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Abstract

We evaluate predictive performance of a selection of value-at-risk (VaR) models for Japanese stock
market data. We consider traditional VaR models such as Riskmetrics method, historical simulation,
variance—covariance method, Monte Carlo method, and their variants which are integrated with
various ARCH models. Also considered are more recent models based on non-parametric quantile
regression and extreme value theory (EVT). We apply these methods to the Japanese stock market
index (1984-2000) and compare their performances in terms of various evaluation criteria using the
method of White [Econometrica 68 (5) (2000) 1097-1126] for three out-of-sample periods of 1995—
1996, 1997-1998, and 1999-2000. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The financial turmoil hit Japan in 1997, destroyed the optimism about this model
economy and had a negative spill over effect on the world financial system. Economists and
policy analysts attempting to explain the causes of this unexpected episode are faced with a
significant challenge. Possible causes of the crisis in Japan and Asia have been extensively
studied by Dornbusch (1998a,b), Krugman (1998), Mishkin (1999, 2000), Corsetti et al.
(1999), Goldstein et al. (2000), Mikitani and Posen (2000), Haggard (2000), and Beim and
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Calomiris (2001, Chapter 8). Some effects of these crisis on US are also studied in several
articles in FRBNY (2000). Most of these researchers have agreed on the fact that lack of
prudent supervision and control of risk management in the banking sector constitute one of
the major causes of this crisis. Similarly, Fischer (1998) argues that the need for
transparency and better banking supervision are the key lessons that are drawn from
the crisis which hit Japan. Moreover, Dornbusch (1998a,b) and Mishkin (2000) both assert
that the lack of quality and control in risk management systems in banking sector is one of
the major culprits of the financial crisis. Goldstein et al. (2000) claim that like many other
crisis the banking sector crisis in Japan stems from the asset side of the balance sheet. In
measuring market risks, Japan have been following the regulations set by Basle Committee
on Banking Supervision (1996). The regulations require Japanese banks to report their
daily risk measures called value-at-risk (VaR) to their regulator financial supervisory
agency (FSA). Hence, the relative success and the use of these VaR models for the Japanese
economy during the crisis needs further investigation.

The existing literature on VaR models have been evolved over the last decade mainly
focusing on the US market data. An extensive review of the literature on the conventional
VaR modelling can be found in Dowd (1998). Diebold and Santomera (1999), Christof-
fersen and Errunza (2000) and Stulz (2000) point out the problems arising from the
normality assumption which is commonly used in conventional risk measurement meth-
odologies. In supporting these claims, traditional VaR models are criticized for their
inability to capture the extreme price movements that can take place during financial
turmoil. Danielsson (2000) argued that the statistical analysis made in times of stability
does not provide much guidance in times of crisis. He further claims that the use of VaR
models for regulatory purposes is questionable for this reason. However, the validity of
such claims require a careful examination of a wide selection of VaR models with special
reference to crisis period.

Only very few studies can be seen on evaluating the risk forecasts for the Japanese
economy despite the significant need and interest in both academic and policy purposes.
The only exception is Danielsson and Morimoto (2000), who analyzed the forecasting
ability of extreme value theory (EVT)-based VaR model in the Japanese economy. Given
the importance and its implications on the many other emerging markets, a more
comprehensive study is necessary in this field. The purpose this paper is to investigate
thoroughly the relative predictive performance of various alternative VaR models with
special reference to Japanese stock market. This information that will be extracted from
this study will have significant policy implications for understanding the past crisis and
shed some light for future turmoils. To this end, a broad variety of conventional VaR
models (which were available during the crisis) and some recent EVT-based methods
(which became popular after 1997) are covered in this study. The conventional VaR models
studied here include variance—covariance, historical simulation, and Monte Carlo simula-
tion methods. More details can be found in some recent books on risk management such as
Jorion (2000), Alexander (1998), or Dowd (1998). Some of these conventional models are
also modified by integrating various ARCH tools such as generalized ARCH (GARCH) of
Bollerslev (1986), exponential GARCH (EGARCH) of Nelson (1991), and threshold
GARCH (TGARCH) of Glosten et al. (1993). In order to see whether any efficiency gain
that can be obtained by lifting the critical normality assumption, some non-parametric
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alternatives are also studied. A hybrid historical simulation method developed by
Boudoukh et al. (1998) and a non-parametric quantile estimation based on kernel density
(see Xiang, 1996; ?, for applications) are also employed in the present paper.

Furthermore, in order to investigate the claim that conventional VaR models are unable
to capture market risks three popular EVT-based VaR models, namely, generalized extreme
value (GEV) distribution, generalized Pareto distribution and the tail index estimator by
Hill (1975) are studied. As is known, EVT models are specially designed to model extreme
price movements. The theoretical and applied works on the EVT models can be found in
Longin (1996, 2000), Ho et al. (2000), Neft¢i (2000), Danielsson et al. (2001), Danielsson
and deVries (1997) and Danielsson et al. (2001).

Altogether, 27 alternative VaR models are studied in this paper. All of these models are
compared for their out-of-sample predictive ability via White (2000) ‘“‘reality check”
method which is a data snooping robust methodology. In implementing the reality check
we have used three different objective functions, namely, quasi-log likelihood defined in
Bertail et al. (2000), the tail mean return (defined in Section 3), and the coverage likelihood
ratio. Christoffersen (1998) likelihood ratio tests for conditional and unconditional cover-
age probabilities are also employed. Daily Japanese stock market index from 1984 to 2000,
are used. The VaR forecasts generated from these models for three out-of-sample periods
of 1995-1996, 1997-1998, and 1999-2000 are studied.

Unlike the recent results obtained in the literature, the findings of our analysis suggest
that the predictive performance of the EVT models are less than satisfactory for various
loss functions. In contrast, the predictive performance of some of the traditional methods
such as TGARCH and Monte Carlo models with alternative volatility structures appear to
be more successful than the benchmark Riskmetrics model. However, none of the available
methods produce a uniformly superior risk forecasts for all loss functions and all periods.
Therefore, our findings further reveal difficulties and challenges faced by the policy
analysts, practitioners and academics, who want to use risk forecasts to understand and
prevent potential future crises.

The organization of the paper is as follows. In Section 2, various VaR models are
discussed. In Section 3, forecast evaluation criteria and the reality check are discussed.
Section 4 presents the empirical results and Section 5 concludes.

2. VaR models

Consider the return series {y,},_, of a financial asset. The value-at-risk, denoted as
VaR, (), can be defined as the conditional quantile

Pr(y, < VaR,(a)|Z 1) = a. (1

To establish some notation, suppose {y,},T:l follows the stochastic process

Ve =l + &, ()

where E(&,|7,-1) = 0 and E(¢?|7,_1) = o7 given the information set #,_; (co-field) at
time ¢ — 1. Let z, = ¢,/a, have the conditional distribution &, with zero conditional mean
and unit conditional variance, i.e. z,|#,_1 ~ ®,(0, 1).
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We now turn to various methods of estimating VaR,(x). In this section, we present
various VaR models developed and used over the last 6 years. These models may be divided
into four main categories: (1) variance—covariance methods, (2) non-parametric methods,
(3) Monte Carlo simulation methods, (4) the EVT-based VaR method (also known as
XVaR).

2.1. Variance—covariance methods

The first method is the most standard approach, often called variance—covariance
methods. In this paper, because we consider a single stock index instead of portfolio
we do not consider covariances and, thus, it may be called as variance methods. In this
method, VaR,(a) can be estimated by

VaR,(2) = g, + @, (2)0;. 3)

Hence, estimation of the VaR involves the estimation of &,(-), u,, and ¢,. We consider
various estimation methods of VaR, which may be labeled with different methods of
estimating @,(-) and a,.

