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Abstract—It is often documented, based on autocorrelation, variance
ratio, and power spectrum, that exchange rates approximately follow a
martingale process. Because these data check serial uncorrelatedness
rather than martingale difference, they may deliver misleading conclu-
sions in favor of the martingale hypothesis when the test statistics are
insignificant. In this paper, we explore whether there exists a gap between
serial uncorrelatedness and martingale difference for exchange rate
changes, and if so, whether nonlinear time series models admissible in the
gap can outperform the martingale model in out-of-sample forecasts.
Applying the generalized spectral tests of Hong to five major currencies,
we find that the changes of exchange rates are often serially uncorrelated,
but there exists strong nonlinearity in conditional mean, in addition to the
well-known volatility clustering. To forecast the conditional mean, we
consider the linear autoregressive, autoregressive polynomial, artificial
neural network, and functional-coefficient models, as well as their com-
bination. The functional coefficient model allows the autoregressive co-
efficients to depend on investment positions via a moving-average tech-
nical trading rule. We evaluate out-of-sample forecasts of these models
relative to the martingale model, using four criteria—the mean squared
forecast error, the mean absolute forecast error, the mean forecast trading
return, and the mean correct forecast direction. White’s reality check
method is used to avoid data-snooping bias. It is found that suitable
nonlinear models, particularly in combination, do have superior predictive
ability over the martingale model for some currencies in terms of certain
forecast evaluation criteria.

I. Introduction

CONVENTIONAL wisdom holds that exchange rate
changes approximately follow an martingale difference

sequence (MDS), so that future changes are unpredictable
using publicly available information.1 This hypothesis has
been tested using autocorrelation (Box-Pierce-Ljung port-
manteau tests), the variance ratio (Lo and MacKinlay,
1988), and the spectrum (Durlauf, 1991), based on data of
various frequencies and sample periods. Unlike the stock
markets, where it has been well documented [cf. Lo and
MacKinlay (1999) and references therein] that stock price
changes are not an MDS, the statistical evidence supporting
or refuting the martingale hypothesis for exchange rates

seems mixed.2 Many existing studies have incorporated the
martingale hypothesis in modeling exchange rates, focusing
on volatility forecasts (for example, Bollerslev, 1990;
Brock, Hsieh, & LeBaron, 1991; Engle, Ito, & Lin, 1990;
West and Cho, 1995) or density forecasts (Diebold, Hahn, &
Tay, 1999; Hsieh, 1993).

From a nonlinear time series perspective, it is important
to distinguish an MDS from a serially uncorrelated (or white
noise, WN) process. There exists a nontrivial gap between
an MDS and a WN. The former implies the latter, but not
vice versa. A nonlinear time series can have zero autocor-
relation but a nonzero mean conditional on its past history.
Examples are a nonlinear moving-average process Yt �
bet�1et�2 � et and a bilinear autoregressive process Yt �
bet�1Yt�2 � et, where {et} is IID. These are WN processes,
but possess predictable nonlinearities in mean. The autocor-
relation, variance ratio, and power spectrum can easily miss
these structures. Misleading conclusions could be reached
in favor of MDS when the test statistics based on these
measures are insignificant. It is therefore important to ex-
plore whether there exists a gap between an MDS and a WN
for exchange rate changes, and if so, whether the neglected
nonlinearity in mean can be explored to forecast exchange
rate changes.

We will first explore serial dependence (that is, any
departure from IID) for exchange rate changes using Hong’s
(1999) generalized spectrum. The generalized spectrum can
capture any type of pairwise serial dependence over various
lags, including those that could be missed by the power
spectrum and such higher-order spectra as the bispectrum.3

The generalized spectrum does not require any moment
conditions. When proper moments exist, it can be differen-
tiated to capture specific aspects of serial dependence,
which are informative in revealing possible types of serial
dependence. We find that among other things, most of the
currencies we examine are WN in changes, all of them are
not martingales. There exists significant and predictable
nonlinearity in the conditional mean of exchange rate
changes.

To forecast the nonlinearity in conditional mean, we use
linear autoregressive (AR), autoregressive polynomial (PN),
artificial neural network (NN), and functional coefficient
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1 The terms “random walk” and “martingale” have been used inter-
changeably in the literature. Throughout this paper, we distinguish the
random-walk hypothesis from the martingale hypothesis. The innovation
series is independent and identically distributed (IID) for the former and
is an MDS for the latter.

2 For example, Bekaert and Hodrick (1992), Fong and Ouliaris (1995),
LeBaron (1999), Levich and Thomas (1993), Liu and He (1991), Mc-
Curdy and Morgan (1988), and Sweeney (1986) find evidence against the
martingale hypothesis for nominal or real exchange rates, whereas
Diebold and Nason (1990), Fong, Koh, and Ouliaris (1997), Hsieh (1988,
1989, 1993), McCurdy and Morgan (1987), and Meese and Rogoff
(1983a, b) find little evidence against the martingale hypothesis for
nominal or real exchange rates.

3 One example is an ARCH process with symmetric innovations, which
has zero autocorrelations and zero third-order cumulants.
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(FC) models, as well as their combination. The FC model,
introduced in Cai, Fan, and Yao (2000, CFY), allows the
autoregressive coefficients to be a function of some vari-
ables, which we choose according to an moving-average
technical trading rule (MATTR), so that the autoregressive
coefficients vary with investment positions. We evaluate
out-of-sample forecasts of these models relative to the
martingale model, using four criteria—mean squared fore-
cast error (MSFE), mean absolute forecast error (MAFE), mean
forecast trading return (MFTR), and mean correct forecast
direction (MCFD). As some complicated models may lead to
significantly superior predictive ability to the martingale
model purely by luck, data snooping is a serious concern
(cf. Lo & MacKinlay, 1999, chapter 8). To avoid this, we
use White’s (2000) test, which allows for the dependence
among the models under comparison. It is found that suit-
able nonlinear models, and particularly their combination,
do have significantly superior predictive ability to the mar-
tingale model in terms of some criteria.

There has been increasing interest in forecasting ex-
change rate changes. The nonlinear models used in the
literature include bilinear models (Brook, 1997), threshold
autoregressive models (Kräger & Kugler, 1993; Brook,
1997), nonlinear dynamic systematic filtering models (Lisi
& Medio, 1997), artificial neural networks (Kuan & Liu,
1995, Gençay, 1999), and nearest-neighbor regression
(Diebold & Nason, 1990). Recent works have apparently
presented conflicting evidence for the types of nonlinearity
in exchange rate changes. Hsieh (1989, 1993), Engle et al.
(1990), and Franses and van Homelen (1998) find that most
of nonlinearity in daily exchange rates arises from time-
varying volatility, which, however, does not imply predic-
tivity in mean unless there are ARCH-in-mean effects.
Using nonparametric regressions, Diebold and Nason
(1990) and Meese and Rose (1990) find little improvement
in out-of-sample forecasts for many major dollar spot rates
in post-1973 float periods. Meese and Rose (1991) examine
several structural exchange rate models but find that incor-
poration of nonlinearities into the structural models does not
help forecast the conditional mean of exchange rate
changes. In contrast, Kuan and Liu (1995), using the feed-
forward and recurrent neural network models, find a sub-
stantially lower MSFE than in the martingale model. Lisi
and Medio (1997) also find that a nonlinear filtering model
outperforms the martingale model in terms of MSFE.
Gençay (1999) finds that buy-sell signals of simple techni-
cal trading rules generated from using nearest neighbors and
neural networks yield a lower MSFE than the martingale
model.

In section II, we introduce Hong’s (1999) generalized
spectrum and use it to document serial dependence for five
major exchange rates. In section III, we introduce the FC
model, MATTR, and other nonlinear time series models,
and present the in-sample results on estimation and speci-
fication testing. Section IV evaluates the out-of-sample

forecasts of these nonlinear models and their combination.
Section V concludes.

II. Serial Dependence in Exchange Rate Changes

A. Generalized Spectral Analysis

To explore serial dependence of exchange rate changes,
we use Hong’s (1999) generalized spectrum, which is pro-
posed as an alternative time series analytic tool to the power
spectrum and higher-order spectrum. The basic idea is to
transform a strictly stationary series {Yt} and consider the
spectrum of the transformed series. Suppose that {Yt} has
an marginal characteristic function �(u) � EeiuYt and a
pairwise joint characteristic function �j(u, v) �
Eei(uYt�vYt��j�), where i � ��1, u, v � (��, �), and j �
0, �1, . . . . Define the covariance function between the
transformed variables eiuYt and eivYt��j�:

	j
u, v� � cov
eiuYt, eivYt��j��, (1)

Straightforward algebra yields 	j(u, v) � �j(u, v) �
�(u)�(v). Because �j(u, v) � �(u)�(v) for all u, v if and
only if Yt and Yt��j� are independent, 	j(u, v) can capture
any type of pairwise serial dependence over various lags,
including those with zero autocorrelation.

When supu,v�(��,�) ¥j���
� �	j(u, v)� � �, the Fourier

transform of 	j(u, v) exists:

f
, u, v� �
1

2�
�

j���

�

	j
u, v�e�ij,  � ���, ��.

(2)

Like 	j(u, v), f(, u, v) can capture all pairwise serial
dependences in {Yt} over various lags. It requires no mo-
ment condition. When var (Yt) � 	2 exists, the power
spectrum H() of {Yt} can be obtained by differentiating
f(, u, v) with respect to (u, v) at (0, 0):

H
� �
1

2�
�

j���

�

�
 j�e�ij

� �
�2

�u �v
f
, u, v��


u,v��
0,0�

,

where �( j) � cov(Yt, Yt��j�). For this reason, we call f(,
u, v) a generalized spectral density of {Yt}.

