 0.56 0.51 0.41 0.45 0.42 0.41 0.46 0.42

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :5 T 1 43.05 40.51 39.27 40.01 37.70 37.19 36.97 37.15 37.07 36.96 36.88 36.96 36.25 36.29 36.25 36.29

T 2 5.17 5.09 4.67 4.84 3.82 3.74 3.65 3.73 4.23 4.05 4.05 4.05 3.90 3.72 3.72 3.72

T 3 0.79 0.89 0.82 0.64 0.76 0.65 0.56 0.64 0.57 0.49 0.51 0.49

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :7 T 1 47.22 42.05 40.95 41.61 40.95 39.29 39.18 39.27 39.69 39.29 39.15 39.29 38.56 38.37 38.34 38.37

T 2 5.69 5.70 5.34 5.44 4.65 4.52 4.47 4.51 4.72 4.62 4.55 4.62 3.99 3.77 3.78 3.77

T 3 0.91 0.98 0.95 0.91 0.94 0.92 0.68 0.75 0.68 0.63 0.63 0.64

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :9 T 1 35.58 27.37 25.20 26.31 26.28 23.70 23.47 23.70 24.36 23.09 22.98 23.08 23.36 22.87 22.84 22.87

T 2 6.64 5.74 4.33 4.47 3.92 3.23 3.09 3.21 3.10 2.84 2.75 2.83 2.44 2.18 2.17 2.18

T 3 0.91 0.98 0.96 0.94 0.99 0.96 0.89 0.94 0.89 0.80 0.81 0.80

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Tables 2–5 in case of R ¼ 20. For binary prediction, the average cost reduction (in
terms of T 1Þ for a ¼ 0:1 and 0:9 is about 15%, however, the average cost reduction
for a ¼ 0:5 is only about 5%. The average cost variance (in terms of T 2Þ reduction
for a ¼ 0:1 and 0:9 is about 20%, however, the average cost variance reduction for
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Table 5

r ¼ 0:6; y ¼ 0, and MW 4 (Kurtotic unimodal)

R ¼ 20 R ¼ 50 R ¼ 100 R ¼ 200

J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50 J ¼ 1 J ¼ 50

EW W 1 W R EW W 1 W R EW W 1 W R EW W 1 W R

Binary

a ¼ :1 T 1 6.51 5.46 5.12 5.31 5.26 4.74 4.77 4.75 4.98 4.83 4.84 4.84 4.90 4.95 4.95 4.95

T 2 1.58 1.41 1.14 1.26 1.37 0.97 0.99 0.97 1.10 0.92 0.90 0.92 1.08 0.96 0.96 0.96

T 3 0.72 0.79 0.77 0.58 0.57 0.58 0.38 0.36 0.37 0.22 0.22 0.22

T 4 0.04 0.04 0.03 0.11 0.11 0.11 0.18 0.18 0.18 0.16 0.16 0.16

a ¼ :3 T 1 13.02 12.27 12.09 12.32 11.55 11.53 11.48 11.55 11.50 11.58 11.52 11.59 11.34 11.31 11.31 11.30

T 2 2.23 2.11 1.92 2.13 2.23 2.25 2.21 2.25 2.15 2.06 2.06 2.06 2.13 2.22 2.22 2.21

T 3 0.65 0.71 0.65 0.49 0.46 0.46 0.47 0.45 0.46 0.48 0.48 0.47

T 4 0.01 0.01 0.00 0.00 0.03 0.00 0.02 0.02 0.02 0.04 0.04 0.04

a ¼ :5 T 1 14.51 14.33 13.97 14.32 12.61 12.78 12.58 12.74 12.64 12.69 12.66 12.70 12.30 12.27 12.28 12.28

T 2 2.51 2.64 2.55 2.66 2.07 2.18 2.06 2.17 2.36 2.37 2.33 2.37 2.45 2.46 2.48 2.48

T 3 0.49 0.60 0.49 0.29 0.38 0.32 0.30 0.26 0.27 0.25 0.24 0.25

T 4 0.08 0.09 0.07 0.30 0.24 0.25 0.36 0.47 0.42 0.61 0.58 0.59

a ¼ :7 T 1 12.91 11.97 11.68 11.96 11.54 11.64 11.54 11.56 11.47 11.56 11.55 11.56 11.22 11.22 11.24 11.22