We either assume a certain parametric distribution for @,(-) (e.g. normal distribution,
Student-¢ distribution, generalized error distribution (GED), etc.) or estimate it non-para-
metrically. The conditional distribution @,(-) is assumed to be constant over time or simply
assumed as Gaussian N (0, 1) in which case ®,'(0.05) = 1.645 and @, '(0.01) = 2.326. To
take care of the fat tail distributions of financial returns series, it is also often assumed as
Student- t( ) with v degrees of freedom. For #(6), @, 1(0.05) = 1.943,/(v — 2) /v = 1.586
and ®;1(0.01) = 3.143,/(v — 2) /v = 2.566. We use £(6) in this paper.

The condltlonal variance a is estimated with various volatility methods such as a simple
moving average model (Alexander 1998), an exponentially weighted moving average
(EWMA) model of Riskmetrics, and ARCH models of Engle (1982), Bollerslev (1986),
Nelson (1991), and Glosten et al. (1993).

The simplest method to calculate the VaR is to estimate the volatility of the asset return
by historical moving average variance. In this method, we estimate the volatility

Z (Ve — ") @

where " = (1/m) 377", yi-;. See Alexander (1998) for its empirical advantages and dis-
advantages. This method will be denoted as MA (m). In our empirical part, we use MA(200).

One of the most popular volatility model in risk management framework is the
Riskmetrics model of Morgan (1995), which is an IGARCH specification of the following
form:

o = o2+ (1= )1 — i), )

where i, =1/(r — I)Zj' 1 vi—j. Riskmetrics methodology assumes a fixed constant
A = 0.94 which substantially reduces the volatility computations. This method will be
denoted as RM(4). For our empirical analysis in Section 4 we consider RM(0.94),

RM(0.97) and RM(0.90).
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We consider the following three ARCH models. First, the standard GARCH model is
ol =+ fat | +oel . (6)
The second ARCH model is TGARCH of Glosten et al. (1993):
o = o+ Pl +oepy + e 1() (a1 > 0), @)
where 1(-) is an indicator function. The third one is EGARCH of Nelson (1991):
In 0,2 =w+f1n 0,271 + af|z1| — cz-1]- 8)

We consider three distributions of z,, which are N(0, 1), Student-#, and generalized error
distribution (GED). Mittnik et al. (1998) analyze the Nikkei index by various ARCH
models with various distributions of Laplace, double Weibull, generalized exponential,
Student-#, o-stable distributions. The asymmetric o-stable distribution is their preferred
model. They use weekly returns of the Nikkei 225 index for a pre-crisis period from
31 July 1983 to 9 April 1995. Although we note here that the ARCH model with o-stable
distribution could be a serious candidate, we do not employ it here. In our empirical
analysis in Section 4, each of the three ARCH models are estimated with three innova-
tion distributions, and will be denoted as GARCH;, EGARCH;, and TGARCH; with
i =N(0,1), t, or GED, so that there are total nine ARCH models considered.

2.2. Non-parametric methods

VaR estimates can also be obtained by using non-parametric methods. We use two
different non-parametric methods in this paper.

2.2.1. Historical simulation methods

The main idea behind the historical simulation approach is the assumption that historical
distribution of returns will remain the same over the next periods, therefore, the empirical
distributions of portfolio returns will be used in estimating VaR. In other words, this
method uses the empirical quantiles of the historical distribution of return series, {y, ;}'_|,
to estimate VaR,(a) for a given confidence level o. See Jorion (2000, p. 221) for more
details on HS. We will denote this method as HS.

Boudoukh et al. (1998) suggested a hybrid version of the historical simulation approach.
They use exponentially declining weights to discount the distant past in obtaining VaR, i.e.
VaR,(a) is estimated from the empirical percentile of the historical distribution of
{wi'y—j}ie, with weights ' = (1 — )% /(1 = 2)". See Boudoukh et al. (1998) for more
details. The hybrid HS will be denoted as HS(m, ). We will use HS(200, 0.99) and
HS(200, 0.97) in our empirical analysis.

2.2.2. Non-parametric quantile regressions

VaR, which is basically a quantile estimator, can be estimated within the context of
non-parametric quantile regression methods. There has been various studies made on
parametric quantile estimation where a classic reference is Koenker and Bassett (1978). On
non-parametric quantile estimation, recent references are Samanta (1989), Lejeune and
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Sarda (1988), and Xiang (1996) where a newer application of non-parametric quantile on
financial data was made by Abberger (1997).

Let Z = (Y,X’)" be a stationary random vector with the joint density f(y,x) and the
cumulative distribution function (CDF) F(y,x). Then the conditional CDF is

[P f(n,x) dn

F(ylx) = = ———, (€))
(v}x) Fe (o)
where Fx(x) is the marginal CDF of X. Hence, the quantile function can be found as
4o = inf{y € R|F(y|x) > OC}, (10)

where F(y|x) can be estimated from

" K —vy)/h)F —x)/h
S Ki((x = x) /)
where K (+), K (-), h, and i are the kernel functions and the bandwidths corresponding to y
and x, respectively, and Fy(u) = ffm K(z) dz. The optimal bandwidth selection can be

made by modifying the standard cross-validation method. This can be represented as

hey = arg min, Y _ p, (v — q,"(h)) (12)
t=1

where p,(-) is the loss function defined by Koenker and Bassett (1978), and ¢, (h) =
inf{y € R|F~'(y|x) > o} and F~(y|x) is a leave-one-out estimator of the conditional CDF.
Estimating and forecasting VaR via non-parametric quantile regression is straightfor-
ward. For instance, to estimate VaR,(o) = g,, one needs to estimate the conditional CDF
by using the kernel method and then estimate corresponding quantiles. We have both used
the Gaussian and Epanecknikov kernels. In our empirical section, this method will be
denoted as NPQ, (), where i = 1 when Gaussian kernel K (1) = (1/v/27) exp(—(1/2)u?)
is used and i = 2 when Epanecknikov kernel K () = (3/4)(1 — u*)1(|u| < 1) is used, and
m is number of most recent historical observations used in estimating the conditional CDF.
Optimal bandwidths are chosen by the robustified cross-validation process explained
before. The difference between this approach and the one Butler and Schachter (1998) is
that this method directly estimates the quantiles. In Section 4, we use x;, = y,—; and m =
200. For each out-of-sample forecasting point, we have dropped one distant observation
and add a recent one. The optimal bandwidth is chosen for each out-of-sample data point.

2.3. Monte Carlo simulation methods

In this method, an underlying stochastic process which is assumed to govern the
dynamics of the asset prices is used to simulate the future values of the asset, see Hull
(1997) or Jorion (2000). One of the most popular stochastic process in the asset pricing
context is the geometric Brownian motion given as

ds
?':ﬂ,dmgtdw, (13)
t
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where W, is a standard Wiener process, and g, and o, are the drift and the volatility
parameters, respectively. This is a rare example of an explicitly solvable stochastic
differential equation with its solution being

S, = Soexp([u, — S0t + o, W,). (14)

See Brodie and Glasserman (1998) for more discussion. Thus, simulating values of S;
reduces to simulating values of W;. The Monte Carlo method based on Eq. (14) will be
denoted as MC;.

Alternatively, {S,} can be simulated recursively from the simple discretization of
Eq. (13), i.e.

AS; = Si_1 (1,1 At + 0,16,V AY) (15)

where ¢, is zero mean, unit variance random error term, and g, and o, are drift and volatility
parameters in discrete time. In practice, the above stochastic process with an infinitesi-
mally small increment d¢ is approximated by small discrete moves of Az. Then one can
simulate the sample paths of the above process with estimated drift and volatility
parameters. See Jorion (2000, p. 293) for an illustration. This Monte Carlo method based
on Eq. (15) will be denoted as MC,.

