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Abstract

We evaluate predictive performance of a selection of value-at-risk (VaR) models for Japanese stock

market data. We consider traditional VaR models such as Riskmetrics method, historical simulation,

variance–covariance method, Monte Carlo method, and their variants which are integrated with

various ARCH models. Also considered are more recent models based on non-parametric quantile

regression and extreme value theory (EVT). We apply these methods to the Japanese stock market

index (1984–2000) and compare their performances in terms of various evaluation criteria using the

method of White [Econometrica 68 (5) (2000) 1097–1126] for three out-of-sample periods of 1995–

1996, 1997–1998, and 1999–2000. # 2002 Elsevier Science B.V. All rights reserved.

JEL classification: C3; C5; G0

Keywords: VaR; ARCH; Historical simulation; Variance–covariance method; Monte Carlo method; Non-

parametric quantile regression; Extreme value theory; GEV; GPD; Hill estimator; Data snooping; Predictive
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1. Introduction

The financial turmoil hit Japan in 1997, destroyed the optimism about this model

economy and had a negative spill over effect on the world financial system. Economists and

policy analysts attempting to explain the causes of this unexpected episode are faced with a

significant challenge. Possible causes of the crisis in Japan and Asia have been extensively

studied by Dornbusch (1998a,b), Krugman (1998), Mishkin (1999, 2000), Corsetti et al.

(1999), Goldstein et al. (2000), Mikitani and Posen (2000), Haggard (2000), and Beim and
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Calomiris (2001, Chapter 8). Some effects of these crisis on US are also studied in several

articles in FRBNY (2000). Most of these researchers have agreed on the fact that lack of

prudent supervision and control of risk management in the banking sector constitute one of

the major causes of this crisis. Similarly, Fischer (1998) argues that the need for

transparency and better banking supervision are the key lessons that are drawn from

the crisis which hit Japan. Moreover, Dornbusch (1998a,b) and Mishkin (2000) both assert

that the lack of quality and control in risk management systems in banking sector is one of

the major culprits of the financial crisis. Goldstein et al. (2000) claim that like many other

crisis the banking sector crisis in Japan stems from the asset side of the balance sheet. In

measuring market risks, Japan have been following the regulations set by Basle Committee

on Banking Supervision (1996). The regulations require Japanese banks to report their

daily risk measures called value-at-risk (VaR) to their regulator financial supervisory

agency (FSA). Hence, the relative success and the use of these VaR models for the Japanese

economy during the crisis needs further investigation.

The existing literature on VaR models have been evolved over the last decade mainly

focusing on the US market data. An extensive review of the literature on the conventional

VaR modelling can be found in Dowd (1998). Diebold and Santomera (1999), Christof-

fersen and Errunza (2000) and Stulz (2000) point out the problems arising from the

normality assumption which is commonly used in conventional risk measurement meth-

odologies. In supporting these claims, traditional VaR models are criticized for their

inability to capture the extreme price movements that can take place during financial

turmoil. Danielsson (2000) argued that the statistical analysis made in times of stability

does not provide much guidance in times of crisis. He further claims that the use of VaR

models for regulatory purposes is questionable for this reason. However, the validity of

such claims require a careful examination of a wide selection of VaR models with special

reference to crisis period.

Only very few studies can be seen on evaluating the risk forecasts for the Japanese

economy despite the significant need and interest in both academic and policy purposes.

The only exception is Danielsson and Morimoto (2000), who analyzed the forecasting

ability of extreme value theory (EVT)-based VaR model in the Japanese economy. Given

the importance and its implications on the many other emerging markets, a more

comprehensive study is necessary in this field. The purpose this paper is to investigate

thoroughly the relative predictive performance of various alternative VaR models with

special reference to Japanese stock market. This information that will be extracted from

this study will have significant policy implications for understanding the past crisis and

shed some light for future turmoils. To this end, a broad variety of conventional VaR

models (which were available during the crisis) and some recent EVT-based methods

(which became popular after 1997) are covered in this study. The conventional VaR models

studied here include variance–covariance, historical simulation, and Monte Carlo simula-

tion methods. More details can be found in some recent books on risk management such as

Jorion (2000), Alexander (1998), or Dowd (1998). Some of these conventional models are

also modified by integrating various ARCH tools such as generalized ARCH (GARCH) of

Bollerslev (1986), exponential GARCH (EGARCH) of Nelson (1991), and threshold

GARCH (TGARCH) of Glosten et al. (1993). In order to see whether any efficiency gain

that can be obtained by lifting the critical normality assumption, some non-parametric
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alternatives are also studied. A hybrid historical simulation method developed by

Boudoukh et al. (1998) and a non-parametric quantile estimation based on kernel density

(see Xiang, 1996; ?, for applications) are also employed in the present paper.

Furthermore, in order to investigate the claim that conventional VaR models are unable

to capture market risks three popular EVT-based VaR models, namely, generalized extreme

value (GEV) distribution, generalized Pareto distribution and the tail index estimator by

Hill (1975) are studied. As is known, EVT models are specially designed to model extreme

price movements. The theoretical and applied works on the EVT models can be found in

Longin (1996, 2000), Ho et al. (2000), Neftçi (2000), Danielsson et al. (2001), Danielsson

and deVries (1997) and Danielsson et al. (2001).

Altogether, 27 alternative VaR models are studied in this paper. All of these models are

compared for their out-of-sample predictive ability via White (2000) ‘‘reality check’’

method which is a data snooping robust methodology. In implementing the reality check

we have used three different objective functions, namely, quasi-log likelihood defined in

Bertail et al. (2000), the tail mean return (defined in Section 3), and the coverage likelihood

ratio. Christoffersen (1998) likelihood ratio tests for conditional and unconditional cover-

age probabilities are also employed. Daily Japanese stock market index from 1984 to 2000,

are used. The VaR forecasts generated from these models for three out-of-sample periods

of 1995–1996, 1997–1998, and 1999–2000 are studied.

Unlike the recent results obtained in the literature, the findings of our analysis suggest

that the predictive performance of the EVT models are less than satisfactory for various

loss functions. In contrast, the predictive performance of some of the traditional methods

such as TGARCH and Monte Carlo models with alternative volatility structures appear to

be more successful than the benchmark Riskmetrics model. However, none of the available

methods produce a uniformly superior risk forecasts for all loss functions and all periods.

Therefore, our findings further reveal difficulties and challenges faced by the policy

analysts, practitioners and academics, who want to use risk forecasts to understand and

prevent potential future crises.

The organization of the paper is as follows. In Section 2, various VaR models are

discussed. In Section 3, forecast evaluation criteria and the reality check are discussed.

Section 4 presents the empirical results and Section 5 concludes.

2. VaR models

Consider the return series fytgT
t¼1 of a financial asset. The value-at-risk, denoted as

VaRtðaÞ, can be defined as the conditional quantile

Prðyt � VaRtðaÞjFt	1Þ ¼ a: (1)

To establish some notation, suppose fytgT
t¼1 follows the stochastic process

yt ¼ mt þ et; (2)

where EðetjFt	1Þ ¼ 0 and Eðe2
t jFt	1Þ ¼ s2

t given the information set Ft	1 (s-field) at

time t 	 1. Let zt 
 et=st have the conditional distribution Ft with zero conditional mean

and unit conditional variance, i.e. ztjFt	1 � Ftð0; 1Þ.
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We now turn to various methods of estimating VaRtðaÞ. In this section, we present

various VaR models developed and used over the last 6 years. These models may be divided

into four main categories: (1) variance–covariance methods, (2) non-parametric methods,

(3) Monte Carlo simulation methods, (4) the EVT-based VaR method (also known as

XVaR).

2.1. Variance–covariance methods

The first method is the most standard approach, often called variance–covariance

methods. In this paper, because we consider a single stock index instead of portfolio

we do not consider covariances and, thus, it may be called as variance methods. In this

method, VaRtðaÞ can be estimated by

VaRtðaÞ ¼ mt þ F	1
t ðaÞst: (3)

Hence, estimation of the VaR involves the estimation of Ftð�Þ, mt, and st. We consider

various estimation methods of VaR, which may be labeled with different methods of

estimating Ftð�Þ and st.

We either assume a certain parametric distribution for Ftð�Þ (e.g. normal distribution,

Student-t distribution, generalized error distribution (GED), etc.) or estimate it non-para-

metrically. The conditional distribution Ftð�Þ is assumed to be constant over time or simply

assumed as Gaussian Nð0; 1Þ in which case F	1
t ð0:05Þ ¼ 1:645 andF	1

t ð0:01Þ ¼ 2:326. To

take care of the fat tail distributions of financial returns series, it is also often assumed as

Student-tðnÞ with n degrees of freedom. For tð6Þ, F	1
t ð0:05Þ ¼ 1:943

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn	 2Þ=n

p
¼ 1:586

and F	1
t ð0:01Þ ¼ 3:143

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn	 2Þ=n

p
¼ 2:566. We use tð6Þ in this paper.