Hong (1999, theorem 1) shows that f(, u, v) can be
consistently estimated by

f̂n
, u, v� �
1

2�
�

j�1�n

n�1 �1 �
�j�
n �

1/ 2

k
 j/p�	̂j
u, v�e�ij,

(3)
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where 	̂j(u, v) � �̂j(u, v) � �̂j(u, 0)�̂j(0, v) is the
empirical generalized covariance, �̂j(u, v) � (n � �j�)�1

¥t��j��1
n ei(uYt�vYt��j�) is the empirical pairwise characteristic

function, p � pn is a bandwidth or lag order, and k� is a
kernel function or “lag window.” Commonly used kernels
include the Bartlett, Daniell, Parzen, and quadratic-spectral.
The factor (1 � �j�/n)1/ 2 modifies the variance of 	̂j(u, v).
It could be replaced by 1, but it gives better finite-sample
performance for the tests based on f̂n(, u, v).

When {Yt} is IID, f(, u, v) becomes a flat generalized
spectrum:

f0
, u, v� �
1

2�
	0
u, v�,  � ���, ��.

Any deviation of f(, u, v) from the flat spectrum f0(, u,
v) is evidence of serial dependence. Thus, to detect serial
dependence, we can compare f̂n(, u, v) with the estimator

f̂0
, u, v� �
1

2�
	̂0
u, v�,  � ���, ��.

Once the existence of generic serial dependence is de-
tected, one may want to further explore the nature of serial
dependence. For example, is dependence operative primar-
ily through the mean or through higher-order moments? If
serial dependence exists in mean, is it linear or nonlinear? If
dependence exists in variance, does there exist a linear or
nonlinear and asymmetric ARCH? Different types of serial
dependence have different implications for predictability of
Yt. If {Yt} is an MDS, for example, then serial dependence
in higher moments will not help predict the conditional
mean of Yt.

To explore the nature of serial dependence, one can
compare the derivative estimators

f̂ n

0,m,l �
, u, v� �

1

2�
�

j�1�n

n�1 �1 �
�j�
n �

1/ 2

k
 j/p�

�	̂j

m,l � 
u, v�e�ij,

f̂ 0

0,m,l �
, u, v� �

1

2�
	̂0

m,l �
u, v�,

where 	̂j
(m,l )(u, v) � �m�l	̂j(u, v)/�mu �lv for m, l � 0.

Just as the characteristic function can be differentiated to
generate various moments, generalized spectral derivatives
can capture various specific aspects of serial dependence,
thus providing information on possible types of serial de-
pendence.

Hong (1999) proposes a class of tests based on the
quadratic norm:

Q
 f̂ n

0,m,l �, f̂ 0


0,m,l ��

� ��
��

�

� f̂ n

0,m,l �
, u, v�

� f̂ 0

0,m,l �
, u, v��2 d dW1
u� dW2
v� (4)

�
1

� � �
j�1

n�1

k2
 j/p��1 �
j

n�
��	̂j


m,l � 
u, v��2 dW1
u� dW2
v�,

where the second equality follows by Parseval’s identity,
and the unspecified integrals are taken over the support of
W1� and W2�, which are positive nondecreasing weight-
ing functions that set weight about zero equally. An example
of W1� and W2� is the N(0, 1) CDF, which is commonly
used in the characteristic function literature. As we will see
below, proper choices of W1� and W2� as well as (m, l )
allow us to test various specific aspects of serial depen-
dence. The test statistic is a standardized version of the
quadratic form:

M
m, l � � �� �
j�1

n�1

k2
 j/p�
n � j�

� �	̂j

m,l �
u, v��2 dW1
u� dW2
v�

� Ĉ 0

m,l � �

j�1

n�1

k2
 j/p�	 (5)

� �D̂0

m,l � �

j�1

n�2

k4
 j/p�	1/ 2

,

where the centering and standardization factors are

Ĉ0

m,l � � � 	̂0


m,m�
u, �u� dW1
u� � 	̂0

l,l �
v, �v� dW2
v�,

D̂0

m,l � � 2 � �	̂0


m,m�
u, u���2 dW1
u� dW1
u��

� � �	̂0

l,l �
v, v���2 dW2
v� dW2
v��.

Given (m, l ), M(m, l ) is asymptotically one-sided N(0, 1)
under the null hypothesis of serial independence. For a
kernel k� with unbounded support, M(m, l ) employs all
n � 1 lags in the sample. This is desirable when the
alternative has persistent serial dependence. Nonuniform
kernels, such as the Daniell kernel k( z) � (sin �z)/�z, z �
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(��, �), usually weight down higher-order lags. This is
expected to enhance the power of the tests in empirical
studies, because economic agents normally discount past
information. This is particularly true of foreign exchange
markets, where investors digest information relatively fast.
In fact, the Daniell kernel maximizes the power of M(m, l )
over a class of kernels that include Parzen and quadratic-
spectral kernels. The latter are optimal for spectral density
estimation, but not necessarily for hypothesis testing (cf.
Hong, 1999).

In practice, we may first choose (m, l ) � (0, 0) to check
if there exists any type of serial dependence. Once generic
serial dependence is discovered using M(0, 0), we may use
various combinations of (m, l ) to check specific types of
serial dependence. For example, we can set (m, l ) � (1, 0)
to check whether there exists serial dependence in mean.
This checks whether E(Yt�Yt�j) � E(Yt) for all j � 0, and
so it is a more suitable test for MDS than those based on the
autocorrelation, variance ratio, and power spectrum. It can
detect a wide range of deviations from MDS, including
those with zero autocorrelations. To explore whether there
exists linear dependence in mean, we can set (m, l ) � (1,
1). If M(1, 0) is significant but M(1, 1) is not, we can
speculate that there may exist only nonlinear dependence
in mean. We can go further to choose (m, l ) � (1, l ) for
l � 2, 3, 4, testing if cov (Yt, Yt�j

l ) � 0 for all j � 0.
These essentially check whether there exist ARCH-in-
mean, skewness-in-mean, and kurtosis-in-mean effects,
which may arise from the existence of a time-varying risk
premium, asymmetry, and improper account of the con-
cern over large losses, respectively. For convenience, we
list a variety of spectral derivative tests and the types of
dependence they can detect in table 1.

B. Bootstrapping the Generalized Spectral Tests

To implement the generalized spectral tests, we will use
bootstrap procedures, which can provide more accurate
reference in finite samples than asymptotic theory. Recall
Mi, i � 1, . . . , 13, as in table 1. Let M̂i be the Mi statistic
based on the observed sample {Yt}t�1

n . Let {Yt
b}t�1

n be a
bootstrap sample of {Yt}t�1

n , and let M̂i
b be the Mi statistic

based on {Yt
b}t�1

n . Then the bootstrap p-value of M̂i can be
approximated by pi

B � B�1 ¥b�1
B 1(M̂i

b � M̂i), where 1�
is the indicator function and B is the number of bootstrap
replications. We will use the naive bootstrap (Efron, 1979)
or the wild bootstrap (Wu, 1986; Liu, 1988), depending on
whether the null hypothesis of interest is IID or MDS.4

We first examine the size of the bootstrap tests for IID.
All the M(m, l ) tests are suitable to test IID, with M(0, 0)
being an omnibus test for IID. Here, the naive bootstrap is
appropriate. Table 2 reports the bootstrap sizes at the 10%,
5%, and 1% levels for all M(m, l ) under an IID-N(0, 1) data
generation process, with B � 300. The results show that the
naive bootstrap yields adequate sizes for all M(m, l ) tests
for IID.

Next, we examine the sizes of the bootstrap tests for
MDS. Suitable tests for MDS are M(1, l ), l � 0. We
consider a GARCH(1, 1)-N(0, 1) data generation process,
which is an MDS but displays volatility clustering, as is
typical for high-frequency financial time series. Since the
data is conditionally heteroskedastic, we use the wild boot-
strap. Table 3 reports the bootstrap sizes of these tests for
MDS, with B � 300. The results show that the wild
bootstrap yields adequate sizes for the M(1, l ) tests of
MDS.

C. Joint Tests

As noted earlier, all the M(m, l ) tests are suitable to test
IID. Of these tests, M(0, 0) is an omnibus test for IID,
because it encompasses every moment captured by various
derivative tests M(m, l ) with m � 0 and/or l � 0. Various
derivative tests M(m, l ), on the other hand, are informative
in revealing types of serial dependence. Similarly, the M(1,
l ) tests with l � 0 are suitable to test MDS. Here, M(1, 0)
is an omnibus test for MDS, whereas various derivative tests
M(1, l ) with l � 1 are informative in revealing the nature
of departure from MDS.

However, the sequential use of the derivative tests re-
quires caution, as these test statistics may be mutually
dependent. In that case, increasing the number of tests may
increase the probability of Type I error, causing overrejec-
tion of the correct null hypothesis (cf. Richardson & Stock,
1989; Richardson, 1993). To avoid this, we consider a joint
test formed from a given k � 1 test statistic vector M �
(Mi1

, . . . , Mik
)�:

4 For the naive bootstrap, we generate a bootstrap sample by randomly
drawing, with replacement, observations from the original sample {Yt} t�1

n .
For the wild bootstrap, let Ft be the CDF of Yt, t � 1, . . . , n. We
generate a bootstrap sample according to the formula that Yt

b � aYt with
probability p � a/�5 and Yt

b � (1 � a)Yt with probability 1 � p, where
a � (1 � �5)/ 2. It follows that E(Yt

b�Ft) � 0, E[(Yt
b)2�Ft] � Yt

2, and
E[(Yt

b)3�Ft] � Yt
3. Thus, the wild bootstrap can preserve the first three

moments of the original data.