One possible extension to the above model is to integrate a time varying volatility structure
to the above equations. In our empirical analysis, we consider three such extensions of
MC, with the volatility coefficients o, being estimated by GARCHy, EGARCHggp, and
RM(0.94).

The number of Monte Carlo replications used in Section 4 is 5000. Once the sample
paths of financial asset is obtained, VaR measures can be estimated by computing the
empirical quantile of the return distribution. The drift parameter is estimated by the sample
average of the asset return values.

2.4. Extreme value theory

Risk management is primarily concerned with the risk of low-probability events that
could lead to catastrophic losses. However, all the VaR methodology we have reviewed so
far ignore extreme events and directly focus on risk measures that accommodate the whole
return distribution. In risk management, these extreme observations are used to model the
tails of return distributions. The focus of EVT is, unlike the other parametric and non-
parametric methods used in VaR methodology, to model the tails rather than the entire
return distributions. There has been various theoretical and empirical studies in this field.
For instance, Embrechts et al. (1997) give an excellent review of EVT. Longin (1996, 2000)
use GEV to estimate the tail index via maximum likelihood estimation. Neft¢i (2000), on
the other hand uses GPD. We consider the three EVT models, namely, GEV, GPD, and
Hill’s tail index estimation.

2.4.1. Generalized extreme value distribution
Consider the return series {y,}tT:1 of a financial asset and the ordered return series
{y(t)}tT: | inincreasing order y(;y < y(;41) for all #. The sample minimum is y(;) over 7 sample
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period. If the returns are i.i.d. with the CDF Fy(y), then the CDF of the minimal return,
denoted by Gy(y), is given by Longin (1996, 2000)

T
Gy(y) = Pr(yq) <y) = 1 =Pr(ya) >y) = 1 = [[ Pr(v > )

t=1

T
=T =Pr(y <y =1-[1 - Fy(y)]". (16)
=1
Thus, G(y) is degenerated as T — oco. Hence, we seek a limit law Hy(x) with which a
normalization x7 = (y(;) — f7)/dr does not degenerate as T — oo for suitable normal-
izing constants f and 67 > 0. The limiting distribution of x7 is the generalized extreme
value (GEV) distribution of Mises (1936) and Jenkinson (1955) of the form

Hy(x) = 1 — exp[—(1 + )7 (17)

for 1 4+ tx > 0. The corresponding limiting density function of {x7} as T — oo, obtained
by differentiating Hx(x), is given by

Hy(x) = (14 )9 Texp[— (1 + w) /7. (18)

Hence, the approximate density of y(;) for given 7 may be obtained by change of variables
which is

Hy(xr) = — (1 +1xp) "/ exp(— (1 + 7)), (19)

where 1/d7 is the Jacobian of the transformation.

Hence, the three parameters 07 = (t, i, 67)" may be estimated by maximum likelihood
method. To implement it, Longin (1996, 2000) partition 7 samples into m non-overlapping
subsamples each with n observations. In other words, if T = mn, the ith subsample of the

return series is {y(,-,l),,ﬂ-};-’: (fori=1,...,m If T < mn, we drop some observation in the
first subsample so that it has less than n observations. The collection of the subperiod
minima is then {y,;}, where y,; = mini<j<,{y;_1)ni;}, i =1,...,m. The likelihood

function of the subperiod minima is

JJEE H i P (20)
i=1 =1 ( 5 )
Assuming 0! = 0, for all subperiods i = 1,...,m, 0, can be estimated for a numerical
optimization of the log likelihood.

Consider the probability that the subperiod minimum y,; is less than y; under the limit
law (Eq. (17)). Denoting x} = (y; — f,,)/0n, it is

. — ni — B “— B, .
Hy () = Hy (2P —pe(2mi = Pa o 3u =P oy, <y, @n
On On On '
which is therefore, equal to

Gy(y,) =1-[1=Fy(y)I"=1-(1-a)", (22)
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where the second equality holds if y = VaR(«). Hence, equating Egs. (21) and (22), we get
Hy(x) =1 —exp(—(1+ )/ =1-(1—a)" (23)
which yields the VaR forecasts

Vo= VaR(2) =, ~ 21~ [-in (1 — o', 24)

We denote this method as Longin(n), where n is the size of the subperiod. In Section 4, we
use n = 10 and 20. Tsay (2000) provides an excellent exposition of this method and other
VaR models.

2.4.2. Generalized pareto distribution

An alternative approach to GEV method is based on exceedances over threshold (Smith,
1989; Davison and Smith, 1990). According to this approach, we fix some high threshold
u and look at all exceedances e over u. The distribution of excess values is given by Neft¢i
(2000)

Flu+e) — F(u)
1—Fu)

Pickands (1975) shows that the asymptotic form of F,(e) is

Fue)=PrX <u+elX>u)= e>0. (25)

1/t
He)=1-(1-5)", (26)
where 0 > 0 and 1 — (te/d) > 0. This is known as the generalized Pareto distribution
(GPD) with its density

H(e) = ~ (1 _ %e)(l/r)*l. @7

Let {¢;};_, be the sample of exceedances over threshold with its sample size n. The
likelihood [/, i(e;) may be maximized to estimate 0 = (t8). Once 0 = (36) is
estimated VaR(«) can be estimated as follows. From Egs. (25) and (26), we get

[1—F(u+e)=[1—-Fu)][l—H(e) (28)

From this, by letting [1 — F(u + ¢)] = o, [l — F(«)] = n/T, and using the GPD distribu-
tion H(VaR,()) in Eq. (26), we obtain the VaR estimate

VaR, (o) = —g (1 - (%)) (29)

where T is the total observations and n is the number of exceedances.

The above discussion is for the upper tail (short position). In this paper, we focus on
lower tails. However, if one uses negative return series {—y,}tT:l for the variable X in
Eq. (25), the above discussion continues to apply to the lower tails (long position). Let
Xx; = —y;. In choosing the threshold value u, we follow Neftci (2000): u = 1.176 x 67,
where 67 is the standard deviation of {x,}trzl from the whole sample and 1.176 =
®,1(0.10) = 1.440,/(v — 2)/v with #(6) distribution being assumed. Therefore, the
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extreme observations (exceedances over the thresholds) would belong to 10% tails if its
true distribution is indeed 7(6). The number of {x,}/_, that exceeds u is n.

2.4.3. Hill estimator

As before, we assume the return series {y,}._, are i.i.d. and denote the ordered return
series as {y(,>},T:1 in increasing order. Suppose y(,) < 0 and y, 1) > 0 so that n is the
number of negative returns in the 7" observations. The GEV distribution in Eq. (17) with
7 < 0 is known as the Fréchet distribution with the CDF Fy(y) = exp(—y'/?), y < 0. As
shown in Embrechts et al. (1997, p. 321), it reduces to

Fy(y)=1-Cy"", |y|>u>0 (30)

where C = u~'/" is a slowly varying function with u being the known threshold. A popular
estimator of 7 is due to Hill (1975) who shows that its maximum likelihood estimator is

LAY
= —%z; In|yp| + In[ygsnl, (31)

1=
where k = k(n) — oo and k(n)/n — 0.1t is known that  —, 7 as n — oo (Mason, 1982).
We choose the sample fraction k using a bootstrap method of Danielsson et al. (2001). Once
7 is estimated, the VaR estimate can be found from (see Embrechts et al., 1997, p. 347):

n

(=) Yiee- (2

VaR, () = [

3. Evaluating VaR models

We consider tests of Christoffersen (1998) and White (2000) for VaR forecast evalua-
tion. Our evaluation of out-of-sample forecasts proceeds as follows. There are P predic-
tions in all for each model. The first prediction is based on the model with parameters
estimated using data from 1 to R, the second on the model with parameters estimated using
data from 2 to R 4 1, .. ., and the last on the model with parameters estimated using data
P —1toR+ P — 1 = T. Based on the estimated models using a series of rolling samples,
each of size R, one-step ahead forecasts are generated for P post-samples, resulting in P
forecasts to evaluate each model.