The conditional variance s2
t is estimated with various volatility methods such as a simple

moving average model (Alexander, 1998), an exponentially weighted moving average

(EWMA) model of Riskmetrics, and ARCH models of Engle (1982), Bollerslev (1986),

Nelson (1991), and Glosten et al. (1993).

The simplest method to calculate the VaR is to estimate the volatility of the asset return

by historical moving average variance. In this method, we estimate the volatility

s2
t ¼ 1

m 	 1

Xm

j¼1

ðyt	j 	 m̂m
t Þ

2
(4)

where m̂m
t ¼ ð1=mÞ

Pm
j¼1 yt	j. See Alexander (1998) for its empirical advantages and dis-

advantages. This method will be denoted as MAðmÞ. In our empirical part, we use MA(200).

One of the most popular volatility model in risk management framework is the

Riskmetrics model of Morgan (1995), which is an IGARCH specification of the following

form:

s2
t ¼ ls2

t	1 þ ð1 	 lÞðyt	1 	 m̂tÞ2; (5)

where m̂t ¼ 1=ðt 	 1Þ
Pt	1

j¼1 yt	j. Riskmetrics methodology assumes a fixed constant

l ¼ 0:94 which substantially reduces the volatility computations. This method will be

denoted as RMðlÞ. For our empirical analysis in Section 4 we consider RM(0.94),

RM(0.97) and RM(0.90).
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We consider the following three ARCH models. First, the standard GARCH model is

s2
t ¼ oþ bs2

t	1 þ ae2
t	1: (6)

The second ARCH model is TGARCH of Glosten et al. (1993):

s2
t ¼ oþ bs2

t	1 þ ae2
t	1 þ ge2

t	11ð�Þ ðet	1 
 0Þ; (7)

where 1ð�Þ is an indicator function. The third one is EGARCH of Nelson (1991):

ln s2
t ¼ oþ b ln s2

t	1 þ a½jzt	1j 	 czt	1�: (8)

We consider three distributions of zt, which are Nð0; 1Þ, Student-t, and generalized error

distribution (GED). Mittnik et al. (1998) analyze the Nikkei index by various ARCH

models with various distributions of Laplace, double Weibull, generalized exponential,

Student-t, a-stable distributions. The asymmetric a-stable distribution is their preferred

model. They use weekly returns of the Nikkei 225 index for a pre-crisis period from

31 July 1983 to 9 April 1995. Although we note here that the ARCH model with a-stable

distribution could be a serious candidate, we do not employ it here. In our empirical

analysis in Section 4, each of the three ARCH models are estimated with three innova-

tion distributions, and will be denoted as GARCHi, EGARCHi, and TGARCHi with

i ¼ Nð0; 1Þ, t, or GED, so that there are total nine ARCH models considered.

2.2. Non-parametric methods

VaR estimates can also be obtained by using non-parametric methods. We use two

different non-parametric methods in this paper.

2.2.1. Historical simulation methods

The main idea behind the historical simulation approach is the assumption that historical

distribution of returns will remain the same over the next periods, therefore, the empirical

distributions of portfolio returns will be used in estimating VaR. In other words, this

method uses the empirical quantiles of the historical distribution of return series, fyt	jgt	1
t¼1,

to estimate VaRtðaÞ for a given confidence level a. See Jorion (2000, p. 221) for more

details on HS. We will denote this method as HS.

Boudoukh et al. (1998) suggested a hybrid version of the historical simulation approach.

They use exponentially declining weights to discount the distant past in obtaining VaR, i.e.

VaRtðaÞ is estimated from the empirical percentile of the historical distribution of

fwm
j yt	jgm

t¼1 with weights wm
j ¼ ð1 	 lÞlj=ð1 	 lÞm

. See Boudoukh et al. (1998) for more

details. The hybrid HS will be denoted as HSðm; lÞ. We will use HS(200, 0.99) and

HS(200, 0.97) in our empirical analysis.

2.2.2. Non-parametric quantile regressions

VaR, which is basically a quantile estimator, can be estimated within the context of

non-parametric quantile regression methods. There has been various studies made on

parametric quantile estimation where a classic reference is Koenker and Bassett (1978). On

non-parametric quantile estimation, recent references are Samanta (1989), Lejeune and
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Sarda (1988), and Xiang (1996) where a newer application of non-parametric quantile on

financial data was made by Abberger (1997).

Let Z ¼ ðY ;X0Þ0 be a stationary random vector with the joint density f ðy; xÞ and the

cumulative distribution function (CDF) Fðy; xÞ. Then the conditional CDF is

FðyjxÞ ¼
R y

	1 f ðZ; xÞ dZ
FXðxÞ

; (9)

where FXðxÞ is the marginal CDF of X. Hence, the quantile function can be found as

qa ¼ inffy 2 RjFðyjxÞ 
 ag; (10)

where FðyjxÞ can be estimated from

FðyjxÞ ¼
Pn

t¼1 Kððyt 	 yÞ=hÞF1ððxt 	 xÞ=h1ÞPn
t¼1 K1ððxt 	 xÞ=h1Þ

(11)

where Kð�Þ, K1ð�Þ, h, and h1 are the kernel functions and the bandwidths corresponding to y

and x, respectively, and F1ðuÞ ¼
R u

	1 K1ðzÞ dz. The optimal bandwidth selection can be

made by modifying the standard cross-validation method. This can be represented as

hCV ¼ arg minh

Xn

t¼1

raðyt 	 q	t
a ðhÞÞ (12)

where rað�Þ is the loss function defined by Koenker and Bassett (1978), and q	t
a ðhÞ ¼

inffy 2 RjF	tðyjxÞ 
 ag and F	tðyjxÞ is a leave-one-out estimator of the conditional CDF.

Estimating and forecasting VaR via non-parametric quantile regression is straightfor-

ward. For instance, to estimate VaRtðaÞ 
 qa, one needs to estimate the conditional CDF

by using the kernel method and then estimate corresponding quantiles. We have both used

the Gaussian and Epanecknikov kernels. In our empirical section, this method will be

denoted as NPQiðmÞ, where i ¼ 1 when Gaussian kernel KðuÞ ¼ ð1=
ffiffiffiffiffiffi
2p

p
Þ expð	ð1=2Þu2Þ

is used and i ¼ 2 when Epanecknikov kernel KðuÞ ¼ ð3=4Þð1 	 u2Þ1ðjuj < 1Þ is used, and

m is number of most recent historical observations used in estimating the conditional CDF.

Optimal bandwidths are chosen by the robustified cross-validation process explained

before. The difference between this approach and the one Butler and Schachter (1998) is

that this method directly estimates the quantiles. In Section 4, we use xt ¼ yt	1 and m ¼
200. For each out-of-sample forecasting point, we have dropped one distant observation

and add a recent one. The optimal bandwidth is chosen for each out-of-sample data point.

2.3. Monte Carlo simulation methods

In this method, an underlying stochastic process which is assumed to govern the

dynamics of the asset prices is used to simulate the future values of the asset, see Hull

(1997) or Jorion (2000). One of the most popular stochastic process in the asset pricing

context is the geometric Brownian motion given as

dSt

St

¼ mt dt þ st dWt (13)
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where Wt is a standard Wiener process, and mt and st are the drift and the volatility

parameters, respectively. This is a rare example of an explicitly solvable stochastic

differential equation with its solution being

St ¼ S0 expð½mt 	 1
2
s2

t �t þ stWtÞ: (14)

See Brodie and Glasserman (1998) for more discussion. Thus, simulating values of St

reduces to simulating values of Wt. The Monte Carlo method based on Eq. (14) will be

denoted as MC1.

Alternatively, fStg can be simulated recursively from the simple discretization of

Eq. (13), i.e.

DSt ¼ St	1ðmt	1Dt þ st	1et

ffiffiffiffiffi
Dt

p
Þ (15)

where et is zero mean, unit variance random error term, and mt and st are drift and volatility

parameters in discrete time. In practice, the above stochastic process with an infinitesi-

mally small increment dt is approximated by small discrete moves of Dt. Then one can

simulate the sample paths of the above process with estimated drift and volatility

parameters. See Jorion (2000, p. 293) for an illustration. This Monte Carlo method based

on Eq. (15) will be denoted as MC2.

One possible extension to the above model is to integrate a time varying volatility structure

to the above equations. In our empirical analysis, we consider three such extensions of

MC2 with the volatility coefficients st being estimated by GARCHN, EGARCHGED, and

RM(0.94).