TABLE 1.—GENERALIZED SPECTRAL TESTS

Test
Statistic
M(m, l)

Weights
(W1, W2)

Test Function
	j

(m,l)(u, v) Notation

IID M(0, 0) (W0, W0) 	j(u, v) M1

MDS M(1, 0) (�, W0) cov(Yt, eivYt�j) M2

Correlation M(1, 1) (�, �) cov(Yt, Yt�j) M3

ARCH-in-mean M(1, 2) (�, �) cov(Yt, Yt�j
2 ) M4

Skewness-in-mean M(1, 3) (�, �) cov(Yt, Yt�j
3 ) M5

Kurtosis-in-mean M(1, 4) (�, �) cov(Yt, Yt�j
4 ) M6

Nonlinear ARCH M(2, 0) (�, W0) cov(Yt
2, eivYt�j) M7

Leverage M(2, 1) (�, �) cov(Yt
2, Yt�j) M8

Linear ARCH M(2, 2) (�, �) cov(Yt
2, Yt�j

2 ) M9

Conditional skewness M(3, 0) (�, W0) cov(Yt
3, eivYt�j) M10

Conditional skewness M(3, 3) (�, �) cov(Yt
3, Yt�j

3 ) M11

Conditional kurtosis M(4, 0) (�, W0) cov(Yt
4, eivYt�j) M12

Conditional kurtosis M(4, 4) (�, �) cov(Yt
4, Yt�j

4 ) M13

When m � 0 [or l � 0], we put W1� � W0� [or W2� � W0�], where W0� is the N(0, 1) CDF.
When m � 0 [or l � 0], we put W1� � �� [or W2� � ��], where �� is the Dirac delta function.
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J � 
M � �M���M
�1
M � �M�,

where �M � E(M) and �M � E[(M � �M)(M � �M)�].
This statistic J is asymptotically chi-squared under the null
hypothesis. Since �M and �M are unknown, we estimate
them via a bootstrap: �*M � B�1 ¥b�1

B M̂b and �*M � B�1

¥b�1
B (M̂b � �*M)(M̂b � �*M)�, where M̂b is the k � 1 test

statistic vector M based on the bootstrap sample {Yt
b}t�1

n .
Thus, an operational joint test statistic is

J* � 
M � �*M��
�*M�
�1
M � �*M�.

This test is also asymptotically chi-squared under the null
hypothesis of interest. The asymptotic approximation, how-
ever, may not be accurate in finite samples. Since J* is
asymptotically pivotal and so the bootstrap test may deliver
more accurate sizes than the asymptotic test (cf. Hall, 1992),
we compute the bootstrap joint test statistic

Ĵ*b � 
M̂b � �*M��
�*M�
�1
M̂b � �*M�,

b � 1, . . . , B,

and approximate the bootstrap p-value of J* by pJ
B � B�1

¥b�1
B 1(Ĵ*b � Ĵ*), where Ĵ* � (M̂ � �*M)�(�*M)�1(M̂ �

�*M) and M̂ is the k � 1 test statistic vector M based on the
original sample {Yt}t�1

n .
When testing IID, we consider two joint tests: MIID

13 �
(M1, . . . , M13)� and MIID

12 � (M2, . . . , M13)�, via naive
bootstrap. The latter captures the overall effect of the twelve
generalized spectral derivative tests for IID. A comparison
between MIID

12 and the omnibus test M(0, 0) will indicate
whether serial dependence can be explained by the types of
serial dependence captured by the twelve derivative tests.
When testing MDS, we consider the two joint tests MMDS

5 �
(M2, M3, M4, M5, M6)� and MMDS

4 � (M3, M4, M5, M6)�,
via a wild bootstrap. The latter captures the overall effect of
the four generalized spectral tests M(1, l ), 1 � l � 4, for
MDS. A comparison between M(1, 0) and the four deriv-
ative tests will reveal whether the departure from MDS can
be explained by the first four lagged moments. Monte Carlo
results in tables 2 and 3 show that these joint test procedures
have excellent sizes.

TABLE 2.—SIZES OF GENERALIZED SPECTRAL TESTS FOR THE NULL HYPOTHESIS OF IID USING NAIVE BOOTSTRAP

n � 100 200

� � 0.10 0.05 0.01 0.10 0.05 0.01

p� � 6 10 15 6 10 15 6 10 15 6 10 15 6 10 15 6 10 15

M(0, 0) .086 .080 .086 .038 .038 .034 .004 .004 .004 .094 .092 .094 .046 .044 .048 .016 .018 .018
M(1, 0) .080 .088 .088 .040 .042 .042 .006 .006 .008 .102 .102 .110 .064 .064 .062 .004 .010 .014
M(1, 1) .100 .092 .088 .042 .044 .044 .008 .008 .014 .102 .094 .088 .042 .042 .052 .006 .006 .006
M(1, 2) .080 .076 .072 .030 .036 .026 .006 .006 .010 .102 .104 .110 .042 .050 .056 .006 .004 .004
M(1, 3) .086 .092 .086 .044 .048 .046 .004 .006 .008 .110 .110 .106 .040 .046 .038 .006 .006 .004
M(1, 4) .076 .078 .076 .028 .028 .030 .004 .006 .006 .108 .112 .120 .050 .052 .058 .006 .004 .004
M(2, 0) .096 .084 .096 .044 .050 .044 .006 .006 .006 .102 .108 .114 .052 .046 .054 .016 .016 .010
M(2, 1) .074 .072 .076 .038 .042 .042 .008 .006 .008 .114 .110 .106 .054 .064 .056 .008 .004 .004
M(2, 2) .112 .104 .102 .048 .048 .042 .016 .014 .012 .094 .084 .084 .046 .040 .040 .012 .012 .010
M(3, 0) .108 .106 .114 .050 .060 .058 .008 .008 .006 .082 .086 .092 .056 .056 .060 .012 .010 .008
M(3, 3) .104 .096 .088 .054 .044 .056 .012 .014 .018 .106 .098 .086 .050 .054 .052 .006 .010 .006
M(4, 0) .092 .082 .092 .046 .048 .044 .014 .018 .016 .096 .098 .096 .048 .050 .044 .016 .010 .012
M(4, 4) .086 .090 .086 .046 .046 .044 .010 .010 .010 .082 .084 .084 .044 .048 .048 .006 .006 .006
Joint12 .096 .102 .104 .050 .054 .060 .016 .014 .014 .114 .124 .118 .058 .056 .062 .018 .014 .010
Joint13 .100 .102 .098 .054 .058 .060 .018 .016 .016 .116 .120 .116 .054 .062 .058 .014 .012 .012

We compute bootstrap p-values using 300 bootstrap replications, and the empirical rejection rates are based on 500 Monte Carlo replications. We have computed the bootstrap p-values for preliminary lag order
p� � 6, . . . , 15, but report only for three values of p� � 6, 10, 15. The data {Yt} t�1

n are generated from an IID N(0, 1) distribution via the GAUSS Windows version 3.2.38 pseudo-random-number generator RNDN.
Joint12 and Joint13 are the joint tests for MIID

12 � (M2, . . . , M13)� and MIID
13 � (M1, . . . , M13)� respectively, as described in section II C.

DGP: Yt � et, where et is IID N(0, 1).

TABLE 3.—SIZES OF GENERALIZED SPECTRAL TESTS FOR THE NULL HYPOTHESIS OF MDS USING WILD BOOTSTRAP

n � 100 200

� � 0.10 0.05 0.01 0.10 0.05 0.01

p� � 6 10 15 6 10 15 6 10 15 6 10 15 6 10 15 6 10 15

M(1, 0) .088 .096 .096 .044 .048 .046 .012 .012 .012 .074 .080 .086 .054 .050 .052 .012 .012 .008
M(1, 1) .084 .090 .090 .044 .044 .042 .012 .014 .014 .124 .108 .108 .040 .050 .054 .010 .006 .004
M(1, 2) .130 .134 .138 .070 .074 .074 .014 .014 .014 .132 .130 .132 .062 .064 .064 .010 .010 .012
M(1, 3) .110 .104 .098 .056 .052 .052 .006 .006 .004 .162 .156 .156 .046 .046 .052 .000 .000 .000
M(1, 4) .108 .106 .100 .036 .042 .042 .004 .006 .008 .136 .132 .126 .048 .052 .056 .002 .002 .004
Joint4 .130 .116 .112 .060 .052 .054 .016 .016 .014 .116 .116 .126 .044 .046 .044 .006 .006 .008
Joint5 .106 .100 .102 .054 .050 .050 .020 .016 .016 .098 .106 .114 .036 .034 .040 .004 .006 .006

We compute bootstrap p-values using 300 bootstrap replications, and the empirical rejection rates are based on 500 Monte Carlo replications. We have computed the bootstrap p-values for preliminary lag order
p� � 6, . . . , 15, but report only for three values of p� � 6, 10, 15. The data {Yt} t�1

n are generated from a GARCH(1, 1) process Yt � 	tet, where 	 t
2 � 0.1 � 0.2Yt�1

2 � 0.7	 t�1
2 and {et} is an IID N(0, 1)

innovation generated via the GAUSS pseudo-random-number generator RNDN. We generate n � 1000 observations (with n � 100 or 200), and then discard the first 1000 ones to alleviate the impact of using some
initial values. Joint4 and Joint5 are the joint tests for MMDS

4 � (M3, M4, M5, M6)� and MMDS
5 � (M2, M3, M4, M5, M6)� respectively, as described in section II C.

DGP: Yt � 	tet, where 	 t
2 � 0.1 � 0.2Yt�1

2 � 0.7	 t�1
2 and et is IID N(0, 1).
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D. Serial Dependence in Exchange Rate Changes

We now use the generalized spectral tests to explore the
serial dependence of five major currencies—the nominal
exchange rates of Canada (CD), Germany (DM), the United
Kingdom (BP), Japan (JY), and France (FF), per U.S. dollar.
The data is a weekly series from January 1, 1975, to
December 31, 1998. The daily noon buying rates in New
York City certified by the Federal Reserve Bank of New
York for customs and cable transfers purposes are obtained
from the Chicago Federal Reserve Board (www.frbchi.org).
The weekly series is generated by selecting Wednesday
series (if a Wednesday is a holiday, then the following
Thursday is used), which has 1,253 observations. The use of
weekly data avoids the so-called weekend effect, as well as
other biases associated with nontrading, bid-ask spread,
asynchronous rates, and so on, which are often present in
higher-frequency data. We use the scaled logarithmic dif-
ference Yt � 100 ln (�t/�t�1), where �t is an exchange rate
level.