3.1. Christoffersen tests for coverage probability

We begin with three likelihood ratio tests of Christoffersen (1998). Let [ be the number of
models (k= 1,...,I) to be compared with the benchmark model (k = 0). We consider
| = 26 models plus a benchmark model with total 27 models in Section 4. Let the indicator
d* = 1(y, < VaR¥(a)),t = R, ..., T, denote for the case when return falls beyond the VaR
forecast estimated from model k. Let the probability of the unconditional coverage failure
be denoted as p? = Prly, < VaR(a)] = Pr(d* = 1). As the indicator {d*} has a binomial
distribution, the likelihood is L(p}) = (1 — p%)™ (p%)™, where ny = 3.1 (1 — d*) and
ni = I . d* are the number of 0’s and 1’s in the indicator sequence {d*}_,. Note that
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nk + nk = P. The indices o« and k in d¥, p#, VaR¥(a), n§, n* will often be suppressed in the
following sections.

First, we test whether the probability of the unconditional coverage failure,
p = Prly, < VaR,(«)], is equal to o. That is to test Hy : p = o against H, : p # a. As
the indicator d, has a binomial distribution the likelihood is L(p) = (1 — p)"p™. Under the
null, it is L(a) = (1 — o)™ «™, and, thus, the likelihood ratio test statistic is

LR, = —21In (L@)ix(l), (33)
L(p)
where p = n;/(ng + n;) is the maximum likelihood estimator of p.
The second test is to check whether the process {d,} is serially independent. If the
transition probability of the first-order Markov chain is denoted as 7;; = Pr(d, = j|d,—; = i),
then the likelihood ratio of independence can be tested by

L(p) ] d
LRy = —21In |——P) | 4.1, 34
2 [L(ﬂm,nn) 2(1) 34
where
L(7tor, 1) = (1 — 7tor)"™ g (1 — 7tyq)" 7YY, (35)

where n;; is the number of observations with value i followed by j, o1 = no1 /(0o + no1),
and 7t1; = ny1/(mo + ni1). By combining the two tests, the third test for conditional
coverage can be constructed,

LR; = LR + LR, -%%(2). (36)

3.2. Forecast evaluation criteria

Our primary objective is to compare the various VaR models with the most popular
model (the benchmark). We use the RM(0.94) as a benchmark model and call it model 0.
When several models using the same data are compared in predictive ability, it is crucial to
take into account the dependence among the models. Failing to do so will result in the data-
snooping problem which occurs when a model is searched extensively until a match with
the given data is found. Conducting inference without taking into account specification
search is commonly referred to as “data-snooping” and can be extremely misleading (cf.
Lo and MacKinlay, 1999, Chapter 8). White (2000) develops a noble test to compare
multiple models in predictive ability accounting for specification search, built on West
(1996) and Diebold and Mariano (1995).

As will be discussed shortly in the next subsection, comparison of / models via given
forecast criteria can be formulated as hypothesis testing of some suitable moment
conditions of the loss-differential f. Consider an / x 1 vector of moments, E(f*), where
f*=f(Z,B") is an I x 1 vector with elements f = fi(Z,") for a random vector
Z = (Y,X") and f* = plim f3,. Hypothesis testing for E(f*) can be conducted whenever
the / x 1 sample moment vector

T
F=P"> " f(Zi1,B) (37)
t=R
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has a continuous limiting distribution. For example, when we compare model k with the
benchmark model (k = 0) using a loss function Loss, the kth element of the / x 1 sample
moment vector f is the loss differential of models k and 0, i.e.

fi =Lossy —Lossg (k=1,...,1). (38)

We now define the three loss functions for Loss.
The first loss function A} is based on the negative quasi-log likelihood of Bertail et al.
(2000), i.e.

T
Ap =P ") |y — VaR§ ()] x [y + (1 — 2)(1 — df)], (39)
=R

which weights the observed deviation from the VaR with the probability with which it is
supposed to occur. Smaller A} indicates a better goodness-of-fit.
The second loss function B is based on the negative tail mean return, which is defined as

Zytd (40)
t=R

where nt = Z, _r d* is the number of tail returns to be used in computing B. The model
with smaller B is a better one.
The third loss function C?, is the average of likelihood ratio statistic LR in Eq. (33), i.e.

C!=P'LR, = P '[-2 InL(a) + 2 InL(p})]
T
=P IZ —2[d* In () + (1 —d*)In (1 — )]
t

+2[d; In (p) + (1 —df) In (1 = p})]. (41)

As the smaller LR indicates that the coverage probability p is closer to «, the model with
lower C} generates the VaR forecasts with a better coverage probability and, thus, C}, is to
be minimized. C} =0 if p; =« and C} > 0 if p; # o. It should be noted that the
Christoffersen test LR; is to test the null hypothesis Hy : p; = o for a given model k
and it is not to compare models, while the White’s reality check using C7 is for model
selection and to compare models. When nt = 0, pf = 0 and, thus, In (p]) and C? are not
defined.

All of the three objective functions Af, B}, and C} for our VaR reality check will be
minimized. Note that all three loss functions are expressed as sample moments of the form
P! EIT: g X: with x; being the respective summands expressed in Egs. (39)—(41), so that test
statistics can be formulated based on the sample moment vector of loss differentials as in
Eq. (37).

These loss functions may be extended to incorporate the penalty of the BIS’s capital
adequacy coefficient 8, which depends on v, the number of coverage failure out of 250
days. Thus, v = [n,250/P], where [a] is the nearest integer to a. In our case P = 522 or 505.
The following table (cf. Crouhy et al., 1998, p. 15) is used by the BIS for « = 0.01. The BIS
penalized loss functions, 8;A}, 0;B}, and 0, C} may be considered. However, we leave them
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for future research and focus on A}, B}, and C7 in this paper. Each loss function has its
advantages and disadvantages depending on the need and perspective. We have used three
different loss functions to reflect the notion that different agents may have different
objectives to evaluate risk measurement forecasts. Hence, we use all three objectives in our
empirical section.

3.3. Reality check for predictive ability

Suppose, one-step predictions are to be made for P prediction periods, indexed from R to
T,sothat T = R+ P — 1. Here, P and R may increase as Ehe sample size T increases. The
first forecast is based on the model parameter estimator fig, formed using observations 1
through R, the next based on the model parameter estimator ff, ;, formed using observa-
tions 2 through R + 1, and so forth, with the final forecast based on the model parameter
estimator [37. Often, model comparison via forecast criteria can be conveniently formulated
as hypothesis testing of some suitable moment conditions. Consider an / x 1 vector of
moments, E(f*), where f* = f(Z, ") is an [ x 1 vector with elements f;' = fi(Z, ) for a
random vector Z = (Y, X’) and f* = plim f§;. As discussed earlier, hypothesis testing for
E(f*) can be conducted whenever the / x 1 sample moment vector f =P~' > £(Z,,, B,
has a continuous limiting distribution.