The number of Monte Carlo replications used in Section 4 is 5000. Once the sample

paths of financial asset is obtained, VaR measures can be estimated by computing the

empirical quantile of the return distribution. The drift parameter is estimated by the sample

average of the asset return values.

2.4. Extreme value theory

Risk management is primarily concerned with the risk of low-probability events that

could lead to catastrophic losses. However, all the VaR methodology we have reviewed so

far ignore extreme events and directly focus on risk measures that accommodate the whole

return distribution. In risk management, these extreme observations are used to model the

tails of return distributions. The focus of EVT is, unlike the other parametric and non-

parametric methods used in VaR methodology, to model the tails rather than the entire

return distributions. There has been various theoretical and empirical studies in this field.

For instance, Embrechts et al. (1997) give an excellent review of EVT. Longin (1996, 2000)

use GEV to estimate the tail index via maximum likelihood estimation. Neftçi (2000), on

the other hand uses GPD. We consider the three EVT models, namely, GEV, GPD, and

Hill’s tail index estimation.

2.4.1. Generalized extreme value distribution

Consider the return series fytgT
t¼1 of a financial asset and the ordered return series

fyðtÞgT
t¼1 in increasing order yðtÞ � yðtþ1Þ for all t. The sample minimum is yð1Þ over T sample
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period. If the returns are i.i.d. with the CDF FYðyÞ, then the CDF of the minimal return,

denoted by GYðyÞ, is given by Longin (1996, 2000)

GYðyÞ ¼ Prðyð1Þ � yÞ ¼ 1 	 Prðyð1Þ > yÞ ¼ 1 	
YT

t¼1

Prðyt > yÞ

¼ 1 	
YT

t¼1

½1 	 Prðyt � yÞ� ¼ 1 	 ½1 	 FYðyÞ�T : (16)

Thus, GðyÞ is degenerated as T ! 1. Hence, we seek a limit law HXðxÞ with which a

normalization xT ¼ ðyð1Þ 	 bTÞ=dT does not degenerate as T ! 1 for suitable normal-

izing constants bT and dT > 0. The limiting distribution of xT is the generalized extreme

value (GEV) distribution of Mises (1936) and Jenkinson (1955) of the form

HXðxÞ ¼ 1 	 exp½	ð1 þ txÞ1=t� (17)

for 1 þ tx > 0. The corresponding limiting density function of fxTg as T ! 1, obtained

by differentiating HXðxÞ, is given by

HXðxÞ ¼ ð1 þ txÞð1=tÞ	1
exp½	ð1 þ txÞ1=t�: (18)

Hence, the approximate density of yð1Þ for given T may be obtained by change of variables

which is

HYðxTÞ ¼
1

dT

ð1 þ txTÞð1=tÞ	1
expð	ð1 þ txTÞ1=tÞ; (19)

where 1=dT is the Jacobian of the transformation.

Hence, the three parameters yT ¼ ðt; bT ; dTÞ0 may be estimated by maximum likelihood

method. To implement it, Longin (1996, 2000) partition T samples into m non-overlapping

subsamples each with n observations. In other words, if T ¼ mn, the ith subsample of the

return series is fyði	1Þnþjgn
j¼1 for i ¼ 1; . . . ;m. If T < mn, we drop some observation in the

first subsample so that it has less than n observations. The collection of the subperiod

minima is then fyn;ig, where yn;i ¼ min1�j�nfyði	1Þnþjg, i ¼ 1; . . . ;m. The likelihood

function of the subperiod minima is

Ym
i¼1

HYðxnÞ ¼
Ym
i¼1

HY

yn;i 	 bi
n

di
n

 !
: (20)

Assuming yi
n ¼ yn for all subperiods i ¼ 1; . . . ;m, yn can be estimated for a numerical

optimization of the log likelihood.

Consider the probability that the subperiod minimum yn;i is less than y�n under the limit

law (Eq. (17)). Denoting x�n ¼ ðy�n 	 bnÞ=dn, it is

HXðx�nÞ ¼ HX

y�n 	 bn

dn

	 

¼ Pr

yn;i 	 bn

dn

� y�n 	 bn

dn

	 

¼ Prðyn;i � y�nÞ; (21)

which is therefore, equal to

GYðy�nÞ ¼ 1 	 ½1 	 FYðy�nÞ�
n ¼ 1 	 ð1 	 aÞn; (22)
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where the second equality holds if y�n ¼ VaRðaÞ. Hence, equating Eqs. (21) and (22), we get

HXðx�nÞ ¼ 1 	 expð	ð1 þ tx�nÞ
1=tÞ ¼ 1 	 ð1 	 aÞn

(23)

which yields the VaR forecasts

y�n ¼ VaRðaÞ ¼ bn 	
dn

t
f1 	 ½	 ln ð1 	 aÞn�tg: (24)

We denote this method as Longin(n), where n is the size of the subperiod. In Section 4, we

use n ¼ 10 and 20. Tsay (2000) provides an excellent exposition of this method and other

VaR models.

2.4.2. Generalized pareto distribution

An alternative approach to GEV method is based on exceedances over threshold (Smith,

1989; Davison and Smith, 1990). According to this approach, we fix some high threshold

u and look at all exceedances e over u. The distribution of excess values is given by Neftçi

(2000)

FuðeÞ ¼ PrðX < u þ ejX > uÞ ¼ Fðu þ eÞ 	 FðuÞ
1 	 FðuÞ ; e > 0: (25)

Pickands (1975) shows that the asymptotic form of FuðeÞ is

HðeÞ ¼ 1 	 1 	 te

d

� �1=t
; (26)

where d > 0 and 1 	 ðte=dÞ > 0. This is known as the generalized Pareto distribution

(GPD) with its density

HðeÞ ¼ 1

d
1 	 te

d

� �ð1=tÞ	1

: (27)

Let feign
i¼1 be the sample of exceedances over threshold with its sample size n. The

likelihood
Qn

i¼1 hðeiÞ may be maximized to estimate y ¼ ðt dÞ0. Once ŷ ¼ ðt̂ d̂Þ0 is

estimated VaRðaÞ can be estimated as follows. From Eqs. (25) and (26), we get

½1 	 Fðu þ eÞ� ¼ ½1 	 FðuÞ�½1 	 HðeÞ�: (28)

From this, by letting ½1 	 Fðu þ eÞ� ¼ a, ½1 	 FðuÞ� ¼ n=T , and using the GPD distribu-

tion HðVaRtðaÞÞ in Eq. (26), we obtain the VaR estimate

VaRtðaÞ ¼ 	 d̂
t̂

1 	 Ta
n

	 
t̂
 !

; (29)

where T is the total observations and n is the number of exceedances.

The above discussion is for the upper tail (short position). In this paper, we focus on

lower tails. However, if one uses negative return series f	ytgT
t¼1 for the variable X in

Eq. (25), the above discussion continues to apply to the lower tails (long position). Let

xt ¼ 	yt. In choosing the threshold value u, we follow Neftçi (2000): u ¼ 1:176 � ŝT ,

where ŝT is the standard deviation of fxtgT
t¼1 from the whole sample and 1:176 ¼

F	1
t ð0:10Þ ¼ 1:440

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn	 2Þ=n

p
with tð6Þ distribution being assumed. Therefore, the

T.-H. Lee, B. Saltoğlu / Japan and the World Economy 14 (2002) 63–85 71



extreme observations (exceedances over the thresholds) would belong to 10% tails if its

true distribution is indeed tð6Þ. The number of fxtgT
t¼1 that exceeds u is n.

2.4.3. Hill estimator

As before, we assume the return series fytgT
t¼1 are i.i.d. and denote the ordered return

series as fyðtÞgT
t¼1 in increasing order. Suppose yðnÞ < 0 and yðnþ1Þ > 0 so that n is the

number of negative returns in the T observations. The GEV distribution in Eq. (17) with

t < 0 is known as the Fréchet distribution with the CDF FYðyÞ ¼ expð	y1=tÞ; y < 0. As

shown in Embrechts et al. (1997, p. 321), it reduces to

FYðyÞ ¼ 1 	 Cy1=t; jyj 
 u 
 0 (30)

where C ¼ u	1=t is a slowly varying function with u being the known threshold. A popular

estimator of t is due to Hill (1975) who shows that its maximum likelihood estimator is

t̂ ¼ 	 1

k

Xk

t¼1

ln jyðtÞj þ ln jyðkþ1Þj; (31)

where k 
 kðnÞ ! 1 and kðnÞ=n ! 0. It is known that t̂ !p t as n ! 1 (Mason, 1982).