The statistic M(m, l ) involves the choice of a bandwidth
p, which may have a significant effect on the power. Hong
(1999) proposes a data-driven method to choose p. This
method still involves the choice of a preliminary bandwidth
p� . Simulations in Hong (1999) and in tables 2 and 3 show
that the choice of p� is less important than the choice of p.
We consider p� in the range 6–15 to examine the robustness
of M(m, l ) with respect to the choice of p� . We use the
Daniell kernel, which maximizes the asymptotic power of
M(m, l ) over a class of kernels that includes the Parzen and
quadratic-spectral kernels.5

Table 4 reports the values of M(m, l ) together with the
bootstrap p-values of the individual tests and joint tests

described earlier, for CD, DM, BP, JY, and FF, using the
medium preliminary lag order p� � 10. The results for other
p� are quite similar and not reported here. We use the 5%
significance level here. For comparison, note that M(m, l )
has an asymptotic one-sided N(0, 1) distribution, so the
asymptotic critical value at the 5% level is 1.65.

For CD, the geometric random walk hypothesis is
strongly rejected [see M(0, 0)]. The martingale test M(1,
0) also rejects the martingale hypothesis, as its bootstrap
p-value is 0.026. This implies that the change of Canadian
dollar exchange rates has a nonzero mean conditional on its
past history and there exists neglected dependence in the
martingale model. However, the correlation test M(1, 1)
has a bootstrap p-value of 0.090, indicating that {Yt} is a
WN. Moreover, the insignificant statistics M(1, 2), M(1,
3), and M(1, 4) indicate that the neglected nonlinearity in
mean cannot be explained by its higher-order conditional
moments. The test M(2, 0) shows that there exists strong
possibly nonlinear time-varying volatility, and the linear
ARCH test M(2, 2) indicates very strong linear ARCH
effects. The leverage effect [M(2, 1)] is strong, but the
ARCH-in-mean effect [M(1, 2)] is insignificant. There also
exist some conditional skewness [M(3, 0)] and conditional
kurtosis [M(4, 0)].

For DM, M(0, 0) suggests that the geometric random
walk hypothesis is also strongly rejected. In contrast, the
correlation test M(1, 1) is insignificant, implying that {Yt}
is a WN. This, however, does not necessarily imply that
{Yt} is an MDS (as most existing studies conclude), be-
cause {Yt} may have zero autocorrelation but a nonzero
conditional mean. Indeed, the martingale test M(1, 0)
strongly rejects the martingale hypothesis, as its bootstrap
p-value is 0.008. This implies that the change of deutsche
mark exchange rates, though serially uncorrelated, has a
nonzero mean conditional on its past history. Thus, suitable

5 We have also used the Bartlett, Parzen, and quadratic-spectral kernels.
The results are similar to those based on the Daniell kernel.

TABLE 4.—GENERALIZED SPECTRAL TESTS: BOOTSTRAP p-VALUES FOR FIVE CURRENCIES

CD DM BP JY FF

Statistic PB PW Statistic PB PW Statistic PB PW Statistic PB PW Statistic PB PW

M(0, 0) 12.283 .000 10.717 .000 6.121 .002 20.243 .000 10.601 .000
M(1, 0) 3.187 .012 .026 4.798 .000 .008 5.720 .002 .002 10.175 .000 .000 4.572 .000 .008
M(1, 1) 2.396 .028 .090 1.235 .146 .180 0.769 .158 .382 8.152 .000 .002 1.306 .116 .178
M(1, 2) �0.099 .410 .674 �0.356 .444 .704 �0.496 .608 .872 11.351 .000 .016 0.978 .132 .302
M(1, 3) �0.012 .340 .686 �0.187 .420 .616 2.463 .050 .414 5.695 .004 .100 �0.170 .424 .610
M(1, 4) 1.730 .060 .294 0.829 .158 .346 2.340 .048 .466 9.076 .000 .068 1.352 .094 .282
M(2, 0) 10.283 .000 7.488 .000 5.023 .000 4.074 .010 7.685 .000
M(2, 1) 5.264 .004 0.539 .302 1.964 .058 3.582 .020 3.201 .028
M(2, 2) 15.369 .002 18.942 .000 35.280 .000 13.752 .000 14.148 .002
M(3, 0) 2.311 .034 1.748 .098 4.086 .006 �0.482 .664 2.041 .062
M(3, 3) �0.651 .332 5.585 .028 14.932 .012 4.150 .020 7.006 .018
M(4, 0) 2.800 .020 2.691 .050 1.210 .104 �0.699 .760 2.414 .030
M(4, 4) �0.710 .250 4.467 .030 17.971 .014 �0.050 .080 7.370 .022
Joint4 .168 .310 .482 .004 .432
Joint5 .096 .060 .012 .000 .086
Joint12 .000 .000 .000 .000 .002
Joint13 .000 .000 .000 .000 .002

PB denotes the naive-bootstrap p-values, and PW denotes the wild-bootstrap p-values; both are based on 500 bootstrap replications. We have computed the bootstrap p-values for p� � 6, . . . , 15, but reported
only for p� � 10. The joint tests are defined in tables 2 and 3. For comparison, all M(m, l ) statistics are asymptotically one-sided N(0, 1), and thus the upper-tailed asymptotic critical values are 1.65 and 2.33 at
the 5% and 1% levels, respectively.
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nonlinear time series models may be able to predict DM
exchange rate changes. The test M(2, 0) shows strong
possibly nonlinear time-varying volatility, and the linear
ARCH test M(2, 2) indicates very strong linear ARCH
effects. Both the leverage effect [M(2, 1)] and the ARCH-
in-mean effect [M(1, 2)] are, however, insignificant. There
exist significant conditional skewness [M(3, 3)] and large
conditional kurtosis [M(4, 4)].

For BP, the geometric random-walk hypothesis is also
strongly rejected [M(0, 0)]. In contrast, the correlation test
M(1, 1) indicates that {Yt} is a WN (with a bootstrap
p-value of 0.382). Nevertheless, the martingale test M(1, 0)
strongly rejects the martingale hypothesis with a bootstrap
p-value of 0.002. Thus, the change of the British pound,
though serially uncorrelated, has a nonzero mean condi-
tional on its past history and is predictable nonlinearly using
its own past history. Again, the linear ARCH test M(2, 2)
suggests very strong ARCH effects, and the test M(2, 0)
also shows significant possibly nonlinear time-varying vol-
atility. The leverage effect [M(2, 1)] is weak, and the
ARCH-in-mean effect [M(1, 2)] is insignificant. There
exist very significant conditional skewness and conditional
kurtosis.

For JY, the geometric random walk hypothesis is strongly
rejected [see M(0, 0)]. The martingale test M(1, 0) also
strongly rejects the martingale hypothesis. The rejection
may be explained by significant moments, as the tests M(1,
l ), l � 1, 2, 3, 4, are significant. Unlike CD, DM, BP, and
FF (below), JY exhibits strong serial correlation in changes
[M(1, 1)]. There also exist strong ARCH effect, leverage
effect, ARCH-in-mean effect, conditional skewness, and
conditional heterokurtosis.

Finally, for FF, the results are similar to those for CD.
First, the geometric random walk hypothesis is strongly
rejected. Whereas M(1, 1) shows no serial correlation (with
a bootstrap p-value of 0.178), M(1, 0) strongly rejects the
martingale hypothesis (with a bootstrap p-value of 0.008).
The higher-order moments are not significant to explain the
nonlinearity in mean [see M(1, l ) with l � 2, 3, 4]. The
M(2, 2) test suggests very strong ARCH effects, and M(2,
0) also suggests significant, possibly nonlinear time-varying
volatility. The leverage effect [M(2, 1)] is significant, but
the ARCH-in-mean effect [M(1, 2)] is insignificant. There
exist significant conditional skewness and conditional kur-
tosis.

To summarize, we observe:

1. There exists strong serial dependence in the changes
of all the five exchange rates. The geometric random-
walk hypothesis (possibly with drift) is strongly re-
jected for all the five currencies.

2. Although the changes of exchange rates are often
serially uncorrelated (as is the case for CD, DM, BP,
FF), they are clearly not an MDS for any of the five

currencies. There exists strong nonlinearity in mean
for the changes of all the five exchange rates.

3. For CD, DM, BP and FF, the nonlinearity in mean
cannot be explained by the polynomials of lagged
exchange rate changes. It is of a complicated and
unknown form.

4. There exist strong ARCH effects for all the five
currencies. The leverage effect is significant for CD,
JY, and FF; the ARCH-in-mean effect is significant
only for JY.

5. There are significant conditional skewness and/or
conditional kurtosis.

It is important to explore the implications of these styl-
ized facts. In the rest of this paper, we focus on finding 2.
The fact that exchange rate changes are not an MDS implies
that they are predictable in mean.6 We will use some
nonlinear time series models in combination with an
MATTR to forecast the often neglected nonlinearity in mean
for exchange rate changes.

III. Nonlinear Time Series Models

To forecast the changes of exchange rates, we consider
models for E(Yt�It�1), where It � {Yt, Yt�1, . . .} is the
information set available at time t. The evidence in section
II suggests that E(Yt�It�1) is time-varying but is of a
complicated form. In particular, it cannot be modeled sim-
ply by autoregressive polynomials in lagged exchange rate
changes for any of the currencies except JY. Various para-
metric and nonparametric models can be used. Examples of
parametric models are autoregressive bilinear and threshold
models. Examples of nonparametric models are artificial
neural network, kernel, and nearest neighbor regression
models. As noted earlier, these models have been used in the
literature, with apparently mixed results on the predictivity
of exchange rate changes in mean.