West (1996, Theorem 4.1) shows that under proper regularity conditions:

VP(f — E(f*)) — N(0, Q) in distribution (42)

as P = P(T) — oo when T — oo, where €, is a | X [ matrix

T
Q= limTﬁocvar[P’I/2 Zf(zt+la [}t)}a (43)
=R

which is a complicated expression as 2 depends on the estimated parameter B,. When
either

_ (O
F:E(aﬁ>—0 44)

orP/R— 0asT — oo, Q can be substantially simplified because then €2 does not depend
on the estimated parameter f3, and

T
Q= limTHOCvar[P’l/2 Zf(Z;H, B, (45)
=R

which corresponds to West (1996, Theorem 4.1(a)) and the result of Diebold and Mariano
(1995). Here, the effect of using f3, rather than " is asymptotically negligible. One can
proceed as if * were known and were equal to f3, in period . However, when F # 0, as is
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the case in this paper due to the use of the indicator d; in our three loss functions, € is
unknown and depends on f,. In this case, although Q is not feasible to derive even
asymptotically, a bootstrap procedure may be used to obtain the null distribution of the
statistic.

When we compare a single model (/ = 1) with a benchmark we can use the tests by
Diebold and Mariano (1995) and West (1996) with an appropriate estimator of Q2. When we
compare multiple forecasting models (I > 1) against a given benchmark model, however,
sequential use of Diebold and Mariano (1995) and West (1996) tests may result in a data-
snooping bias since the test statistics are mutually dependent due to the use of the same
data. See Lo and MacKinlay (1999, Chapter 8) and White (2000) for more discussions on
the biases due to data snooping. To account for possible bias due to data snooping, we use
White (2000) procedure. The appropriate null hypothesis is that the best model is no better
than a benchmark, expressed formally as

H() cmax<k< E(fk*) S 0. (46)

This is a multiple hypothesis, the intersection of the one-sided individual hypotheses
E(ff) <0,k=1,...,1. The alternative is that Hy is false, i.e. that the best model is
superior to the benchmark. White (2000) test statistic for Hy in Eq. (46) is formed as
follows:

V = max, <<, VPfy, (47)
which converges in distribution to max;<x<; Z; under Hy, where the limit random vector
Z=(Z,...,7)" is N(0,Q). This null limit distribution is, however, unknown (due to

unknown ) and not feasible to derive even asymptotically. White (2000) suggests to use
the stationary bootstrap of Politis and Romano (1994) to obtain the null distribution of V.
This gives appropriate P-values for testing the null hypothesis that the best model has no
predictive superiority relative to the benchmark (White, 2000, Corollary 2.4). The P-value
is called the “reality check P-value” for data snooping. White (2000, Proposition 2.5) also
shows that the test’s level can be driven to zero at the same time the power approaches to
one as V diverges at rate P'/? under the alternative. Implementation of the reality check
bootstrap and an illustrative example can be found in White (2000). See also Sullivan et al.
(1998, 1999) for applications to the studies of technical trading rules and calendar effects in
asset markets.

4. Results

We now evaluate the out-of-sample predictive ability of the models described in Section
2 using the evaluation methods in Section 3. Daily stock market index data for Japan
(Nikkei 225) are obtained from Datastream. Logarithmic returns for Nikkei 225 index are
analyzed from 2 January 1984 to 9 December 2000 (the date when we collected the data)
with the total 4420 observations. Nikkei 225 is the stock market index of 225 companies
listed in the Tokyo Stock Exchange. Those 225 companies are occasionally reviewed. A
total of 30 of these companies are replaced in April 2000. This discontinuity may constitute
less of a problem for our study since this period corresponds only to a minor portion of time
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span of the present paper. Besides, our major focus is on the crisis period including the data
between 1995 and 1998. However, we note that TOPIX index is an alternative index of
Japanese stock market and more comprehensive than Nikkei 225, while we leave it for
future studies focusing on more recent observations.

The VaR models are estimated using R = 2871. The out-of-sample forecast evaluation is
conducted over three subperiods, period 1 (2 January 1995-31 December 1996, P = 522),
period 2 (1 January 1997-31 December 1998, P = 522), and period 3 (1 January 1999-9
December 2000, P = 505). Period 2 includes the financial turmoil which started in late 1997.
The empirical analysis conducted in this paper have a number of implications for predictive
performance of various VaR models in various dimensions, for three out-of-sample periods,
for two tail probabilities (o« = 0.01,0.05), and for three loss functions (4, B, and C).

In Table 1, the results from Christoffersen (1998) tests for coverage probabilities
corresponding to various VaR models are presented. One of the most important findings
is that the risk forecasting performance of EVT models turn out to be much worse than that
of conventional VaR models such as TGARCH and GARCH volatility models. For
instance, in period 1 (pre-crisis period), for « = 0.05, none of the EVT models produce
satisfactory coverage probabilities. However, for the same period and the same o, many
conventional VaR models generate reasonable conditional and unconditional coverage
probabilities. The coverage estimates obtained by the TGARCH model, except for the
crisis period with o = 0.05, are close to the true coverages. For the crisis period, risk
forecast performance of many models were less than satisfactory. For period 2 with
o = 0.05, only four models could produce favorable coverage probabilities namely,
MA(200), RM(0.97), MC; + RM(0.94), and MC; + GARCHy. For period 2 with
o = 0.01, relatively more successful risk forecasts are obtained. In this case, 12 models
out of 27 had favorable risk forecasts. HS has shown some satisfactory performance for this
case. For the post-crisis period more optimistic picture can be drawn. In this period, many
of the risk models could produce favorable coverages. For o = 0.05, except for all EVT
models and the two non-parametric methods (namely, hybrid HS and NPQ), most methods
successfully capture the required coverages. The performance of most risk forecasts appear
to be more successful for the post crisis period (especially with o = 0.01) which can
indicate that severe effects of crisis has died out.

As a general conclusion drawn from this analysis is that the EVT models do not produce
superior risk forecasts than that of more conventional VaR models. These findings are in
contrast with the conclusions drawn by Ho et al. (2000) and Danielsson and Morimoto (2000)
where EVT models are claimed to be more successful than the traditional VaR methods.

We now turn to the results obtained from the reality check which are presented in
Tables 2—4, where RC; and RC, denote P-values of the test by White (2000) computed
using the stationary bootstrap of Politis and Romano (1994). The bootstrap reality check
P-values are computed with 1000 bootstrap resamples and the bootstrap smoothing
parameter g = 0.75. See Politis and Romano (1994) and White (2000) for the details.
The P-values for ¢ = 0.25 and 0.50 are similar and are not reported. RC; is to compare
each model k (k =1,...,26) with the benchmark model RM(0.94) (k = 0). RC; is to
compare the best of the first / (I = 1,...,26) models with the benchmark. RC; may be
considered as a bootstrap version of Diebold and Mariano (1995) and West (1996) with
taking into account the fact that F = E(9f*/0f) # 0.