We choose the sample fraction k using a bootstrap method of Danielsson et al. (2001). Once

t is estimated, the VaR estimate can be found from (see Embrechts et al., 1997, p. 347):

VaRtðaÞ ¼
n

k
ð1 	 aÞ

h it̂
yðkþ1Þ: (32)

3. Evaluating VaR models

We consider tests of Christoffersen (1998) and White (2000) for VaR forecast evalua-

tion. Our evaluation of out-of-sample forecasts proceeds as follows. There are P predic-

tions in all for each model. The first prediction is based on the model with parameters

estimated using data from 1 to R, the second on the model with parameters estimated using

data from 2 to R þ 1; . . ., and the last on the model with parameters estimated using data

P 	 1 to R þ P 	 1 ¼ T . Based on the estimated models using a series of rolling samples,

each of size R, one-step ahead forecasts are generated for P post-samples, resulting in P

forecasts to evaluate each model.

3.1. Christoffersen tests for coverage probability

We begin with three likelihood ratio tests of Christoffersen (1998). Let l be the number of

models ðk ¼ 1; . . . ; lÞ to be compared with the benchmark model ðk ¼ 0Þ. We consider

l ¼ 26 models plus a benchmark model with total 27 models in Section 4. Let the indicator

dk
t 
 1ðyt < VaRk

t ðaÞÞ, t ¼ R; . . . ; T , denote for the case when return falls beyond the VaR

forecast estimated from model k. Let the probability of the unconditional coverage failure

be denoted as pa
k ¼ Pr½yt < VaRk

t ðaÞ� ¼ Prðdk
t ¼ 1Þ. As the indicator fdk

t g has a binomial

distribution, the likelihood is Lðpa
kÞ ¼ ð1 	 pa

kÞ
n0ðpa

kÞ
n1 , where n0 ¼

PT
t¼Rð1 	 dk

t Þ and

n1 ¼
PT

t¼R dk
t are the number of 0’s and 1’s in the indicator sequence fdk

t g
T
t¼1. Note that
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nk
0 þ nk

1 ¼ P. The indices a and k in dk
t , pa

k , VaRk
t ðaÞ, nk

0, nk
1 will often be suppressed in the

following sections.

First, we test whether the probability of the unconditional coverage failure,

p ¼ Pr½yt < VaRtðaÞ�, is equal to a. That is to test H0 : p ¼ a against H1 : p 6¼ a. As

the indicator dt has a binomial distribution the likelihood is LðpÞ ¼ ð1 	 pÞn0 pn1 . Under the

null, it is LðaÞ ¼ ð1 	 aÞn0an1 , and, thus, the likelihood ratio test statistic is

LR1 ¼ 	2 ln
LðaÞ
Lðp̂Þ

	 

!d wð1Þ; (33)

where p̂ ¼ n1=ðn0 þ n1Þ is the maximum likelihood estimator of p.

The second test is to check whether the process fdtg is serially independent. If the

transition probability of the first-order Markov chain is denoted as pij ¼ Prðdt ¼ jjdt	1 ¼ iÞ,
then the likelihood ratio of independence can be tested by

LR2 ¼ 	2 ln
Lðp̂Þ

Lðp̂01; p̂11Þ

� �
!d wð1Þ; (34)

where

Lðp̂01; p̂11Þ ¼ ð1 	 p̂01Þn00 p̂n01

01 ð1 	 p̂11Þn10 p̂n11

11 ; (35)

where nij is the number of observations with value i followed by j, p̂01 ¼ n01=ðn00 þ n01Þ,
and p̂11 ¼ n11=ðn10 þ n11Þ. By combining the two tests, the third test for conditional

coverage can be constructed,

LR3 ¼ LR1 þ LR
2
!d wð2Þ: (36)

3.2. Forecast evaluation criteria

Our primary objective is to compare the various VaR models with the most popular

model (the benchmark). We use the RM(0.94) as a benchmark model and call it model 0.

When several models using the same data are compared in predictive ability, it is crucial to

take into account the dependence among the models. Failing to do so will result in the data-

snooping problem which occurs when a model is searched extensively until a match with

the given data is found. Conducting inference without taking into account specification

search is commonly referred to as ‘‘data-snooping’’ and can be extremely misleading (cf.

Lo and MacKinlay, 1999, Chapter 8). White (2000) develops a noble test to compare

multiple models in predictive ability accounting for specification search, built on West

(1996) and Diebold and Mariano (1995).

As will be discussed shortly in the next subsection, comparison of l models via given

forecast criteria can be formulated as hypothesis testing of some suitable moment

conditions of the loss-differential f . Consider an l � 1 vector of moments, Eðf �Þ, where

f � ¼ f ðZ; b�Þ is an l � 1 vector with elements f �k 
 fkðZ; b�Þ for a random vector

Z ¼ ðY ;X0Þ0 and b� 
 plim b̂n. Hypothesis testing for Eðf �Þ can be conducted whenever

the l � 1 sample moment vector

f ¼ P	1
XT

t¼R

f ðZtþ1; b̂tÞ (37)
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has a continuous limiting distribution. For example, when we compare model k with the

benchmark model (k ¼ 0Þ using a loss function Loss, the kth element of the l � 1 sample

moment vector f is the loss differential of models k and 0, i.e.

f k ¼ Lossk 	 Loss0 ðk ¼ 1; . . . ; lÞ: (38)

We now define the three loss functions for Loss.

The first loss function Aa
k is based on the negative quasi-log likelihood of Bertail et al.

(2000), i.e.

Aa
k ¼ P	1

XT

t¼R

jyt 	 VaRk
t ðaÞj � ½adk

t þ ð1 	 aÞð1 	 dk
t Þ�; (39)

which weights the observed deviation from the VaR with the probability with which it is

supposed to occur. Smaller Aa
k indicates a better goodness-of-fit.

The second loss function Ba
k is based on the negative tail mean return, which is defined as

Ba
k ¼ 	P	1

XT

t¼R

ytd
k
t

nk
1

; (40)

where nk
1 ¼

PT
t¼R dk

t is the number of tail returns to be used in computing Ba
k . The model

with smaller Ba
k is a better one.

The third loss function Ca
k is the average of likelihood ratio statistic LR1 in Eq. (33), i.e.

Ca
k 
 P	1LR1 ¼ P	1½	2 ln LðaÞ þ 2 ln Lðp̂a

kÞ�

¼ P	1
XT

t¼R

	2½dk
t ln ðaÞ þ ð1 	 dk

t Þ ln ð1 	 aÞ�

þ 2½dk
t ln ðp̂a

kÞ þ ð1 	 dk
t Þ ln ð1 	 p̂a

kÞ�: (41)

As the smaller LR1 indicates that the coverage probability p is closer to a, the model with

lower Ca
k generates the VaR forecasts with a better coverage probability and, thus, Ca

k is to

be minimized. Ca
k ¼ 0 if p̂a

k ¼ a and Ca
k > 0 if p̂a

k 6¼ a. It should be noted that the

Christoffersen test LR1 is to test the null hypothesis H0 : pa
k ¼ a for a given model k

and it is not to compare models, while the White’s reality check using Ca
k is for model

selection and to compare models. When nk
1 ¼ 0, p̂a

k ¼ 0 and, thus, ln ðp̂a
kÞ and Ca

k are not

defined.

All of the three objective functions Aa
k , Ba

k , and Ca
k for our VaR reality check will be

minimized. Note that all three loss functions are expressed as sample moments of the form

P	1
PT

t¼R xt with xt being the respective summands expressed in Eqs. (39)–(41), so that test

statistics can be formulated based on the sample moment vector of loss differentials as in

Eq. (37).

These loss functions may be extended to incorporate the penalty of the BIS’s capital

adequacy coefficient y, which depends on v, the number of coverage failure out of 250

days. Thus, v ¼ ½n1250=P�, where ½a� is the nearest integer to a. In our case P ¼ 522 or 505.

The following table (cf. Crouhy et al., 1998, p. 15) is used by the BIS for a ¼ 0:01. The BIS

penalized loss functions, ykAa
k , ykBa

k , and ykCa
k may be considered. However, we leave them
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for future research and focus on Aa
k , Ba

k , and Ca
k in this paper. Each loss function has its

advantages and disadvantages depending on the need and perspective. We have used three

different loss functions to reflect the notion that different agents may have different

objectives to evaluate risk measurement forecasts. Hence, we use all three objectives in our

empirical section.