We consider the following models for E(Yt�It�1): linear
autoregressive, AR(d); autoregressive polynomial, PN(d,
m); artificial neural network, NN(d, q); functional coeffi-
cient, FC(d, L); and their combination. These models are
described in table 5. Among them, NN(d, q) is a popular
nonlinear model (see, for example, Campbell, Lo, & Mac-
Kinlay, 1997, chapter 12). FC(d, L) is a new nonlinear time
series model introduced by CFY (2000), with time-varying
and state-dependent coefficients. It can be viewed as a
special case of Priestley’s (1980) state-dependent model, but
it includes the models of Tong (1990) and Chen and Tsay
(1993) and regime-switching models as special cases. In our
application, the autoregressive coefficients depend on an
MATTR.

6 This does not necessarily imply that exchange rate markets are ineffi-
cient, or that the exchange rates are not rational assessments of “funda-
mental” values. As Lucas (1978) has shown, rational expectation equilib-
rium asset prices need not follow a martingale sequence.
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In addition to forecasting E(Yt�It�1), we will also forecast
the direction of changes. For directional forecasts, we con-
sider two additional models—MATTR(L) and Buy&Hold,
as described in table 5. For MATTR(L), one has
sign(Ŷt�1) � sign(Ut�1), where sign( x) � 1( x � 0) �
1( x � 0), 1� is the indicator function, and Ut is as in table
5. It generates a buy signal (to purchase the foreign currency
using U.S. dollars) when the current exchange rate level �t

is above the moving average L�1 ¥j�1
L �t�j, and a sell signal

(to purchase U.S. dollars using the foreign currency) when
it is below. For Buy&Hold, one has sign(Ŷt�1) � 1 for all
t. No estimation is required for these two models.

To estimate AR(d) and PN(d, m), we use the ordinary
least squares method. NN(d, q) is estimated by the nonlin-
ear least squares method with the Newton-Raphson algo-
rithm. See (for example) Kuan and Liu (1995) for more
discussion. Because the FC model is relatively new, we now
describe this model and its estimation and testing in some
detail.

A. Functional-Coefficient Model

Let {(Yt, Ut)�}t�1
n be a stationary process, where Yt and

Ut are scalar variables. Also let Xt � (1, Yt�1, . . . , Yt�d)�,
a (d � 1) � 1 vector. We assume

E
Yt�It�1� � a0
Ut� � �
j�1

d

aj
Ut�Yt�j, (6)

where the {aj(Ut)} are the autoregressive coefficients de-
pending on Ut, which may be chosen as a function of Xt or
something else. Intuitively, the FC model in (6) is an AR
process with time-varying autoregressive coefficients.

The coefficient functions {aj(Ut)} can be estimated by
local linear regression. At each point u, we approximate
aj(Ut) locally by a linear function aj(Ut) � aj � bj(Ut �
u), j � 0, 1, . . . , d, for Ut near u, where aj and bj are
constants. The local linear estimator at point u is then given
by âj(u) � âj, where {(âj, b̂j)}j�0

d minimizes the sum of
local weighted squares ¥t�1

n [Yt � E(Yt�It�1)]2Kh(Ut � u),
with Kh� � K( � /h)/h for a given kernel function K� and
bandwidth h � hn 3 0 as n 3 �. We select h using a
modified multifold leave-one-out cross-validation based on
MSFE (cf. CFY, 2000, p. 944).

B. Choosing Ut Based on MATTR

It is important to choose an appropriate smooth variable
Ut. Knowledge on data or economic theory may be helpful.
When no prior information is available, Ut may be chosen
as a function of explanatory vector Xt or using such data-
driven methods as AIC and cross-validation. See Fan, Yao,
and Cai (2002) for further discussion on the choice of Ut.
For exchange rate changes, we choose Ut as the difference
between the exchange rate at time t � 1 and the moving
average of the most recent L periods of exchange rates at
time t � 1:

Ut � �t�1 � L�1 �
j�1

L

�t�j. (7)

The moving average L�1 ¥j�1
L �t�j is a proxy for the trend

at time t � 1. We choose L � 26 (half a year). Intuitively,
Ut is expected to reveal useful information on the direction
of changes. For more discussion on the rationales of using
an MATTR, see (for example) Levich and Thomas (1993)
and Brock, Lakonishock, and LeBaron (1999).

C. Testing for and Estimation of Functional Coefficients

To justify the use of the FC model, we apply CFY’s
(2000) goodness-of-fit test for an AR(d) model against a
FC(d, L) alternative. In the framework of (6), the null
hypothesis of AR(d) can be stated as

�0 : aj
Ut� � �j, j � 0, 1, . . . , d, (8)

where �j is the autoregressive coefficient in AR(d). Under
�0 in (8), {Yt} is linear in mean conditional on Xt. Under
the alternative to �0 in (8), the autoregressive coefficients
depend on Ut, and the AR(d) model suffers from neglected
nonlinearity.

To test �0 in (3.3), CFY compares the residual sum of
squares (RSS) under �0

RSS0 � �
t�1

n

�̂t
2 � �

t�1

n �Yt � �̂0 � �
j�1

d

�̂jYt�j�2

TABLE 5.—MODELS

Name Models for E(Yt�It�1) and sign[E(Yt�It�1)]

Benchmark E(Yt�It�1) � �
AR(d) E(Yt�It�1) � �0 � ¥j�1

d �jYt�j

PN(d, m) E(Yt�It�1) � �0 � ¥j�1
d ¥i�1

m �ijYt�j
i

NN(d, q) E(Yt�It�1) � �0 � ¥j�1
d �jYt�j � ¥i�1

q �iG(�0i � ¥j�1
d �jiYt�j), where G(z) � (1 � e�z)�1

FC(d, L) E(Yt�It�1) � a0(Ut) � ¥j�1
d aj(Ut)Yt�j, where Ut � �t�1 � L�1 ¥j�1

L �t�j�1.
Combined(1–4) Combined forecast of AR(2), PN(2, 4), NN(2, 5), and FC(2, 26), which is to be defined in equation (14) below
MATTR(L) sign[E(Yt�It�1)] � sign(Ut), where Ut � �t�1 � L�1 ¥j�1

L �t�j�1

Buy&Hold sign[E(Yt�It�1)] � 1
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with the RSS under the alternative

RSS1 � �
t�1

n

�̃t
2 � �

t�1

n �Yt � â0
Ut� � �
j�1

d

âj
Ut�Yt�j�2

.

The test statistic is Tn � (RSS0 � RSS1)/RSS1. We reject �0

in (8) for large values of Tn. CFY suggest the following
bootstrap method to obtain the p-value of Tn: (i) generate
the bootstrap residuals {�t

b}t�1
n from the centered residuals

�̃t � ��, where �� � n�1 ¥t�1
n �̃t, and define Yt

b � X�t�̂ � �t
b,

where �̂ is the OLS estimator for AR(d); (ii) calculate the
bootstrap statistic Tn

b using the bootstrap sample {Yt
b, X�t,

Ut}t�1
n ; (iii) repeat steps (i) and (ii) B times (b � 1, . . . ,

B), and approximate the bootstrap p-value of Tn by B�1

¥b�1
B 1(Tn

b � Tn). The bootstrap p-values of Tn for the five
currencies, based on B � 1000, are 0.031 (CD), 0.000
(DM), 0.025 (BP), 0.022 (JY) and 0.063 (FF), which indi-
cate strong rejection of AR(2) in favor of FC(2, 26).

IV. Predictive Ability of Nonlinear Models

So far, we have explored nonlinearity in mean for ex-
change rate changes via in-sample analysis. We now exam-
ine whether the above nonlinear models can outperform the
martingale model in out-of-sample forecasts. As the martin-
gale test M(1, 0) checks the null hypothesis that
E(Yt�Yt�j) � E(Yt) for all j � 0, we choose the martingale
model Yt � � � �t as the benchmark. When several
forecast models using the same data are compared, it is
crucial to take into account the dependence among the
models. Otherwise, the resulting inference is commonly
referred to as data snooping and can be misleading (cf. Lo
& MacKinlay, 1999, chapter 8). White (2000) developed a
novel test for out-of-sample multiple model comparison that
accounts for data-snooping biases. We use this method here.

A. Forecast Evaluation Criteria

Suppose there are n � 1 (�R � P) observations. We use
the most recent R observations available at time t, R � t �
n � 1, to generate P forecasts using each model. For each
time t in the prediction period, we use a rolling sample
{Yt�R�1, . . . , Yt} of size R to estimate model parameters.
We can then generate a sequence of one-step-ahead fore-
casts {Ŷt�1}t�R

n , which is used to evaluate each model. For
more discussion on rolling estimation, see West (1996) and
McCracken (2000).

Our main aim is to investigate out-of-sample forecasts of
the models described in table 5, relative to the martingale
model. We compare them in terms of MSFE, MAFE, MFTR, and
MCFD respectively:

MSFE � P�1 �
t�R

n


Yt�1 � Ŷt�1�
2,

MAFE � P�1 �
t�R

n

�Yt�1 � Ŷt�1�,

MFTR � P�1 �
t�R

n

sign
Ŷt�1�Yt�1,

MCFD � P�1 �
t�R

n

1
sign 
Ŷt�1� sign 
Yt�1� � 0�.

We ignore issues such as interest differentials, transaction
costs, and market depth, and assume that there exists no
budget constraint. Because the investors are ultimately try-
ing to maximize profits rather than minimize forecast errors,
MSFE and MAFE may not be the most appropriate evaluation
criteria.7 Granger (1999) emphasizes the importance of
model evaluation using economic measures such as MFTR

rather than statistical criteria such as MSFE and MAFE. MCFD

is closely associated with an economic measure, as it relates
to market timing. Mutual fund managers, for example, can
adjust investment portfolios in a timely manner if they can
predict the directions of changes, thus earning a return
higher than the market average. Note that MFTRBuy&Hold �
P�1 ¥t�R

n Yt�1 3 � in probability as P 3 �, where � �
E(Yt).