Table 1
Christoffersen tests®

k  Model Period 1 Period 2 Period 3

05 LR, LR, pX" LR, LR, pM® LR, LR, pXo LR, LR, pY% LR, LR, pMo LR, LR,
0 RM(0.94) 0069 359 129 0013 056 019 0073 509 027 0015 130 264 0048 006 051 0018 255 033
1 RM(0.97) 0061 134 0.64 0013 056 019 0.067 294 0.06 0015 130 2.64 0048 061 0.03 0010 0.00 0.10
2 RM(0.90) 0075 592 037 0015 130 025 0.075 592 000 0015 130 264 0052 003 026 0018 255 0.33
3 MA(200) 0.069 359 236 0017 229 032 0.065 234 029 0023 653 121 0040 121 0.03 0010 0.00 0.10
4 Garchy 0075 592 043 0010 001 010 0079 775 0.02 0010 001 0.10 005 032 0.10 0012 017 0.17
5 Garch, 0.065 234 0.02 0012 011 014 0071 431 019 0012 0.11 0.14 0048 006 051 0014 069 023
6 Garchgep 0063 181 0.00 0012 011 014 0073 509 002 0.008 031 0.06 0005 000 038 0014 069 023
7 Egarchy, 0061 134 0.00 0015 130 025 0.113 3281 0.09 0.027 1025 077 0071 433 020 0016 149 026
8 Egarch, 0071 431 0.18 0013 056 0.19 0.117 3643 024 0.038 2465 0.07 0.075 596 0.00 0020 3.83 040
9 Egarchggp 0.060 094 0.01 0013 056 019 0.107 27.67 0.00 0.023 653 0.57 0071 433 005 00l6 149 026
10 Tgarchy 0067 294 1.11 0006 1.12 003 0.08 979 093 0013 056 020 0056 032 030 0018 255 037
11 Tgarch, 0.063 181 0.00 0010 00l 010 0.071 431 019 0.008 031 0.06 0052 003 026 00l6 149 029
12 Tgarchggp 0063 181 0.00 0008 031 006 0079 775 0.62 0012 0.11 0.14 0056 032 0.10 0016 149 029
13 HS 0.046 0.17 0.66 0.006 1.12 0.04 0.106 26.03 077 0.017 229 032 0.040 121 0.03 0006 098 0.04
14 HS(200, 0.99) 0.192 13277 229 0.063 67.78 1.62 0255 24475 047 0.141 259.17 0.08 0.188 12324 0.69 0.079 98.30 0.02
15 HS(200, 0.97) 0.180 115.14 0.80 0.090 117.62 2.51 0.255 24475 0.00 0.171 35201 0.72 0.185 117.36 1.12 0.097 138.96 0.31
16 MC, 0.042 070 1.04 0.008 031 006 0.098 1990 026 0.038 24.65 426 0.040 121 003 0014 069 0.23
17 MG, 0.042 070 0.01 0.008 031 006 0.098 1990 0.26 0.035 1937 2.14 0.038 175 0.08 0012 0.17 0.17
18 MC, +Garchy  0.060 094 070 0015 130 025 0.067 294 0.06 0019 350 040 0046 021 068 0.018 255 0.36
19 MC, + Egarchggp, 0.052  0.04 026 0.017 229 031 0.104 24.44 003 0046 3643 065 0062 131 054 0022 532 130
20 MC, +RM(0.94) 0.061 134 0.64 0.015 130 025 0067 294 006 0025 831 439 0044 045 086 0020 3.83 045
21 NPQ, 0205 15447 065 0.073 87.56 344 0263 25990 021 0.148 281.67 0.02 0208 15420 0.60 0.099 14372 0.1
22 NPQ, 0242 219.02 0.02 0.144 27035 0.18 0.290 31539 0.14 0.225 53073 1.19 0244 21589 0.17 0.157 29845 2.09
23 Neftci 0.098 1990 090 0.002 5.15 0.00 0.171 101.16 1.87 0.008 031 0.06 0.087 1219 033 0002 4.88 0.00
24 Longin(10) 0.090 1447 1.88 0.006 1.12 0.03 0.163 9046 0.37 0.031 1452 290 0.081 884 0.06 0006 098 0.04
25 Longin(20) 0.115 3460 075 0.008 031 006 0.184 12092 121 0.036 2196 480 0.107 2648 025 0010 000 0.10
26 Hill 0.008 30.08 0.06 0.002 515 000 0.159 8528 0.16 0.044 3347 291 0028 620 0.86 0004 240 0.02

# The sample period of the data is from 2 January 1984 to 9 December 2000 (the date when we collected the data) with the total 4420 observations. The models are

estimated using R = 2871 observations. The out-of-sample forcast evaluation is conducted over three subperiods, period 1 (2 January 1995-31 December 1996,
P = 522), period 2 (1 January 1997-31 December 1998, P = 522), and period 3 (1 January 1999-9 December 2000, P = 505). LR, and LR, are the estimated statistics
of Christoffersen (1998). LRj is not reported for space, which is the sum of LR; and LR;. LR and LR, follow asymptotically y(1) with the 95% critical value 3.84. LR;
is asymptotically y>-distributed and its 95% critical value is 5.99.
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Table 2

Reality check using the loss function A*

k  Model Period 1 Period 2 Period 3

A% RC; RC; A RC; RC; AP® RC, RC, A" RC, RC, AY® RC, RC AP RC; RG
0 RM(0.94) 1.76 2.92 2.42 4.02 1.98 328
1 RM(0.97) 178 0998 0999 296 1.000 1.000 243 0.805 0.795 4.04 0799 0785 2.00 0984 0981 331 0978 0.982
2 RM(0.90) 174 0015 0054 2.89 0.007 0.009 240 0010 0047 398 0012 0060 196 0003 0018 324 0.05 0.020
3 MA(200) 174 0.192 0.188 287 0.151 0.133 240 0282 0290 393 0.106 0.097 2.14 1.000 0.180 3.56 1.000 0.191
4 Garchy 177 0702 0284 297 0973 0.181 240 0.92 038 404 0610 0101 198 0521 0264 332 0977 0262
5 Garch, 177 0863 0285 297 0997 0.181 243 1000 038 409 1000 0.101 202 1000 0264 337 1.000 0.262
6 Garchgep 179 0995 0287 299 1.000 0.000 242 0.649 0388 405 0859 0.101 2.02 1000 0264 335 1.000 0.262
7 Egarchy 1.65 0000 0.000 272 0.000 0.00 1.94 0000 0.000 3.16 0.000 0.000 1.84 0.000 0.000 3.02 0.00 0.000
8 Egarch, 156 0.000 0.000 2.58 0.000 0.000 1.89 0.000 0.000 3.07 0.000 0.000 1.78 0.00 0.000 290 0.000 0.000
9  Egarchggyp 1.65 0.000 0.000 273 0.000 0.00 1.97 0.00 0.000 321 0.000 0.00 1.86 0.000 0.000 3.05 0.000 0.000
10 Tgarchy 179 0906 0.000 3.00 0978 0.000 248 0994 0.000 4.16 0996 0.000 2.03 0969 0.000 337 0990 0.000
11 Tgarch, 176 0.497 0.000 294 0724 0.000 2.51 1000 0.000 421 1.000 0.000 2.00 0.830 0.000 333 0.962 0.000
12 Tgarchgep 178 0876 0.000 297 0921 0.000 245 0925 0000 410 0952 0000 2.02 0987 0.000 335 0989 0.000
13 HS 1.96  1.000 0.000 3.62 1.000 0.00 2.02 0000 0.00 3.57 0000 0.000 2.11 1000 0.000 3.63 1.000 0.000
14 HS(200, 0.99) 1.04 0.000 0.000 1.93 0.000 0.000 1.16 0.000 0.000 1.96 0.000 0.000 1.10 0.000 0.000 1.97 0.000 0.000
15 HS(200, 0.97) 1.08 0000 0.000 1.71 0.000 0.00 121 0000 0.00 1.79 0.000 0.00 1.15 0.000 0.000 177 0.000 0.000
16 MC; 204 1000 0.00 298 0936 0.000 2.08 0.00 0000 299 0.00 0000 2.14 1.000 0.000 3.12 0.000 0.000
17 MG, 204 1000 0.000 298 0942 0.000 207 0.000 0000 299 0.000 0000 2.14 1.000 0.000 3.12 0.000 0.000
18 MC; +Garchy 191 1.000 0.000 278 0.000 0.000 256 1.000 0.000 275 0.000 0.000 2.3 1.000 0.000 3.10 0.000 0.000
19 MG, +Egarchgg, 170 0.020 0.000 248 0.000 0.000 2.03 0.000 0.000 292 0.000 0.000 192 0.000 0.000 277 0.000 0.000
20 MC, +RM(0.94) 1.83 1.000 0.000 2.66 0.000 0.000 2.52 1.000 0.000 3.66 0.000 0.000 2.06 1.000 0.000 2.99 0.000 0.000
21 NPQ 100 0.000 0.000 1.75 0.000 0.000 1.11 0.000 0.00 1.78 0.000 0.000 1.05 0.000 0.000 179 0.000 0.000
22 NPQ, 0.89 0.000 0.000 123 0000 0.00 1.02 0000 0.000 132 0000 0.000 095 0.000 0.000 128 0.000 0.000
23 Neftci 139 0000 0.000 5.14 1.000 0.00 1.52 0.000 0.00 511 1000 0.00 159 0.000 0.000 529 1.000 0.000
24 Longin(10) 144 0000 0.000 321 1000 0.000 1.55 0.000 0.000 3.16 0.000 0.000 1.67 0.000 0.000 348 1.000 0.000
25 Longin(20) 131 0000 0.000 294 0716 0.000 143 0000 0.00 3.00 0000 0.000 150 0000 0.000 325 0255 0.000
26 Hill 259 1000 0.000 4.82 1.000 0.000 1.58 0.000 0.000 2.80 0.000 0000 249 1.000 0.000 3.97 1.000 0.000