3.3. Reality check for predictive ability

Suppose, one-step predictions are to be made for P prediction periods, indexed from R to

T , so that T ¼ R þ P 	 1. Here, P and R may increase as the sample size T increases. The

first forecast is based on the model parameter estimator b̂R, formed using observations 1

through R, the next based on the model parameter estimator b̂Rþ1, formed using observa-

tions 2 through R þ 1, and so forth, with the final forecast based on the model parameter

estimator b̂T. Often, model comparison via forecast criteria can be conveniently formulated

as hypothesis testing of some suitable moment conditions. Consider an l � 1 vector of

moments, Eðf �Þ, where f � ¼ f ðZ; b�Þ is an l � 1 vector with elements f �k 
 fkðZ; b�Þ for a

random vector Z ¼ ðY ;X0Þ0 and b� 
 plim b̂T . As discussed earlier, hypothesis testing for

Eðf �Þ can be conducted whenever the l �1 sample moment vector f ¼P	1
PT

t¼R f ðZtþ1; b̂tÞ
has a continuous limiting distribution.

West (1996, Theorem 4.1) shows that under proper regularity conditions:ffiffiffi
P

p
ðf 	 Eðf �ÞÞ ! Nð0;OÞ in distribution (42)

as P 
 PðTÞ ! 1 when T ! 1, where O, is a l � l matrix

O ¼ limT!1var½P	1=2
XT

t¼R

f ðZtþ1; b̂tÞ�; (43)

which is a complicated expression as O depends on the estimated parameter b̂t. When

either

F 
 E
@f �

@b

	 

¼ 0 (44)

or P=R ! 0 as T ! 1, O can be substantially simplified because then O does not depend

on the estimated parameter b̂t and

O ¼ limT!1var½P	1=2
XT

t¼R

f ðZtþ1; b
�Þ�; (45)

which corresponds to West (1996, Theorem 4.1(a)) and the result of Diebold and Mariano

(1995). Here, the effect of using b̂t rather than b� is asymptotically negligible. One can

proceed as if b� were known and were equal to b̂t in period t. However, when F 6¼ 0, as is

v 4 or less 5 6 7 8 9 10 or more

y 3 3.4 3.5 3.65 3.75 3.85 4
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the case in this paper due to the use of the indicator dt in our three loss functions, O is

unknown and depends on b̂t. In this case, although O is not feasible to derive even

asymptotically, a bootstrap procedure may be used to obtain the null distribution of the

statistic.

When we compare a single model ðl ¼ 1Þ with a benchmark we can use the tests by

Diebold and Mariano (1995) and West (1996) with an appropriate estimator of O. When we

compare multiple forecasting models ðl > 1Þ against a given benchmark model, however,

sequential use of Diebold and Mariano (1995) and West (1996) tests may result in a data-

snooping bias since the test statistics are mutually dependent due to the use of the same

data. See Lo and MacKinlay (1999, Chapter 8) and White (2000) for more discussions on

the biases due to data snooping. To account for possible bias due to data snooping, we use

White (2000) procedure. The appropriate null hypothesis is that the best model is no better

than a benchmark, expressed formally as

H0 : max1�k�l Eðf �k Þ � 0: (46)

This is a multiple hypothesis, the intersection of the one-sided individual hypotheses

Eðf �k Þ � 0; k ¼ 1; . . . ; l. The alternative is that H0 is false, i.e. that the best model is

superior to the benchmark. White (2000) test statistic for H0 in Eq. (46) is formed as

follows:

V 
 max1�k�l

ffiffiffi
P

p
f k; (47)

which converges in distribution to max1�k�l Zk under H0, where the limit random vector

Z ¼ ðZ1; . . . ; ZlÞ0 is Nð0;OÞ. This null limit distribution is, however, unknown (due to

unknown O) and not feasible to derive even asymptotically. White (2000) suggests to use

the stationary bootstrap of Politis and Romano (1994) to obtain the null distribution of V .

This gives appropriate P-values for testing the null hypothesis that the best model has no

predictive superiority relative to the benchmark (White, 2000, Corollary 2.4). The P-value

is called the ‘‘reality check P-value’’ for data snooping. White (2000, Proposition 2.5) also

shows that the test’s level can be driven to zero at the same time the power approaches to

one as V diverges at rate P1=2 under the alternative. Implementation of the reality check

bootstrap and an illustrative example can be found in White (2000). See also Sullivan et al.

(1998, 1999) for applications to the studies of technical trading rules and calendar effects in

asset markets.

4. Results

We now evaluate the out-of-sample predictive ability of the models described in Section

2 using the evaluation methods in Section 3. Daily stock market index data for Japan

(Nikkei 225) are obtained from Datastream. Logarithmic returns for Nikkei 225 index are

analyzed from 2 January 1984 to 9 December 2000 (the date when we collected the data)

with the total 4420 observations. Nikkei 225 is the stock market index of 225 companies

listed in the Tokyo Stock Exchange. Those 225 companies are occasionally reviewed. A

total of 30 of these companies are replaced in April 2000. This discontinuity may constitute

less of a problem for our study since this period corresponds only to a minor portion of time
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span of the present paper. Besides, our major focus is on the crisis period including the data

between 1995 and 1998. However, we note that TOPIX index is an alternative index of

Japanese stock market and more comprehensive than Nikkei 225, while we leave it for

future studies focusing on more recent observations.

The VaR models are estimated using R ¼ 2871. The out-of-sample forecast evaluation is

conducted over three subperiods, period 1 (2 January 1995–31 December 1996, P ¼ 522),

period 2 (1 January 1997–31 December 1998, P ¼ 522), and period 3 (1 January 1999–9

December 2000, P ¼ 505). Period 2 includes the financial turmoil which started in late 1997.

The empirical analysis conducted in this paper have a number of implications for predictive

performance of various VaR models in various dimensions, for three out-of-sample periods,

for two tail probabilities ða ¼ 0:01; 0:05Þ, and for three loss functions (A;B, and CÞ.
In Table 1, the results from Christoffersen (1998) tests for coverage probabilities

corresponding to various VaR models are presented. One of the most important findings

is that the risk forecasting performance of EVT models turn out to be much worse than that

of conventional VaR models such as TGARCH and GARCH volatility models. For

instance, in period 1 (pre-crisis period), for a ¼ 0:05, none of the EVT models produce

satisfactory coverage probabilities. However, for the same period and the same a, many

conventional VaR models generate reasonable conditional and unconditional coverage

probabilities. The coverage estimates obtained by the TGARCH model, except for the

crisis period with a ¼ 0:05, are close to the true coverages. For the crisis period, risk

forecast performance of many models were less than satisfactory. For period 2 with

a ¼ 0:05, only four models could produce favorable coverage probabilities namely,

MA(200), RM(0.97), MC2 þ RMð0:94Þ, and MC2 þ GARCHN . For period 2 with

a ¼ 0:01, relatively more successful risk forecasts are obtained. In this case, 12 models

out of 27 had favorable risk forecasts. HS has shown some satisfactory performance for this

case. For the post-crisis period more optimistic picture can be drawn. In this period, many

of the risk models could produce favorable coverages. For a ¼ 0:05, except for all EVT

models and the two non-parametric methods (namely, hybrid HS and NPQ), most methods

successfully capture the required coverages. The performance of most risk forecasts appear

to be more successful for the post crisis period (especially with a ¼ 0:01Þ which can

indicate that severe effects of crisis has died out.

As a general conclusion drawn from this analysis is that the EVT models do not produce

superior risk forecasts than that of more conventional VaR models. These findings are in

contrast with the conclusions drawn by Ho et al. (2000) and Danielsson and Morimoto (2000)

where EVT models are claimed to be more successful than the traditional VaR methods.

We now turn to the results obtained from the reality check which are presented in

Tables 2–4, where RC1 and RC2 denote P-values of the test by White (2000) computed

using the stationary bootstrap of Politis and Romano (1994). The bootstrap reality check

P-values are computed with 1000 bootstrap resamples and the bootstrap smoothing

parameter q ¼ 0:75. See Politis and Romano (1994) and White (2000) for the details.