B. Comparing Forecasting Models

Multiple model comparison can be conveniently formu-
lated as hypothesis testing of suitable moment conditions.
Consider an l � 1 vector of moments, E(�*), where �* �
�(Z, �*) is an l � 1 vector with elements �*k � �k(Z, �*),
1 � k � l, Z � (Y, X�)�, and �* � plim �̂t. These
moments have incorporated the information of the l models
and the benchmark model. Define the out-of-sample l � 1
moment vector

�� � P�1 �
t�R

n

�
Zt�1, �̂t�.

Noting that MSFE and MAFE are to be minimized while MFTR

and MCFD are to be maximized, we compare model k (k �
1, . . . , l ) with the martingale model (model 0) via

7 Clements and Hendry (1993) show that MSFE may be an inadequate and
potentially misleading basis for model selection because it is not invariant
to data transformations.
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�� k � �
MSFEk � MSFE0�,

�� k � �
MAFEk � MAFE0�,

�� k � MFTRk � MFTR0,

�� k � MCFDk � MCFD0.

By a suitable central limit theorem, we have �P[�� �
E(�*)] 3 N(0, �) in distribution as P � Pn 3 � when
n 3 �,8 where � is a l � l variance-covariance matrix

� � lim
n3�

var �P�1/ 2 �
t�R

n

�
Zt�1, �̂t�	.

In general, this matrix is rather complicated because it
depends on a component due to parameter estimation un-
certainty in the estimated parameter �̂t (cf. West, 1996).
However, when E(��*/��) � 0 or P/R 3 0 as n 3 �,
West (1996, theorem 4.1) and McCracken (2000, theorem
2.3.1) show that, under proper regularity conditions, � does
not depend on the parameter estimation uncertainty and can
be simplified as

� � lim
n3�

var �P�1/ 2 �
t�R

n

�
Zt�1, �*�.	, (9)

as is the case for West [1996, theorem 4.1(a)] and Diebold
and Mariano (1995).9 Here, the effect of using �̂t rather than
�* is asymptotically negligible.

When we compare an individual model, say model k,
with a benchmark, the null hypothesis is that model k is no
better than the benchmark:

�1 : E
�*k� � 0 for each k � 1, . . . , l. (10)

We can use the tests of Diebold and Mariano (1995), West
(1996), McCracken (2000), or Pesaran and Timmermann
(1992) with an appropriate estimator of �.

When we compare l models against a benchmark jointly,
the null hypothesis of interest is that the best model is no
better than the benchmark

�2 : max1�k�l E
�*k� � 0. (11)

Under the alternative to �2, the best model is superior to the
benchmark. To test �2, sequential use of an individual test
may result in a data-snooping bias, since the test statistics

are mutually dependent. To allow for possible data-
snooping bias, we use White’s (2000) method. White (2000)
proposes the following test statistic for �2:

V� P � max
1�k�l


P��� k � E
�*k��, (12)

whose limit distribution is however unknown, due to un-
known �. To obtain the p-value for V� P, White (2000)
suggests and justifies using the stationary bootstrap of
Politis and Romano (1994): (i) obtain a bootstrap sample
{Zt�1

b }t�R
n ; (ii) estimate {�̂t

b}t�R
n using {Zt�1

b }t�R
n ; (iii) com-

pute the stationary bootstrap statistic

V� P
b � max

1�k�l


P
�� k
b � �� k�, (13)

where �� k
b � P�1 ¥t�R

n �k(Zt�1
b , �̂t

b); (iv) repeat steps (i)–(iii)
B times (b � 1, . . . , B), and approximate the bootstrap
p-value of V� P by B�1 ¥b�1

B 1(V� P
b � V� P). This bootstrap

p-value for testing �2 is called the reality check p-value for
data snooping.

White (2000, theorem 2.3, corollary 2.4) shows that a
sufficient condition for the validity of the stationary boot-
strap is (P/R) log log R 3 0 as n 3 �, no matter whether
E(��*/��) � 0.10 White (2000) only considers differentia-
ble � (such as MSFE). As noted in White (2000, p. 1100), it
is possible to extend his procedure to nondifferentiable �
(such as MAFE, MFTR, MCFD). Checking White’s (2000)
proof, we see that when no parameter estimation is in-
volved, White’s (2000) procedure is applicable to nondif-
ferentiable �. We expect that when parameter estimation is
involved, the effect of parameter estimation uncertainty is
asymptotically negligible when P grows at a suitably slower
rate than R. In this case, we conjecture that White’s (2000)
procedure continues to hold for nondifferentiable � no
matter whether �E(�*)/�� � 0. However, the proof is very
involved and has to be pursued in further work. McCrack-
en’s (2000) approach may be useful here.

C. Combined Forecast

In practice it is not uncommon that some forecast models
perform well in certain periods and other forecast models
perform well in other periods. It is difficult to find a forecast
model that outperforms all the other models in all prediction
periods. To improve forecasts over individual models, com-
bined forecasts have been suggested. Bates and Granger
(1969), Stock and Watson (1999), Knox, Stock, and Watson
(2000), and Yang (2002) show that forecast combinations
can improve forecast accuracy over a single model. Granger
(2001) emphasizes that combined forecasts may provide
insurance to diversify the risk of forecast errors, analogous
to investing on portfolios rather than on individual securi-
ties. We will combine AR(2), PN(2, 4), NN(2, 5), and FC(2,

8 One referee pointed out that tests of equal MSFE for two nested models
may have a nonstandard limit distribution. Fortunately, under the condi-
tion that (P/R) log log R 3 0, �P(�� � E�*) is still asymptotically
normal for the MSFE criterion [cf. Clark & McCracken, 2001, theorem
3.1(b); 2002, theorem 3.3(b)]. Thus, White’s bootstrap procedure is valid
and applicable.

9 Only McCracken (2000) considers nondifferentiable � for the case of
MAFE in this literature.

10 In our applications, we use (R, P) � (613, 612) and (817, 408). For
these choices, (P/R) log log R � 0.444 and 0.232 respectively.
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TABLE 6.—PREDICTIVE ABILITY TESTS FOR FIVE CURRENCIES

Panel A. (R, P) � (613, 612)

k Model

MSFE MAFE MFTR MCFD

MSFE PRC
1 PRC

2
MAFE PRC

1 PRC
2

MFTR PRC
1 PRC

2
MCFD PRC

1 PRC
2

Canadian Dollar (CD)

0 Benchmark 0.366 0.469 0.000 0.492
1 AR(2) 0.368 .775 .775 0.468 .340 .340 �0.029 .838 .838 0.480 .678 .678
2 PN(2, 4) 0.374 .948 .850 0.470 .716 .542 �0.042 .899 .937 0.462 .858 .831
3 NN(2, 5) 0.365 .412 .751 0.469 .555 .738 0.014 .343 .584 0.510 .255 .455
4 FC(2, 26) 0.544 .946 .867 0.500 .974 .860 0.023 .213 .522 0.516 .173 .406
5 Combined(1–4) 0.365 .056 .841 0.467 .005 .723 0.009 .410 .546 0.510 .234 .430
6 MATTR(26) �0.010 .586 .579 0.497 .390 .470
7 Buy&Hold 0.028 .042 .509 0.479 .774 .486

Deutsche Mark (DM)

0 Benchmark 2.232 1.142 0.016 0.493
1 AR(2) 2.238 .669 .669 1.141 .425 .425 0.002 .581 .581 0.490 .540 .540
2 PN(2, 4) 2.267 .826 .864 1.150 .799 .625 0.077 .193 .284 0.518 .150 .199
3 NN(2, 5) 2.312 .951 .936 1.173 1.000 .780 0.004 .522 .375 0.477 .699 .293
4 FC(2, 26) 2.374 .996 .959 1.178 .995 .859 0.042 .335 .425 0.482 .684 .336
5 Combined(1–4) 2.219 .044 .827 1.137 .026 .687 0.038 .376 .444 0.497 .436 .350
6 MATTR(26) 0.021 .485 .485 0.487 .592 .387
7 Buy&Hold �0.015 .635 .527 0.502 .400 .449

British Pound (BP)

0 Benchmark 2.054 1.048 �0.024 0.466
1 AR(2) 2.071 .939 .939 1.054 .983 .983 �0.092 .846 .846 0.456 .628 .628
2 PN(2, 4) 2.470 .893 .984 1.074 .895 .990 0.019 .290 .432 0.489 .203 .271
3 NN(2, 5) 2.087 .784 .989 1.069 .972 .996 0.057 .121 .292 0.487 .233 .375
4 FC(2, 26) 2.166 .988 .995 1.086 1.000 1.000 0.001 .385 .345 0.490 .171 .409
5 Combined(1–4) 2.053 .392 .951 1.046 .085 .851 0.041 .199 .368 0.479 .295 .422
6 MATTR(26) �0.037 .560 .419 0.475 .350 .471
7 Buy&Hold 0.005 .364 .472 0.544 .003 .015

Japanese Yen (JY)

0 Benchmark 2.479 1.154 0.040 0.482
1 AR(2) 2.476 .433 .433 1.149 .285 .285 0.059 .412 .412 0.520 .049 .049
2 PN(2, 4) 3.203 .917 .754 1.199 .911 .640 0.100 .233 .310 0.528 .019 .047
3 NN(2, 5) 2.662 .998 .855 1.198 .996 .758 0.100 .237 .413 0.515 .116 .083
4 FC(2, 26) 2.528 .808 .901 1.160 .687 .816 0.104 .257 .432 0.529 .043 .095
5 Combined(1–4) 2.467 .178 .876 1.146 .040 .706 0.136 .105 .279 0.539 .011 .043
6 MATTR(26) 0.108 .226 .326 0.539 .025 .055
7 Buy&Hold �0.040 .733 .389 0.515 .205 .104

French Franc (FF)