T 2 2.37 2.38 2.18 2.42 2.14 1.98 1.95 1.97 2.17 2.09 2.12 2.11 2.33 2.25 2.25 2.28

T 3 0.69 0.73 0.69 0.50 0.49 0.56 0.49 0.48 0.46 0.43 0.40 0.41

T 4 0.01 0.00 0.00 0.00 0.01 0.00 0.02 0.03 0.02 0.04 0.04 0.06

a ¼ :9 T 1 6.55 5.24 5.24 5.33 5.21 4.89 4.89 4.89 5.00 4.94 4.94 4.94 4.83 4.89 4.88 4.89

T 2 1.65 1.42 1.43 1.47 1.20 1.01 1.03 1.02 1.09 0.89 0.90 0.90 1.01 0.97 0.97 0.97

T 3 0.81 0.79 0.80 0.55 0.55 0.54 0.33 0.31 0.31 0.21 0.22 0.22

T 4 0.02 0.02 0.02 0.04 0.06 0.04 0.11 0.15 0.15 0.22 0.21 0.21

Quantile

a ¼ :1 T 1 29.60 23.20 20.80 22.14 22.02 19.98 19.79 19.97 20.06 19.35 19.26 19.34 19.26 19.14 19.13 19.14

T 2 6.16 5.30 3.57 4.28 2.91 2.50 2.35 2.47 2.60 2.36 2.22 2.35 2.37 2.19 2.18 2.19

T 3 0.85 0.99 0.95 0.90 0.93 0.90 0.82 0.83 0.83 0.59 0.56 0.59

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :3 T 1 39.25 37.30 35.50 36.58 34.56 33.95 33.74 33.92 32.98 33.09 33.01 33.08 32.53 32.75 32.72 32.74

T 2 4.76 5.00 4.43 4.63 4.46 4.11 4.04 4.11 3.93 3.68 3.66 3.68 3.80 3.74 3.72 3.74

T 3 0.72 0.92 0.76 0.61 0.67 0.62 0.51 0.51 0.51 0.39 0.40 0.39

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :5 T 1 40.39 40.21 38.38 39.50 35.15 35.75 35.39 35.69 34.41 34.70 34.62 34.69 34.14 34.29 34.28 34.29

T 2 4.58 5.14 4.57 4.88 3.93 4.08 3.91 4.05 3.87 3.93 3.91 3.93 3.66 3.72 3.71 3.72

T 3 0.52 0.79 0.68 0.27 0.43 0.29 0.32 0.36 0.32 0.37 0.40 0.37

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :7 T 1 39.79 36.77 35.32 36.27 33.55 33.39 33.13 33.35 32.94 32.92 32.82 32.91 32.55 32.74 32.72 32.74

T 2 5.66 5.01 4.58 4.82 4.16 4.15 4.04 4.13 4.14 3.91 3.87 3.91 3.56 3.42 3.42 3.42

T 3 0.84 0.93 0.90 0.51 0.57 0.51 0.50 0.53 0.50 0.39 0.39 0.39

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

a ¼ :9 T 1 29.40 23.19 21.07 22.21 21.69 19.62 19.47 19.61 19.97 19.22 19.16 19.22 19.31 19.11 19.08 19.11

T 2 5.55 5.68 3.84 4.56 3.45 2.69 2.60 2.67 2.63 2.51 2.43 2.51 2.29 2.05 2.01 2.05

T 3 0.92 0.99 0.95 0.92 0.93 0.92 0.77 0.81 0.77 0.58 0.60 0.58

T 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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a ¼ 0:5 is not significant. The frequency that bagging works (in terms of T 3Þ for
a ¼ 0:1 and 0:9 is about 80%, however, the frequency that bagging works for a ¼ 0:5
is only about 60%. For quantile prediction, the average cost reduction (in terms of
T 1Þ for a ¼ 0:1 and 0:9 is about 20%, however, the average cost reduction for a ¼ 0:5
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is only about 5%. The average cost variance reduction (in terms of T 2Þ for a ¼ 0:1
and 0:9 is about 40%, however, the average cost variance reduction for a ¼ 0:5 is
about 20%. The frequency that bagging works (in terms of T 3Þ for a ¼ 0:1 and 0:9
and a ¼ 0:5 are similarly around 90%.