The P-values for q ¼ 0:25 and 0.50 are similar and are not reported. RC1 is to compare

each model k ðk ¼ 1; . . . ; 26Þ with the benchmark model RM(0.94) ðk ¼ 0Þ. RC2 is to

compare the best of the first l (l ¼ 1; . . . ; 26Þ models with the benchmark. RC1 may be

considered as a bootstrap version of Diebold and Mariano (1995) and West (1996) with

taking into account the fact that F 
 Eð@f �=@bÞ 6¼ 0.
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Table 1

Christoffersen testsa

k Model Period 1 Period 2 Period 3

p̂0:05
k LR1 LR2 p̂0:01

k LR1 LR2 p̂0:05
k LR1 LR2 p̂0:01

k LR1 LR2 p̂0:05
k LR1 LR2 p̂0:01

k LR1 LR2

0 RM(0.94) 0.069 3.59 1.29 0.013 0.56 0.19 0.073 5.09 0.27 0.015 1.30 2.64 0.048 0.06 0.51 0.018 2.55 0.33

1 RM(0.97) 0.061 1.34 0.64 0.013 0.56 0.19 0.067 2.94 0.06 0.015 1.30 2.64 0.048 0.61 0.03 0.010 0.00 0.10

2 RM(0.90) 0.075 5.92 0.37 0.015 1.30 0.25 0.075 5.92 0.00 0.015 1.30 2.64 0.052 0.03 0.26 0.018 2.55 0.33

3 MA(200) 0.069 3.59 2.36 0.017 2.29 0.32 0.065 2.34 0.29 0.023 6.53 1.21 0.040 1.21 0.03 0.010 0.00 0.10

4 GarchN 0.075 5.92 0.43 0.010 0.01 0.10 0.079 7.75 0.02 0.010 0.01 0.10 0.056 0.32 0.10 0.012 0.17 0.17

5 Garcht 0.065 2.34 0.02 0.012 0.11 0.14 0.071 4.31 0.19 0.012 0.11 0.14 0.048 0.06 0.51 0.014 0.69 0.23

6 GarchGED 0.063 1.81 0.00 0.012 0.11 0.14 0.073 5.09 0.02 0.008 0.31 0.06 0.005 0.00 0.38 0.014 0.69 0.23

7 EgarchN 0.061 1.34 0.00 0.015 1.30 0.25 0.113 32.81 0.09 0.027 10.25 0.77 0.071 4.33 0.20 0.016 1.49 0.26

8 Egarcht 0.071 4.31 0.18 0.013 0.56 0.19 0.117 36.43 0.24 0.038 24.65 0.07 0.075 5.96 0.00 0.020 3.83 0.40

9 EgarchGED 0.060 0.94 0.01 0.013 0.56 0.19 0.107 27.67 0.00 0.023 6.53 0.57 0.071 4.33 0.05 0.016 1.49 0.26

10 TgarchN 0.067 2.94 1.11 0.006 1.12 0.03 0.083 9.79 0.93 0.013 0.56 0.20 0.056 0.32 0.30 0.018 2.55 0.37

11 Tgarcht 0.063 1.81 0.00 0.010 0.01 0.10 0.071 4.31 0.19 0.008 0.31 0.06 0.052 0.03 0.26 0.016 1.49 0.29

12 TgarchGED 0.063 1.81 0.00 0.008 0.31 0.06 0.079 7.75 0.62 0.012 0.11 0.14 0.056 0.32 0.10 0.016 1.49 0.29

13 HS 0.046 0.17 0.66 0.006 1.12 0.04 0.106 26.03 0.77 0.017 2.29 0.32 0.040 1.21 0.03 0.006 0.98 0.04

14 HS(200, 0.99) 0.192 132.77 2.29 0.063 67.78 1.62 0.255 244.75 0.47 0.141 259.17 0.08 0.188 123.24 0.69 0.079 98.30 0.02

15 HS(200, 0.97) 0.180 115.14 0.80 0.090 117.62 2.51 0.255 244.75 0.00 0.171 352.01 0.72 0.185 117.36 1.12 0.097 138.96 0.31

16 MC1 0.042 0.70 1.04 0.008 0.31 0.06 0.098 19.90 0.26 0.038 24.65 4.26 0.040 1.21 0.03 0.014 0.69 0.23

17 MC2 0.042 0.70 0.01 0.008 0.31 0.06 0.098 19.90 0.26 0.035 19.37 2.14 0.038 1.75 0.08 0.012 0.17 0.17

18 MC2 þ GarchN 0.060 0.94 0.70 0.015 1.30 0.25 0.067 2.94 0.06 0.019 3.50 0.40 0.046 0.21 0.68 0.018 2.55 0.36

19 MC2 þ EgarchGED 0.052 0.04 0.26 0.017 2.29 0.31 0.104 24.44 0.03 0.046 36.43 0.65 0.062 1.31 0.54 0.022 5.32 1.30

20 MC2 þ RMð0:94Þ 0.061 1.34 0.64 0.015 1.30 0.25 0.067 2.94 0.06 0.025 8.31 4.39 0.044 0.45 0.86 0.020 3.83 0.45

21 NPQ1 0.205 154.47 0.65 0.073 87.56 3.44 0.263 259.90 0.21 0.148 281.67 0.02 0.208 154.20 0.60 0.099 143.72 0.21

22 NPQ2 0.242 219.02 0.02 0.144 270.35 0.18 0.290 315.39 0.14 0.225 530.73 1.19 0.244 215.89 0.17 0.157 298.45 2.09

23 Neftci 0.098 19.90 0.90 0.002 5.15 0.00 0.171 101.16 1.87 0.008 0.31 0.06 0.087 12.19 0.33 0.002 4.88 0.00

24 Longin(10) 0.090 14.47 1.88 0.006 1.12 0.03 0.163 90.46 0.37 0.031 14.52 2.90 0.081 8.84 0.06 0.006 0.98 0.04

25 Longin(20) 0.115 34.60 0.75 0.008 0.31 0.06 0.184 120.92 1.21 0.036 21.96 4.80 0.107 26.48 0.25 0.010 0.00 0.10

26 Hill 0.008 30.08 0.06 0.002 5.15 0.00 0.159 85.28 0.16 0.044 33.47 2.91 0.028 6.20 0.86 0.004 2.40 0.02

a The sample period of the data is from 2 January 1984 to 9 December 2000 (the date when we collected the data) with the total 4420 observations. The models are

estimated using R ¼ 2871 observations. The out-of-sample forcast evaluation is conducted over three subperiods, period 1 (2 January 1995–31 December 1996,

P ¼ 522), period 2 (1 January 1997–31 December 1998, P ¼ 522), and period 3 (1 January 1999–9 December 2000, P ¼ 505). LR1 and LR2 are the estimated statistics

of Christoffersen (1998). LR3 is not reported for space, which is the sum of LR1 and LR2. LR1 and LR2 follow asymptotically w(1) with the 95% critical value 3.84. LR3

is asymptotically w2-distributed and its 95% critical value is 5.99.
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ğ
lu

/Ja
p

a
n

a
n

d
th

e
W

o
rld

E
co

n
o

m
y

1
4

(2
0

0
2

)
6

3
–

8
5



Table 2

Reality check using the loss function Aa

k Model Period 1 Period 2 Period 3

A0:05
k RC1 RC2 A0:01

k RC1 RC2 A0:05
k RC1 RC2 A0:01

k RC1 RC2 A0:05
k RC1 RC2 A0:01

k RC1 RC2

0 RM(0.94) 1.76 2.92 2.42 4.02 1.98 3.28
1 RM(0.97) 1.78 0.998 0.999 2.96 1.000 1.000 2.43 0.805 0.795 4.04 0.799 0.785 2.00 0.984 0.981 3.31 0.978 0.982
2 RM(0.90) 1.74 0.015 0.054 2.89 0.007 0.009 2.40 0.010 0.047 3.98 0.012 0.060 1.96 0.003 0.018 3.24 0.005 0.020
3 MA(200) 1.74 0.192 0.188 2.87 0.151 0.133 2.40 0.282 0.290 3.93 0.106 0.097 2.14 1.000 0.180 3.56 1.000 0.191
4 GarchN 1.77 0.702 0.284 2.97 0.973 0.181 2.40 0.192 0.388 4.04 0.610 0.101 1.98 0.521 0.264 3.32 0.977 0.262
5 Garcht 1.77 0.863 0.285 2.97 0.997 0.181 2.43 1.000 0.388 4.09 1.000 0.101 2.02 1.000 0.264 3.37 1.000 0.262
6 GarchGED 1.79 0.995 0.287 2.99 1.000 0.000 2.42 0.649 0.388 4.05 0.859 0.101 2.02 1.000 0.264 3.35 1.000 0.262
7 EgarchN 1.65 0.000 0.000 2.72 0.000 0.000 1.94 0.000 0.000 3.16 0.000 0.000 1.84 0.000 0.000 3.02 0.000 0.000
8 Egarcht 1.56 0.000 0.000 2.58 0.000 0.000 1.89 0.000 0.000 3.07 0.000 0.000 1.78 0.000 0.000 2.90 0.000 0.000
9 EgarchGED 1.65 0.000 0.000 2.73 0.000 0.000 1.97 0.000 0.000 3.21 0.000 0.000 1.86 0.000 0.000 3.05 0.000 0.000