0 Benchmark 2.094 1.103 �0.029 0.469
1 AR(2) 2.102 .694 .694 1.101 .338 .338 0.093 .031 .031 0.525 .004 .004
2 PN(2, 4) 2.074 .176 .296 1.101 .367 .454 0.075 .082 .066 0.515 .038 .012
3 NN(2, 5) 2.186 .991 .481 1.138 .998 .645 0.027 .274 .117 0.487 .264 .042
4 FC(2, 26) 2.127 .768 .597 1.117 .890 .754 0.098 .052 .123 0.500 .113 .051
5 Combined(1–4) 2.082 .008 .597 1.097 .002 .586 0.076 .103 .132 0.500 .134 .059
6 MATTR(26) 0.037 .203 .154 0.500 .126 .080
7 Buy&Hold �0.014 .396 .168 0.495 .141 .093
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TABLE 6.—(CONTINUED)

Panel B. (R, P) � (817, 408)

k Model

MSFE MAFE MFTR MCFD

MSFE PRC
1 PRC

2
MAFE PRC

1 PRC
2

MFTR PRC
1 PRC

2
MCFD PRC

1 PRC
2

Canadian Dollar (CD)

0 Benchmark 0.377 0.483 0.071 0.532
1 AR(2) 0.381 .906 .906 0.484 .633 .633 �0.011 .995 .995 0.498 .916 .916
2 PN(2, 4) 0.387 .934 .926 0.484 .656 .747 0.008 .974 .996 0.512 .734 .879
3 NN(2, 5) 0.385 .920 .988 0.486 .791 .891 �0.024 .995 .997 0.483 .934 .934
4 FC(2, 26) 0.464 .956 .994 0.506 .954 .937 0.012 .959 .997 0.505 .822 .960
5 Combined(1–4) 0.380 .969 1.000 0.485 .921 .987 �0.025 .998 .997 0.483 .970 .970
6 MATTR(26) 0.019 .947 .999 0.500 .855 .979
7 Buy&Hold 0.071 1.000 .881 0.532 1.000 .848

Deutsche Mark (DM)

0 Benchmark 2.273 1.127 �0.021 0.493
1 AR(2) 2.276 .544 .544 1.126 .385 .385 0.040 .236 .236 0.512 .224 .224
2 PN(2, 4) 2.286 .612 .824 1.133 .672 .633 0.092 .089 .149 0.542 .051 .088
3 NN(2, 5) 2.290 .673 .904 1.136 .807 .772 0.004 .401 .236 0.502 .377 .139
4 FC(2, 26) 2.472 .943 .934 1.158 .932 .838 0.001 .406 .263 0.498 .432 .156
5 Combined(1–4) 2.262 .087 .840 1.126 .197 .839 0.068 .155 .279 0.525 .150 .170
6 MATTR(26) �0.002 .426 .315 0.488 .530 .205
7 Buy&Hold 0.021 .380 .363 0.502 .383 .245

British Pound (BP)

0 Benchmark 1.925 0.973 �0.080 0.449
1 AR(2) 1.932 .666 .666 0.976 .867 .867 0.054 .369 .369 0.429 .763 .763
2 PN(2, 4) 2.683 .886 .924 1.024 .922 .943 0.044 .094 .127 0.456 .389 .517
3 NN(2, 5) 2.213 .918 .935 1.018 .970 .960 �0.051 .365 .186 0.510 .032 .052
4 FC(2, 26) 1.956 .734 .961 0.986 .901 .977 0.047 .130 .205 0.510 .060 .091
5 Combined(1–4) 1.918 .080 .899 0.968 .022 .812 0.057 .098 .194 0.488 .107 .100
6 MATTR(26) �0.084 .494 .230 0.480 .160 .115
7 Buy&Hold �0.031 .348 .278 0.556 .004 .008

Japanese Yen (JY)

0 Benchmark 2.392 1.110 0.042 0.468
1 AR(2) 2.368 .231 .231 1.097 .057 .057 0.021 .577 .577 0.520 .028 .028
2 PN(2, 4) 3.829 .898 .660 1.176 .882 .496 0.052 .452 .522 0.544 .005 .010
3 NN(2, 5) 2.415 .758 .704 1.116 .707 .552 0.161 .097 .196 0.542 .007 .015
4 FC(2, 26) 2.394 .550 .739 1.098 .172 .594 0.160 .126 .221 0.574 .001 .006
5 Combined(1–4) 2.389 .412 .746 1.104 .080 .595 0.065 .432 .231 0.544 .011 .006
6 MATTR(26) 0.134 .182 .273 0.547 .013 .006
7 Buy&Hold �0.042 .680 .347 0.529 .083 .025

French Franc (FF)

0 Benchmark 2.158 1.095 �0.059 0.485
1 AR(2) 2.168 .673 .673 1.093 .338 .338 0.094 .028 .028 0.527 .077 .077
2 PN(2, 4) 2.118 .122 .139 1.088 .209 .218 0.172 .007 .008 0.544 .028 .027
3 NN(2, 5) 2.189 .842 .185 1.103 .828 .349 �0.009 .318 .014 0.495 .396 .046
4 FC(2, 26) 2.218 .886 .300 1.117 .955 .487 0.044 .178 .021 0.507 .269 .079
5 Combined(1–4) 2.151 .096 .300 1.093 .128 .487 0.154 .014 .024 0.532 .066 .086
6 MATTR(26) 0.012 .215 .027 0.500 .303 .099
7 Buy&Hold 0.016 .151 .028 0.505 .184 .107

(1) The data are weekly series from January 1, 1975 to December 31, 1998, with 1253 observations. After forming the MATTR(26) and lagged variables, we have n � 1 � 1225 observations, from which R
and P observations are used for regressions and predictions, respectively. The rolling scheme is used: we use the fixed window of the past R observations for estimation, and as we move from R to n, older observations
are not used in estimation.

(2) PRC
1 and PRC

2 denote the stationary bootstrap p-values of White’s (2000) test, with 1,000 bootstrap rereplications and a bootstrap smoothing parameter q � 0.75. Other values of q (such as q � 0.25, 0.50)
give similar p-values (not reported but available). PRC

1 is to compare each model k with the martingale model; PRC
2 is to compare the best of the first l models with the martingale model. The lth number for PRC

2 is
the bootstrap reality check p-value for the null hypothesis that the best of the first l models has no superior predictive power over the martingale model. The last number for PRC

2 checks if the best of all the models
under comparison has superior predictive ability over the martingale model.

(3) The smaller MSFE and MAFE or the larger MFTR and MCFD, the better the predictive ability of a model.
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26) to forecast the conditional mean of exchange rate changes.
Let Ŷkt be the forecast for E(Yt�It�1) by model k, where k � 1,
2, 3, 4 denotes AR(2), PN(2, 4), NN(2, 5), and FC(2, 26)
respectively. We consider the combined forecast

Ŷ*t � �
k�1

4

wktŶkt, (14)

where the weight

wkt �
exp�� t ¥s�1

t�1 
Ys � Ŷks�
2�

¥k��1
4 exp�� t ¥s�1

t�1 
Ys � Ŷk�s�
2�

,

 t � 1/(2St
2), and St

2 is the sample variance of {Ys}s�1
t�1 ; that

is, St
2 � (t � 2)�1 ¥s�1

t�1 (Ys � �t)2 and �t � (t � 1)�1

¥s�1
t�1 Ys. The combined model in (14) will be denoted as

Combined(1–4). The weighting scheme wkt is proposed in
Yang (2002). Intuitively, wkt gives a large weight to model
k at period t when it forecasted well at period t � 1, and
gives a small weight to model k at period t when it
forecasted poorly at period t � 1. Yang and Zhou (2002)
have applied this method to choose ARIMA models and find
that it has a clear stability advantage in forecasting over
some popular model selection criteria.

D. Predictivity of Exchange Rate Changes

We now evaluate the out-of-sample forecasts of the mod-
els described in table 5. Table 6 reports the results on
White’s (2000) test, where PRC

1 is the bootstrap p-value for
comparing a single model with the martingale model, and
PRC

2 is the bootstrap reality check p-value for comparing l
models with the martingale model. The lth number for PRC

2 is
the bootstrap reality check p-value for the null hypothesis
that the best of the first l models has no superior predictive
power over the martingale model. The last number for PRC

2

checks if the best of all the models under comparison has
superior predictive ability over the martingale model. The
difference between each PRC

1 and the last PRC
2 gives an

estimate of data-snooping bias.
For CD, none of AR(2), PN(2, 4), NN(2, 5), and FC(2,

26) outperforms the martingale model in terms of all the
four criteria, but the combined forecast of these models does
outperform the martingale model in terms of MSFE and MAFE

(panel A).
For DM, in terms of MSFE and MAFE, none of AR(2), PN(2,

4), NN(2, 5), and FC(2, 26) outperforms the martingale model,
but Combined(1–4) does outperform the martingale model. In
terms of MFTR and MCFD in panel B, PN(2, 4) performs best,
and better than the martingale model. It generates a 9.2% profit
and correctly predicts 54.2% of the directions of changes. It has
marginally significant bootstrap p-values PRC

1 � 0.089 and
0.051 in terms of MFTR and MCFD respectively for the null
hypothesis that PN(2, 4) is no better than the martingale model.
So, comparing only PN(2, 4) with the martingale model would
suggest that PN(2, 4) may improve the forecast over the

martingale model. However, PRC
2 , the reality check p-value for

testing the null hypothesis that the best of the seven models is
no better than the martingale model, tells a different story. The
last (seventh) numbers for PRC

2 are 0.363 and 0.245 in terms of
MFTR and MCFD respectively, indicating that the best forecast
model [PN(2, 4)] among the seven models is no better than the
martingale model.11

For BP, in terms of MSFE (panel B) and MAFE (panels A
and B), Combined(1–4) yields significant PRC

1 . In terms of
MCFD, NN(2, 5) and FC(2, 26) give significant PRC

1 in panel
B, which remains significant even using the reality check
p-value with PRC

2 .
For JY, AR(2) outperforms the martingale model in terms

of MAFE (panel B) and MCFD (panels A and B). This is
consistent with the in-sample evidence of serial correlation
for JY [see M(1, 1) in table 4]. The superior predictive
ability is clearest in terms of MCFD with significant reality
check p-values PRC

2 . All the other models also outperform
the martingale model in terms of MCFD. In terms of MAFE,
Combined(1–4) yields significant PRC

1 in panels A and B.
For FF, Combined(1–4) outperforms the martingale

model in terms of many criteria in panels A and B. AR(2)
and PN(2, 4) outperform the martingale model in terms of
MFTR and MCFD (panels A and B). FC(2, 26) has MFTR �
9.8% with PRC

1 � 0.052 (panel A).
To sum up, we observe:

1. The combined forecast model performs best in most
cases. It does provide some insurance to diversify the
risk of forecast errors.