2 The sample period of the data is from 2 January 1984 to 9 December 2000 (the date when we collected the data) with the total 4420 observations. The models are
estimated using R = 2871 observations. The out-of-sample forcast evaluation is conducted over three subperiods, period 1 (2 January 1995-31 December 1996,
P = 522), period 2 (1 January 1997-31 December 1998, P = 522), and period 3 (1 January 1999-9 December 2000, P = 505). A} is the negative QLL for model k with
o quantile. Smaller A7 indicates a better goodness of fit. RC; and RC, denote reality check P-values of White (2000) test computed using the stationary bootstrap of
Politis and Romano (1994, PR). The bootstrap reality check P-values are computed with 1000 bootstrap resamples and the bootstrap smoothing parameter g = 0.75. See
PR or White (1998) for the details. The P-values for ¢ = 0.25 and 0.50 are similar and are not reported. RC; is to compare each model k (k =1,...,26) with the
benchmark model RM(0.94) (k = 0). RC; is to compare the best of the first / (I = 1,...,26) models with the benchmark model. RC; may be considered as a bootstrap
version of Diebold and Mariano (1995) and West (1996).
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Table 3
Reality check using the loss function B*
k Model Period 1 Period 2 Period 3
By RC; RC, By RC, RGC, BY® RC, RC, B RC, RG BY® RC, RG B RC RG
0  RM(0.94) 434 6.79 6.13 7.19 5.76 7.18
1 RM(0.97) 448 0765 0.751 6.79 0.000 0.000 6.34 0.676 0.692 8.19 0.689 0.717 5.85 0585 0.588 822 0.681 0.682
2 RM(0.90) 4.08 0.150 0.257 6.28 0.120 0.135 6.07 0376 0.629 7.19 0.000 0.528 546 0.181 0.327 7.18 0.000 0.490
3 MA(200) 446 0648 0412 647 0395 0399 654 0739 0.730 8.61 0.734 0.670 6.17 0.745 0.487 8.75 0.699 0.602
4 Garchy 423 0387 0456 6.68 0473 0.606 594 0212 0589 570 0.249 0.530 524 0.136 0336 7.39 0.556 0.729
5  Garch, 433 0511 0477 7.1 0.627 0.690 6.19 0.651 0.591 7.62 0.626 0.585 5.63 0319 0344 7.32 0.533 0.750
6  Garchggp 440 0591 0483 7.11 0.620 0.690 6.05 0354 0.638 6.12 0.306 0.618 555 0236 0345 7.23 0.498 0.792
7  Egarchy 468 0779 0.553 6.65 0455 0.756 556 0.145 0326 8.12 0.631 0.623 5.17 0.162 0362 7.55 0.596 0.876
8  Egarch, 449 0.698 0.574 694 0.532 0.774 550 0.118 0.295 7.09 0.463 0.631 505 0.105 0280 7.16 0.470 0.902
9  Egarchggp 471 0778 0.589 694 0.578 0.774 562 0.145 0305 844 0.725 0.640 5.13 0.165 0.286 7.55 0.581 0.902
10 Tgarchy 421 0389 0.600 7.26 0.583 0.832 589 0231 0307 6.18 0.273 0.651 5.08 0.167 0330 7.00 0.425 0.900
11 Tgarch, 434 0509 0.609 7.69 0.742 0.851 6.14 0487 0321 7.25 0513 0.688 535 0234 0348 7.18 0.504 0.900
12 Tgarchggp 434 0484 0.609 775 0.686 0.880 591 0219 0321 6.29 0333 0.692 525 0.185 0351 7.18 0.531 0.900
13 HS 523 0938 0.680 9.23 0.763 0.929 579 0.287 0340 944 0.766 0.703 622 0.758 0.379 10.41 0.753 0.910
14 HS(200, 0.99) 3.07 0.014 0.021 439 0.139 0590 4.01 0.004 0.008 5.09 0.226 0.582 3.58 0.019 0.018 4.81 0.138 0.536
15 HS(200, 0.97) 3.10 0.016 0.021 3.87 0.115 0496 397 0.004 0.008 4.70 0.148 0.506 3.51 0.012 0.016 4.42 0.107 0.456
16 MC, 534 0929 0.028 847 0.766 0.505 592 0370 0.008 7.70 0.593 0.511 622 0.780 0.016 7.93 0.655 0.464
17 MG, 534 0934 0.032 847 0.797 0505 592 0363 0.008 7.92 0.624 0513 631 0805 0.016 820 0.637 0.471
18  MC; + Garchy 447 0.638 0.032 6.19 0.256 0.505 5.83 0244 0.008 6.62 0386 0.521 548 0.284 0.016 7.08 0.474 0471
19 MG, + Egarchggp, 491 0855 0.035 642 0.397 0.508 5.66 0.145 0.008 694 0426 0.523 536 0254 0016 6.82 0.386 0.471
20 MC; +RM(0.94) 441 0.582 0.035 6.58 0.419 0.508 6.28 0.748 0.008 7.36 0.561 0.525 583 0.555 0.016 6.93 0.407 0471
21 NPQ 3.00 0.009 0.031 442 0.155 0513 396 0.007 0.008 5.03 0.194 0.525 344 0.013 0.012 4.61 0.120 0.479
22 NPQ, 277 0.006 0.013 345 0.082 0419 374 0.003 0.006 4.28 0.134 0442 3.17 0.009 0.007 3.90 0.085 0.396
23 Neftci 409 0262 0.013 11.04 0.734 0.541 485 0.029 0.006 10.54 0.717 0.528 493 0.115 0.007 14.33 0.734 0.562
24 Longin(10) 422 0360 0.013 9.23 0.779 0.541 496 0.051 0.006 8.16 0.676 0.529 5.05 0.127 0.007 10.41 0.768 0.562
25  Longin(20) 387 0.115 0.013 847 0.778 0.541 471 0.019 0.006 7.82 0.613 0.529 458 0.078 0.007 897 0.755 0.565
26  Hill 8.47 0.855 0387 11.04 0.747 0541 5.01 0.048 0.006 7.44 0.571 0529 6.86 0.850 0.015 11.85 0.784 0.579