10 TgarchN 1.79 0.906 0.000 3.00 0.978 0.000 2.48 0.994 0.000 4.16 0.996 0.000 2.03 0.969 0.000 3.37 0.990 0.000
11 Tgarcht 1.76 0.497 0.000 2.94 0.724 0.000 2.51 1.000 0.000 4.21 1.000 0.000 2.00 0.830 0.000 3.33 0.962 0.000
12 TgarchGED 1.78 0.876 0.000 2.97 0.921 0.000 2.45 0.925 0.000 4.10 0.952 0.000 2.02 0.987 0.000 3.35 0.989 0.000
13 HS 1.96 1.000 0.000 3.62 1.000 0.000 2.02 0.000 0.000 3.57 0.000 0.000 2.11 1.000 0.000 3.63 1.000 0.000
14 HS(200, 0.99) 1.04 0.000 0.000 1.93 0.000 0.000 1.16 0.000 0.000 1.96 0.000 0.000 1.10 0.000 0.000 1.97 0.000 0.000
15 HS(200, 0.97) 1.08 0.000 0.000 1.71 0.000 0.000 1.21 0.000 0.000 1.79 0.000 0.000 1.15 0.000 0.000 1.77 0.000 0.000
16 MC1 2.04 1.000 0.000 2.98 0.936 0.000 2.08 0.000 0.000 2.99 0.000 0.000 2.14 1.000 0.000 3.12 0.000 0.000
17 MC2 2.04 1.000 0.000 2.98 0.942 0.000 2.07 0.000 0.000 2.99 0.000 0.000 2.14 1.000 0.000 3.12 0.000 0.000
18 MC2 þ GarchN 1.91 1.000 0.000 2.78 0.000 0.000 2.56 1.000 0.000 2.75 0.000 0.000 2.13 1.000 0.000 3.10 0.000 0.000
19 MC2 þ EgarchGED 1.70 0.020 0.000 2.48 0.000 0.000 2.03 0.000 0.000 2.92 0.000 0.000 1.92 0.000 0.000 2.77 0.000 0.000
20 MC2 þ RMð0:94Þ 1.83 1.000 0.000 2.66 0.000 0.000 2.52 1.000 0.000 3.66 0.000 0.000 2.06 1.000 0.000 2.99 0.000 0.000
21 NPQ1 1.00 0.000 0.000 1.75 0.000 0.000 1.11 0.000 0.000 1.78 0.000 0.000 1.05 0.000 0.000 1.79 0.000 0.000
22 NPQ2 0.89 0.000 0.000 1.23 0.000 0.000 1.02 0.000 0.000 1.32 0.000 0.000 0.95 0.000 0.000 1.28 0.000 0.000
23 Neftci 1.39 0.000 0.000 5.14 1.000 0.000 1.52 0.000 0.000 5.11 1.000 0.000 1.59 0.000 0.000 5.29 1.000 0.000
24 Longin(10) 1.44 0.000 0.000 3.21 1.000 0.000 1.55 0.000 0.000 3.16 0.000 0.000 1.67 0.000 0.000 3.48 1.000 0.000
25 Longin(20) 1.31 0.000 0.000 2.94 0.716 0.000 1.43 0.000 0.000 3.00 0.000 0.000 1.50 0.000 0.000 3.25 0.255 0.000
26 Hill 2.59 1.000 0.000 4.82 1.000 0.000 1.58 0.000 0.000 2.80 0.000 0.000 2.49 1.000 0.000 3.97 1.000 0.000

a The sample period of the data is from 2 January 1984 to 9 December 2000 (the date when we collected the data) with the total 4420 observations. The models are
estimated using R ¼ 2871 observations. The out-of-sample forcast evaluation is conducted over three subperiods, period 1 (2 January 1995–31 December 1996,
P ¼ 522), period 2 (1 January 1997–31 December 1998, P ¼ 522), and period 3 (1 January 1999–9 December 2000, P ¼ 505). Aa

k is the negative QLL for model k with
a quantile. Smaller Aa

k indicates a better goodness of fit. RC1 and RC2 denote reality check P-values of White (2000) test computed using the stationary bootstrap of
Politis and Romano (1994, PR). The bootstrap reality check P-values are computed with 1000 bootstrap resamples and the bootstrap smoothing parameter q ¼ 0:75. See
PR or White (1998) for the details. The P-values for q ¼ 0:25 and 0.50 are similar and are not reported. RC1 is to compare each model k ðk ¼ 1; . . . ; 26Þ with the
benchmark model RM(0.94) ðk ¼ 0Þ. RC2 is to compare the best of the first l (l ¼ 1; . . . ; 26Þ models with the benchmark model. RC1 may be considered as a bootstrap
version of Diebold and Mariano (1995) and West (1996).
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Table 3