The advantage of bagging for quantile predictions (in terms of T 1, T 2, and T 3)
decreases gradually as the sample size increases, but still exists for R ¼ 200 though
the advantage is not very significant. However, for binary prediction, this advantage
disappears much faster, and will almost disappear when the sample size exceeds 100
for most data generating processes (DGP). With a large sample size, the average cost
of bagging predictor converges to that of unbagged predictor, confirming the
analytical result in Proposition 5.

Another interesting phenomenon we observe is that bagging works better (in terms
of T 1, T 2, and T 3) for both binary prediction and quantile when there is ARCH
structure in the DGP. For the AR processes, the mean is predictable, so binary
predictors perform pretty well even without bagging. Therefore, there is not much
room left for bagging to improve on. However, for the ARCH processes without
the AR term, the conditional mean is unpredictable. Although there is some
binary predictability through the time-varying conditional higher moments, the
predictability is harder to explore than in the AR models. As we can see from
the tables, the mean cost ðT 1Þ of unbagged binary predictor in Tables 2–5 is much
lower than the mean cost of unbagged binary predictors in Table 1. At the same
time, the non-linear structure in the ARCH models lead to the difficulty in the
parameter estimation via numerical optimization, which also leaves more room for
bagging to work. Therefore, we can see that bagging improves more (in all of T 1, T 2,
and T 3) in Table 1 than in Tables 2–5 for both binary predictions and quantile
predictions.

One more observation from the Monte Carlo simulation is that bagging
works asymmetrically (in terms of T 1, T 2, and T 3) for asymmetric data. For
MW distribution with asymmetric distributions like in Table 3 (MW 2) and 4 (MW 3),
bagging works better if Q̂aðY tþ1jXtÞ lies on the flatter tail for both binary and
quantile prediction. For example, MW 2 has flatter left tail, therefore bagging works
better for a smaller a in Tables 3; while MW 3 has flatter right tail, therefore bagging
works better for a larger a in Table 4.
8. Empirical application

Christofferson and Diebold (2003) find, among other things, that the sign
dependence is highly non-linear and is not likely to be found in high-frequency (e.g.,
daily) or low-frequency (e.g., annual) returns. Instead, it is more likely to appear at
intermediate return horizons of two or three months. Thus our empirical application
of binary prediction is to time the market for the S&P500 and NASDAQ indexes in
monthly frequency. Let Y t represent the log difference of a stock index at month t,
and suppose we are interested in predicting whether the stock index will rise or not in
the next month.
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The S&P 500 series, retrieved from finance.yahoo.com, is monthly data from
October 1982 to February 2004 (T þ 1 ¼ 257). The NASDAQ series is also retrieved
from finance.yahoo.com, monthly from October 1984 to February 2004
(T þ 1 ¼ 233). We split the series into two parts: one for in-sample estimation with
the size R ¼ 10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 110; 120; 130; 140 and 150, and
another for out-of-sample forecast validation with sample size P ¼ 100 (fixed for
all R’s). We choose the most recent P ¼ 100 months in the sample as a out-of-sample
validation sample. We use a rolling-sample scheme, that is, the first forecast is based
on observations T � P� Rþ 1 through T � P, the second forecast is based on
observations T � P� Rþ 2 through T � Pþ 1, and so on. The two series are
summarized as follows:

We consider the asymmetric cost parameter a ¼ 0:1; 0:2; . . . ; 0:9 to rep-
resent different possible preferences. With the cost function given in (13), if we
predict the market to go down when the market will go up, the cost is a; and
if we predict the market to go up when the market will go down, the cost is 1� a.
Therefore, if a person only buys and holds the stock, she tends to have a value
of a smaller than 0:5 because missing an earning opportunity will not be
as bad as losing money. However, if a person wants to sell short, she tends
to have a value of a larger than 0:5 because of the leverage effect. Since most
investors belong to the first category, the more predictability may be exploited
for small a’s.