2. It is hardest to predict CD and easiest to predict JY.
This is consistent with the in-sample evidence that the
martingale test M(1, 0) reported in table 4 is least
significant for CD and most significant for JY. Al-
though the significant in-sample evidence of nonlin-
earity in mean suggested from M(1, 0) does not carry
over to significant out-of-sample forecasts for some
currencies in terms of certain criteria (after taking
data-snooping bias into account), the results of in-
sample and out-of-sample analysis match each other
in terms of the degree of significance. In particular,
the degree of significance of the martingale test M(1,
0) decreases in the order JY, BP, DM, FF, and CD.
The degree of significance of the superior predictive
ability of nonlinear models over the martingale model
more or less follows the same order.12

11 Of course, it is possible that the insignificant reality check p-values
are due to low power of the reality check test procedure in finite samples.
This remains to be investigated.

12 The existence of some degree of correspondence between the strength
of the rejection using M(1, 0) and the degree of out-of-sample predict-
ability in mean implies that to a certain extent, the in-sample test M(1, 0)
is indicative of out-of-sample predictability for exchange rate changes. It
seems to suggest that there exists some systematic predictable component
in foreign exchange markets that prevails throughout the whole sample
period.
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3. For (and only for) JY, the linear AR(2) model has
some superior predictive ability over the martingale
model in out-of-sample forecasts. This is consistent
with the in-sample evidence in table 4, where the
correlation test M(1, 1) is significant only for JY.

4. The choice of loss function affects the forecast eval-
uation results. It appears that it is more difficult to beat
the martingale model in terms of statistical criteria
(MSFE and MAFE), but it is easier in terms of the
economic criteria (MFTR and MCFD).

V. Conclusions

Using Hong’s (1999) generalized spectral tests, we have
documented that there exists strong nonlinear serial depen-
dence for exchange rate changes, which cannot be solely
attributed to the well-known volatility clustering. The gen-
eralized spectrum also provides useful tools to learn about
the nature of nonlinear serial dependence in the exchange
rate changes. In particular, we find that there exists signif-
icant nonlinearity in mean for exchange rate changes, al-
though most exchange rate changes are serially uncorre-
lated.

To forecast the neglected nonlinearity in mean, we con-
sider some nonlinear time series models and their combi-
nation. After filtering out possible data-snooping bias via
White’s (2000) test, we find that some of these models have
superior predictive ability for JY and FF, and to lesser
degree for CD, DM, and BP, to the martingale model,
particularly in terms of trading returns and/or directional
forecasts. The choice of loss function generally affects the
forecast evaluation results. The combined forecast model
performs best in most cases.

Although the in-sample inference and out-of-sample fore-
casts share similar patterns in the degree of significance, the
in-sample significant nonlinear serial dependence in mean
does not carry over to significant out-of-sample forecasts in
terms of some criteria, after allowing for data snooping.
Perhaps the nonlinear models used are not the most suitable
ones. Alternatively, parameter estimation uncertainty may
dominate the nonlinearity in mean, which may not be strong
enough to be exploited for forecasting. Also, nonlinearities
may be exogenous, arising from outliers, structural shifts,
and government intervention, which can cause various non-
linearity tests to reject the null hypothesis of linearity while
not being useful for out-of-sample forecasts.

In this paper, we have only exploited the predictability of
exchange rate changes in mean. The generalized spectrum
also reveals significant linear and nonlinear dependence in
higher moments, which have important implications for the
predictability of higher-order moments and the entire den-
sity, which is important for correctly assessing exchange
rate risk. We leave this for future work.
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Kräger, H., and P. Kugler, “Nonlinearity in Foreign Exchange Markets: A
Different Perspective,” Journal of International Money and Fi-
nance 12 (1993), 195–208.

Kuan, C.-M., and T. Liu, “Forecasting Exchange Rates Using Feedfor-
ward and Recurrent Neural Networks,” Journal of Applied Econo-
metrics 10 (1995), 347–364.

LeBaron, B., “Technical Trading Rule Profitability and Foreign Exchange
Intervention,” Journal of International Economics 49:1 (1999),
125–143.

Levich, R., and L. Thomas, “The Significance of Technical Trading Rule
Profits in the Foreign Exchange Market: A Bootstrap Approach,”
Journal of International Money and Finance 12 (1993), 451–474.

Lisi, F., and A. Medio, “Is a Random Walk the Best Exchange Rate
Predictor?” International Journal of Forecasting 13 (1997), 255–
267.

Liu, C. Y., and J. He, “A Variance Ratio Test of Random Walks in Foreign
Exchange Rates,” Journal of Finance 46 (1991), 773–785.

Liu, R. Y., “Bootstrap Procedures under Some Non-iid Models,” Annals of
Statistics 16 (1988), 1697–1708.

Lo, A. W., and A. C. MacKinlay, “Stock Market Prices Do Not Follow
Random Walks: Evidence from a Simple Specification Test,” Re-
view of Financial Studies 1 (1988), 41–66.
A Non-random Walk down Wall Street (Princeton: Princeton Uni-
versity Press, 1999).

Lucas, R. E., “Asset Prices in an Exchange Economy,” Econometrica 46
(1978), 1429–1446.

McCracken, M. W., “Robust Out-of-Sample Inference,” Journal of
Econometrics 99:2 (2000), 195–223.

McCurdy, T. H., and I. G. Morgan, “Tests of the Martingale Hypothesis for
Foreign Currency Futures with Time-Varying Volatility,” Interna-
tional Journal of Forecasting 3 (1987), 131–148.
“Testing the Martingale Hypothesis in Deutsche Mark Futures
with Models Specifying the Form of Heteroskedasticity,” Journal
of Applied Econometrics 3 (1988), 187–202.

Meese, R. A., and K. Rogoff, “Empirical Exchange Rate Models of the
Seventies: Do They Fit Out of Sample,” Journal of International
Economics 14 (1983a), 3–24.

“The Out of Sample Failure of Empirical Exchange Rate Models:
Sampling Error or Misspecification?” in J. Frenkel (Ed.), Exchange
Rates and International Economics (Chicago: University of Chi-
cago Press, 1983b).

Meese, R. A., and A. K. Rose, “Non-linear, Non-parametric, Non-essential
Exchange Rate Estimation,” American Economic Review 80
(1990), 192–196.
“An Empirical Assessment of Nonlinearities in Models of Ex-
change Rate Determinations,” Review of Economic Studies 58
(1991), 603–619.

Pesaran, M. H., and A. Timmermann, “A Simple Nonparametric Test of
Predictive Performance,” Journal of Business and Economic Sta-
tistics 10 (1992), 461–465.

Politis, D. N., and J. P. Romano, “The Stationary Bootstrap,” Journal of
the American Statistical Association 89 (1994), 1303–1313.

Priestley, M. B., “State-Dependent Models: A General Approach to Non-
linear Time Series Analysis,” Journal of Time Series Analysis 1
(1980), 47–71.

Richardson, M., “Temporary Components of Stock Prices: A Skeptic’s
View,” Journal of Business and Economic Statistics 11:2 (1993),
199–207.

Richardson, M., and J. H. Stock, “Drawing Inferences from Statistics
Based on Multiyear Asset Returns,” Journal of Financial Econom-
ics 25 (1989), 323–348.

Stock, J. H., and M. W. Watson, “A Comparison of Linear and Nonlinear
Univariate Models for Forecasting Macroeconomic Time Series”
(pp. 1–44), in R. F. Engle and H. White (Eds.), Cointegration,
Causality, and Forecasting, A Festschrift in Honor of C. W. J.
Granger (London: Oxford University Press, 1999).

Sweeney, R. J., “Beating the Foreign Exchange Market,” Journal of
Finance 41 (1986), 163–182.

Tong, H., Nonlinear Time Series: A Dynamic System Approach (Oxford,
Clarendon Press, 1990).

West, K. D., “Asymptotic Inference about Predictive Ability,” Economet-
rica 64 (1996), 1067–1084.

West, K. D., and D. Cho, “The Predictive Ability of Several Models of
Exchange Rate Volatility,” Journal of Econometrics 69 (1995),
367–391.

White, H., “A Reality Check for Data Snooping,” Econometrica 68:5
(2000), 1097–1126.

Wu, C. F. J., “Jackknife, Bootstrap, and Other Resampling Methods in
Regression Analysis,” Annals of Statistics 14 (1986), 1261–1350.

Yang, Y., “Combining Forecasting Procedures: Some Theoretical Re-
sults,” Department of Statistics working paper, Iowa State Univer-
sity (2002).

Yang, Y., and H. Zou, “Combining Time Series Models for Forecasting,”
Department of Statistics working paper, Iowa State University
(2002).

THE REVIEW OF ECONOMICS AND STATISTICS1062



ERRATUM: INFERENCE ON PREDICTABILITY OF FOREIGN EXCHANGE RATES VIA
GENERALIZED SPECTRUM AND NONLINEAR TIME SERIES MODELS

Yongmiao Hong and Tae-Hwy Lee

Yongmiao Hong and Tae-Hwy Lee’s article in the November 2003 issue of this REVIEW (volume 85, number 4, pages
1048–1062) contains a publisher’s error. The words “Predictability of Foreign Exchange Rates” were erroneously omitted
from the title as printed on page 1048. The title should have appeared as it does on this page.