# See the footnote for Table 2. B} is the rescaled negative left tail mean return for model k with « quantile. A smaller B} indicates a better model.
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Table 4
Reality check using the loss function C*

k Model Period 1 Period 2 Period 3
o =0.05 o =0.01 o = 0.05 o =0.01 o = 0.05 o= 0.01
RC, RC, RC, RC, RC, RC, RC, RC, RC, RC, RC, RC,
1 RM(0.97) 0.121 0.116 0.000 0.000 0.183 0.191 0.409 0.402 0.393 0.398 0.184 0.207
2 RM(0.90) 0.821 0.290 0.739 0.558 0.726 0.237 0.000 0.402 0.497 0.670 0.000 0.207
3 MA(200) 0.441 0.400 0.772 0.752 0.231 0.267 0.890 0.658 0.721 0.891 0.195 0.207
4 Garchy 0.817 0.476 0.348 0.827 0.888 0.343 0.283 0.669 0.583 0.912 0.196 0.220
5 Garch, 0.243 0.480 0.304 0.835 0.198 0.344 0.221 0.672 0.393 0.946 0.183 0.226
6 Garchgep 0.186 0.483 0.285 0.835 0.368 0.354 0.390 0.696 0.477 0.946 0.182 0.230
7 Egarchy 0.196 0.521 0.648 0.897 0.997 0.604 0.913 0.769 0.818 0.967 0.339 0.273
8 Egarch, 0.603 0.571 0.391 0.904 0.999 0.647 0.983 0.833 0.850 0.972 0.729 0.333
9 Egarchggp 0.188 0.515 0.396 0.904 0.993 0.657 0.900 0.843 0.797 0.974 0.327 0.333
10 Tgarchy, 0.385 0.534 0.536 0.908 0.909 0.679 0.351 0.865 0.601 0.974 0.406 0.354
11 Tgarch, 0.232 0.537 0.357 0.909 0.358 0.686 0.368 0.870 0.507 0.974 0.296 0.354
12 Tgarchggp 0.210 0.537 0.405 0.909 0.860 0.693 0.275 0.870 0.561 0.974 0.277 0.354
13 HS 0.207 0.450 0.524 0.922 0.988 0.721 0.628 0.871 0.752 0.985 0.321 0.423
14 HS(200, 0.99) 1.000 0.736 0.999 0.957 1.000 0.800 1.000 0.923 1.000 0.989 1.000 0.728
15 HS(200, 0.97) 1.000 0.777 1.000 0.966 1.000 0.817 1.000 0.939 1.000 0.991 0.999 0.771
16 MC,; 0.285 0.791 0.425 0.966 0.974 0.822 0.980 0.953 0.734 0.991 0.262 0.776
17 MG, 0.294 0.793 0.432 0.966 0.987 0.822 0.955 0.954 0.786 0.992 0.195 0.779
18 MC,; + Garchy 0.136 0.793 0.712 0.971 0.180 0.835 0.733 0.964 0.590 0.998 0.000 0.779
19 MG, + Egarchggp 0.160 0.775 0.717 0.976 0.989 0.838 0.989 0.965 0.675 0.998 0.802 0.795
20 MC; + RM(0.94) 0.129 0.775 0.754 0.984 0.103 0.840 0911 0.972 0.684 0.999 0.815 0.796
21 NPQ, 1.000 0.795 1.000 0.986 1.000 0.854 1.000 0.975 1.000 0.999 1.000 0.829
22 NPQ; 1.000 0.812 1.000 0.986 1.000 0.861 1.000 0.975 1.000 0.999 1.000 0.862
23 Neftci 0.969 0.838 0.913 0.988 1.000 0.870 0.336 0.977 0.931 0.999 0.622 0.884
24 Longin(10) 0.970 0.842 0.541 0.988 1.000 0.875 0.940 0.978 0.888 0.999 0.323 0.884
25 Longin(20) 0.998 0.855 0.426 0.988 1.000 0.878 0.968 0.978 0.979 0.999 0.186 0.884
26 Hill 1.000 0.898 0.903 0.988 1.000 0.880 0.985 0.981 0.943 0.999 0.447 0.892

# See the footnote for Table 2. As Cf x P = LR; is reported in Table 1, we do not report C here again for space. Cf
and P = 505 for period 3. A smaller C} indicates a better model.

= P! X LR, where P = 522 for periods 1, 2,
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Table 2 presents the reality check results using the loss function A, the negative quasi-log
likelihood. Results obtained here suggest that the predictive power of many VaR models such
as EVT methods, ARCH models, and MC methods, perform better than the benchmark
model RM(0.94). Many of the P-values corresponding to RC; and RC, are generally small,
indicating that many models generate better forecasts. Furthermore, some models which
do not produce significant forecast gain during pre-crisis period, appear to have superior
forecasts during crisis. For instance, EVT models and Monte Carlo models show high
P-values close to 1 for RC; with o = 0.01 during pre- and post-crisis periods. However, these
models produce the P-values equal to O for RC; during the crisis. This implies that the
benchmark model works relatively better during the normal times than during the crisis period.

Table 3 presents the reality check results for the loss function B. We obtain less
significant predictive gains over the benchmark model under the loss function B than under
the loss A. In terms of the loss B, predictive gains can mostly be obtained with o = 0.05. For
instance, for a = 0.05,the predictive power of many models improves over RM. On the
other hand, for « = 0.01, none of these models could attain predictive gains over RM.
Although some models such as NPQ, HS, MC, + RM(0.94), and some EVT methods
produce some favorable predictive performance, consistent and uniform prediction
improvements may not be observed with respect to the loss function B.

Our final reality check analysis is based on the loss function C which is the likelihood
ratio of the unconditional coverage probabilities. The results are presented in the Table 4. It
is clear that none of the alternative VaR models produce predictive performance superior to
RM(0.94) in terms of the loss C.

Therefore, for different periods, different tail probability levels, and for different loss
criteria, obtained are different performances for risk forecasting. Unlike the previous
findings in the literature, e.g. Danielsson and Morimoto (2000) for Japan and Ho et al.
(2000) for emerging markets, EVT models have not shown better predictive ability than
conventional models. The difference between our results and the results obtained by
Danielsson and Morimoto (2000) may stem from the following facts: (i) in our study a
wider variety of VaR models are used than that of Danielsson and Morimoto; (ii) we have
applied three different loss functions which account for various aspects of risk forecasts;
(iii) we use Nikkei 225 index while they use TOPIX index.

Interestingly, some traditional methods such as TGARCH and Monte Carlo methods
have proved to be more successful than the EVT models even during the crisis period. RM
methods work relatively well in normal periods. Moreover, better risk forecasts can be
obtained from the post-crisis period which can be interpreted that the severe impact of
financial turmoil has died out. To conclude, forecast evaluation of VaR models has not
revealed a systematic ranking among the models. The policy implications of these findings
highlights the challenges faced with the policy analysts and academics who wish to use risk
based capital adequacy requirements in banking sector to prevent potential financial crisis.

5. Conclusions

In this paper, a comprehensive predictive assessment of various VaR models is studied
for the Japanese stock market. We have made the assessment of on 27 VaR models using
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three different loss functions via White (2000) reality check. The Riskmetrics model,
RM(0.94), is used as a benchmark model for the comparison. The reality check with the
various loss functions indicates that none of the methods studied in this paper exhibits
consistently superior predictive ability for all periods. Unlike the recent findings in the
literature, we could not confirm that the EVT models produce superior risk forecasts for
crisis period. This finding highlights the difficulties in risk modelling and attempts to unify
risk measurement practice to avoid potential financial crisis. To further investigate this
important topic, more work on both theoretical and applied aspects of risk modelling is
necessary.
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