Figs. 1 and 2 present the graphs of the out-of-sample average costs (S1 or S2Þ

in vertical axis against the training sample size R in the horizontal axis, for
the nine values of a. There are lines for each a—the dark solid line is for the cost S1

of unbagged predictor, and the other four lines are for the cost S2 of bagging
predictor with different weights (equal weight or the three BMA weights
with k ¼ 1; 5;R, as discussed in Appendix). Bagging works similarly for S&P500
and NASDAQ. It works better with the smaller R. Bagging predictors with
different weighting schemes seem to work similarly. For all a’s and for both
binary and quantile predictions, the costs of bagging predictors converge to the
optimal costs much faster than those of unbagged predictors. We can see that
bagging predictors converge to the stable level of the cost for R as small as 20 in
most cases for both binary predictions and quantile predictions. However,
a larger R is needed for unbagged predictors converge to that level of the cost.
When the sample size is small, bagging can lower the cost to larger extent, and
bagging predictors almost never get worse than unbagged predictors. When R ¼ 20,
bagging can lower the cost as much as or even more than 50% for both
binary predictions and quantile predictions! When R grows larger, unbagged
predictors and bagging predictors will converge to the same stable cost level as
expected from Proposition 5.
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Fig. 1. (a) SP500 binary prediction, (b) SP500 quantile prediction.
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Fig. 2. (a) NASDAQ binary prediction, (b) NASDAQ quantile prediction.
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9. Conclusions

We have examined how bagging works for binary and quantile prediction with an
asymmetric cost function for time series. We construct binary predictor from
quantile predictor. Bagging binary predictors are constructed via majority voting on
binary predictors trained on the bootstrapped training samples. We have shown the
conditions under which bagging works for binary prediction. Based on the
asymmetric quantile check functions, by treating it as a quasi likelihood, we have
also derived the various BMA-weights to form the weighted bagging both for binary
and quantile predictors. The simulation results and the empirical results using two
U.S. stock index monthly returns, not only confirm but also clearly demonstrate our
analytical results—the main finding of the paper is that bagging works when the size
of the training sample is small and the predictor is unstable. We prove that bagging
does not work for binary prediction when the training sample size is very large.
Hence, the potential advantage of bagging lies in areas where small sample is
common. Bagging will be particularly relevant and useful in practice when structural
breaks are frequent so that simply using as many observations as possible is not a
wise choice for out-of-sample prediction, as emphasized in Pesaran and Timmer-
mann (2002b, 2004) and Paye and Timmermann (2003).
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Appendix

In this appendix, we discuss the Bayesian model averaging (BMA) technique to
find a proper weight function fŵj;tg in forming bagging binary predictor via majority
voting and bagging quantile predictor by averaging as discussed in Sections 5 and 6.5

Usually, bagging predictor uses the equally weighting (ŵj;t ¼ J�1, j ¼ 1; . . . ; J.) over
the bootstrapped predictions. However, ŵj;t can be estimated depending on the
performance of each bootstrapped predictor. There are several candidates that we
can borrow from estimated weighting forecast combination. One method is to
estimate the weight by regression (minimizing the cost function) as initially suggested
5BMA has been proved to be useful in forecasting financial returns (Avramov, 2002) and in

macroeconomic forecasting for inflation and output growth (Garratt et al., 2003), to deal with the

parameter and model uncertainties. The out-of-sample forecast performance using BMA is often shown to

be superior to that using model selection criteria.
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by Granger et al. (1994). This weight scheme assumes that predictors to be combined
are independent and the number of predictors are small compared to the sample size,
so the regular regression method can be applied. However, the number of our
bootstrapped predictors are large and the predictors are closely related, the
regression-based weights are not applicable here. Another method for forecast
combination is via the Bayesian averaging, which is what we use in this paper for
Monte Carlo experiments and empirical work.

Bagging prediction can be decomposed into two parts—the prediction based on
estimated model and the parameter estimation given the data, therefore, we compute

the BMA-weighted bootstrap average ED�
t
Ĝ
�

t;1ðXt;D
�

t Þ as follows:

ED�
t
Ĝ
�

t;1ðXt;D
�

t Þ ¼
XJ

j¼1

Ĝ
�ðjÞ

t;1 ðXt;D
�ðjÞ

t ÞPr½b̂aðD
�ðjÞ

t ÞjD
�ðjÞ

t ;Dt�PrðD
�ðjÞ

t jDtÞ

�
XJ

j¼1

ŵj;tĜ
�ðjÞ

t;1 ðXt;D
�ðjÞ

t Þ,

where the last equality follows from Pr½b̂aðD
�ðjÞ

t ÞjD
�ðjÞ

t ;Dt�PrðD
�ðjÞ

t jDtÞ ¼

Pr½b̂aðD
�ðjÞ

t ÞjDt� and by setting ŵj;t � Pr½b̂aðD
�ðjÞ

t ÞjDt�.

The posterior probability of b̂aðD
�ðjÞ

t Þ given Dt through the jth bootstrap data set
D�ðjÞt is calculated by Bayes’ rule:

ŵj;t ¼ Pr½b̂aðD
�ðjÞ

t ÞjDt� ¼
Pr½Dtjb̂aðD

�ðjÞ

t Þ�Prðb̂aðD
�ðjÞ

t ÞÞPJ

j¼1 Pr½Dtjb̂aðD
�ðjÞ

t Þ�Prðb̂aðD
�ðjÞ

t ÞÞ
,

and now the problem is to estimate Pr½Dtjb̂aðD
�ðjÞ

t Þ� and Prðb̂aðD
�ðjÞ

t ÞÞ. When we do not

have any information for the prior Prðb̂aðD
�ðjÞ

t ÞÞ, we may just use some non-

informative prior, Prðb̂aðD
�ðjÞ

t ÞÞ is the same for all j, so that

ŵj;t ¼ Pr½b̂aðD
�ðjÞ

t ÞjDt� ¼
Pr½Dtjb̂aðD

�ðjÞ

t Þ�PJ

j¼1 Pr½Dtjb̂aðD
�ðjÞ

t Þ�
, (30)

where Pr½Dtjb̂aðD
�ðjÞ

t Þ� is usually estimated by a likelihood function. According to

Komunjer (2005), the exponential of quantile cost function can be treated as quasi-

likelihood function, so Pr½Dtjb̂aðD
�ðjÞ

t Þ� can be calculated by

Pr½Dtjb̂aðD
�ðjÞ

t Þ� / exp �k
�1
Xt

s¼t�kþ1

cðû
�ðjÞ

s Þ

 !
, (31)

with using the k-most recent in-sample observations, where û
�ðjÞ

s ¼ Y �ðjÞs �

~X
�0

s�1b̂aðD
�ðjÞ

s�1Þ. We select k ¼ 1; 5, and R in the simulations (Section 7) and in the

empirical experiments (Section 8). Intuitively, ŵj;t gives a large weight to the jth

bootstrap predictor at period t when it has forecasted well over the past k periods,
and gives a small weight to the jth bootstrap predictor at period t when it forecasted



ARTICLE IN PRESS

T.-H. Lee, Y. Yang / Journal of Econometrics 135 (2006) 465–497 495
poorly over the past k periods.6 In Tables 1–5 (discussed in Section 7), EW and W k

denote the weighted-bagging with equal weights and with BMA-weights using
k-most recent in-sample observations.

We can derive the BMA-weight bagging quantile prediction similarly as follows:

ED�
t
Q̂
�

aðY jXt;D
�

t Þ ¼
XJ

j¼1

Q̂
�ðjÞ

a ðY tþ1jXt;D
�ðjÞ

t ÞPr½b̂aðD
�ðjÞ

t ÞjD
�ðjÞ

t ;Dt�PrðD
�ðjÞ

t jDtÞ

�
XJ

j¼1

ŵj;tQ̂
�ðjÞ

a ðY tþ1jXt;D
�ðjÞ

t Þ,

where ŵj;t � Pr½b̂aðD
�ðjÞ

t ÞjDt�.
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