Reality check using the loss function Ba

k Model Period 1 Period 2 Period 3

B0:05
k RC1 RC2 B0:01

k RC1 RC2 B0:05
k RC1 RC2 B0:01

k RC1 RC2 B0:05
k RC1 RC2 B0:01

k RC1 RC2

0 RM(0.94) 4.34 6.79 6.13 7.19 5.76 7.18

1 RM(0.97) 4.48 0.765 0.751 6.79 0.000 0.000 6.34 0.676 0.692 8.19 0.689 0.717 5.85 0.585 0.588 8.22 0.681 0.682

2 RM(0.90) 4.08 0.150 0.257 6.28 0.120 0.135 6.07 0.376 0.629 7.19 0.000 0.528 5.46 0.181 0.327 7.18 0.000 0.490

3 MA(200) 4.46 0.648 0.412 6.47 0.395 0.399 6.54 0.739 0.730 8.61 0.734 0.670 6.17 0.745 0.487 8.75 0.699 0.602

4 GarchN 4.23 0.387 0.456 6.68 0.473 0.606 5.94 0.212 0.589 5.70 0.249 0.530 5.24 0.136 0.336 7.39 0.556 0.729

5 Garcht 4.33 0.511 0.477 7.11 0.627 0.690 6.19 0.651 0.591 7.62 0.626 0.585 5.63 0.319 0.344 7.32 0.533 0.750

6 GarchGED 4.40 0.591 0.483 7.11 0.620 0.690 6.05 0.354 0.638 6.12 0.306 0.618 5.55 0.236 0.345 7.23 0.498 0.792

7 EgarchN 4.68 0.779 0.553 6.65 0.455 0.756 5.56 0.145 0.326 8.12 0.631 0.623 5.17 0.162 0.362 7.55 0.596 0.876

8 Egarcht 4.49 0.698 0.574 6.94 0.532 0.774 5.50 0.118 0.295 7.09 0.463 0.631 5.05 0.105 0.280 7.16 0.470 0.902

9 EgarchGED 4.71 0.778 0.589 6.94 0.578 0.774 5.62 0.145 0.305 8.44 0.725 0.640 5.13 0.165 0.286 7.55 0.581 0.902

10 TgarchN 4.21 0.389 0.600 7.26 0.583 0.832 5.89 0.231 0.307 6.18 0.273 0.651 5.08 0.167 0.330 7.00 0.425 0.900

11 Tgarcht 4.34 0.509 0.609 7.69 0.742 0.851 6.14 0.487 0.321 7.25 0.513 0.688 5.35 0.234 0.348 7.18 0.504 0.900

12 TgarchGED 4.34 0.484 0.609 7.75 0.686 0.880 5.91 0.219 0.321 6.29 0.333 0.692 5.25 0.185 0.351 7.18 0.531 0.900

13 HS 5.23 0.938 0.680 9.23 0.763 0.929 5.79 0.287 0.340 9.44 0.766 0.703 6.22 0.758 0.379 10.41 0.753 0.910

14 HS(200, 0.99) 3.07 0.014 0.021 4.39 0.139 0.590 4.01 0.004 0.008 5.09 0.226 0.582 3.58 0.019 0.018 4.81 0.138 0.536

15 HS(200, 0.97) 3.10 0.016 0.021 3.87 0.115 0.496 3.97 0.004 0.008 4.70 0.148 0.506 3.51 0.012 0.016 4.42 0.107 0.456

16 MC1 5.34 0.929 0.028 8.47 0.766 0.505 5.92 0.370 0.008 7.70 0.593 0.511 6.22 0.780 0.016 7.93 0.655 0.464

17 MC2 5.34 0.934 0.032 8.47 0.797 0.505 5.92 0.363 0.008 7.92 0.624 0.513 6.31 0.805 0.016 8.20 0.637 0.471

18 MC2 þ GarchN 4.47 0.638 0.032 6.19 0.256 0.505 5.83 0.244 0.008 6.62 0.386 0.521 5.48 0.284 0.016 7.08 0.474 0.471

19 MC2 þ EgarchGED 4.91 0.855 0.035 6.42 0.397 0.508 5.66 0.145 0.008 6.94 0.426 0.523 5.36 0.254 0.016 6.82 0.386 0.471

20 MC2 þ RMð0:94Þ 4.41 0.582 0.035 6.58 0.419 0.508 6.28 0.748 0.008 7.36 0.561 0.525 5.83 0.555 0.016 6.93 0.407 0.471

21 NPQ1 3.00 0.009 0.031 4.42 0.155 0.513 3.96 0.007 0.008 5.03 0.194 0.525 3.44 0.013 0.012 4.61 0.120 0.479

22 NPQ2 2.77 0.006 0.013 3.45 0.082 0.419 3.74 0.003 0.006 4.28 0.134 0.442 3.17 0.009 0.007 3.90 0.085 0.396

23 Neftci 4.09 0.262 0.013 11.04 0.734 0.541 4.85 0.029 0.006 10.54 0.717 0.528 4.93 0.115 0.007 14.33 0.734 0.562

24 Longin(10) 4.22 0.360 0.013 9.23 0.779 0.541 4.96 0.051 0.006 8.16 0.676 0.529 5.05 0.127 0.007 10.41 0.768 0.562

25 Longin(20) 3.87 0.115 0.013 8.47 0.778 0.541 4.71 0.019 0.006 7.82 0.613 0.529 4.58 0.078 0.007 8.97 0.755 0.565

26 Hill 8.47 0.855 0.387 11.04 0.747 0.541 5.01 0.048 0.006 7.44 0.571 0.529 6.86 0.850 0.015 11.85 0.784 0.579

a See the footnote for Table 2. Ba
k is the rescaled negative left tail mean return for model k with a quantile. A smaller Ba

k indicates a better model.
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Table 4

Reality check using the loss function C a

k Model Period 1 Period 2 Period 3

a ¼ 0:05 a ¼ 0:01 a ¼ 0:05 a ¼ 0:01 a ¼ 0:05 a ¼ 0:01

RC1 RC2 RC1 RC2 RC1 RC2 RC1 RC2 RC1 RC2 RC1 RC2

1 RM(0.97) 0.121 0.116 0.000 0.000 0.183 0.191 0.409 0.402 0.393 0.398 0.184 0.207

2 RM(0.90) 0.821 0.290 0.739 0.558 0.726 0.237 0.000 0.402 0.497 0.670 0.000 0.207

3 MA(200) 0.441 0.400 0.772 0.752 0.231 0.267 0.890 0.658 0.721 0.891 0.195 0.207

4 GarchN 0.817 0.476 0.348 0.827 0.888 0.343 0.283 0.669 0.583 0.912 0.196 0.220

5 Garcht 0.243 0.480 0.304 0.835 0.198 0.344 0.221 0.672 0.393 0.946 0.183 0.226

6 GarchGED 0.186 0.483 0.285 0.835 0.368 0.354 0.390 0.696 0.477 0.946 0.182 0.230

7 EgarchN 0.196 0.521 0.648 0.897 0.997 0.604 0.913 0.769 0.818 0.967 0.339 0.273

8 Egarcht 0.603 0.571 0.391 0.904 0.999 0.647 0.983 0.833 0.850 0.972 0.729 0.333

9 EgarchGED 0.188 0.515 0.396 0.904 0.993 0.657 0.900 0.843 0.797 0.974 0.327 0.333

10 TgarchN 0.385 0.534 0.536 0.908 0.909 0.679 0.351 0.865 0.601 0.974 0.406 0.354

11 Tgarcht 0.232 0.537 0.357 0.909 0.358 0.686 0.368 0.870 0.507 0.974 0.296 0.354

12 TgarchGED 0.210 0.537 0.405 0.909 0.860 0.693 0.275 0.870 0.561 0.974 0.277 0.354

13 HS 0.207 0.450 0.524 0.922 0.988 0.721 0.628 0.871 0.752 0.985 0.321 0.423

14 HS(200, 0.99) 1.000 0.736 0.999 0.957 1.000 0.800 1.000 0.923 1.000 0.989 1.000 0.728

15 HS(200, 0.97) 1.000 0.777 1.000 0.966 1.000 0.817 1.000 0.939 1.000 0.991 0.999 0.771

16 MC1 0.285 0.791 0.425 0.966 0.974 0.822 0.980 0.953 0.734 0.991 0.262 0.776

17 MC2 0.294 0.793 0.432 0.966 0.987 0.822 0.955 0.954 0.786 0.992 0.195 0.779

18 MC2 þ GarchN 0.136 0.793 0.712 0.971 0.180 0.835 0.733 0.964 0.590 0.998 0.000 0.779

19 MC2 þ EgarchGED 0.160 0.775 0.717 0.976 0.989 0.838 0.989 0.965 0.675 0.998 0.802 0.795

20 MC2 þ RMð0:94Þ 0.129 0.775 0.754 0.984 0.103 0.840 0.911 0.972 0.684 0.999 0.815 0.796

21 NPQ1 1.000 0.795 1.000 0.986 1.000 0.854 1.000 0.975 1.000 0.999 1.000 0.829

22 NPQ2 1.000 0.812 1.000 0.986 1.000 0.861 1.000 0.975 1.000 0.999 1.000 0.862

23 Neftci 0.969 0.838 0.913 0.988 1.000 0.870 0.336 0.977 0.931 0.999 0.622 0.884

24 Longin(10) 0.970 0.842 0.541 0.988 1.000 0.875 0.940 0.978 0.888 0.999 0.323 0.884

25 Longin(20) 0.998 0.855 0.426 0.988 1.000 0.878 0.968 0.978 0.979 0.999 0.186 0.884

26 Hill 1.000 0.898 0.903 0.988 1.000 0.880 0.985 0.981 0.943 0.999 0.447 0.892

a See the footnote for Table 2. As Ca
k � P ¼ LR1 is reported in Table 1, we do not report Ca

k here again for space. Ca
k ¼ P	1 � LR1, where P ¼ 522 for periods 1, 2,

and P ¼ 505 for period 3. A smaller Ca
k indicates a better model.
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Table 2 presents the reality check results using the loss function A, the negative quasi-log

likelihood. Results obtained here suggest that the predictive power of many VaR models such

as EVT methods, ARCH models, and MC methods, perform better than the benchmark

model RM(0.94). Many of the P-values corresponding to RC1 and RC2 are generally small,

indicating that many models generate better forecasts. Furthermore, some models which

do not produce significant forecast gain during pre-crisis period, appear to have superior

forecasts during crisis. For instance, EVT models and Monte Carlo models show high

P-values close to 1 for RC1 with a ¼ 0:01 during pre- and post-crisis periods. However, these

models produce the P-values equal to 0 for RC1 during the crisis. This implies that the

benchmarkmodelworksrelativelybetterduring thenormal times thanduringthecrisisperiod.

Table 3 presents the reality check results for the loss function B. We obtain less

significant predictive gains over the benchmark model under the loss function B than under

the loss A. In terms of the loss B, predictive gains can mostly be obtained with a ¼ 0:05. For

instance, for a ¼ 0:05,the predictive power of many models improves over RM. On the

other hand, for a ¼ 0:01, none of these models could attain predictive gains over RM.

Although some models such as NPQ, HS, MC2 þ RMð0:94Þ, and some EVT methods

produce some favorable predictive performance, consistent and uniform prediction

improvements may not be observed with respect to the loss function B.

Our final reality check analysis is based on the loss function C which is the likelihood

ratio of the unconditional coverage probabilities. The results are presented in the Table 4. It

is clear that none of the alternative VaR models produce predictive performance superior to

RM(0.94) in terms of the loss C.

Therefore, for different periods, different tail probability levels, and for different loss

criteria, obtained are different performances for risk forecasting. Unlike the previous

findings in the literature, e.g. Danielsson and Morimoto (2000) for Japan and Ho et al.

(2000) for emerging markets, EVT models have not shown better predictive ability than

conventional models. The difference between our results and the results obtained by

Danielsson and Morimoto (2000) may stem from the following facts: (i) in our study a

wider variety of VaR models are used than that of Danielsson and Morimoto; (ii) we have

applied three different loss functions which account for various aspects of risk forecasts;

(iii) we use Nikkei 225 index while they use TOPIX index.

Interestingly, some traditional methods such as TGARCH and Monte Carlo methods

have proved to be more successful than the EVT models even during the crisis period. RM

methods work relatively well in normal periods. Moreover, better risk forecasts can be

obtained from the post-crisis period which can be interpreted that the severe impact of

financial turmoil has died out. To conclude, forecast evaluation of VaR models has not

revealed a systematic ranking among the models. The policy implications of these findings

highlights the challenges faced with the policy analysts and academics who wish to use risk

based capital adequacy requirements in banking sector to prevent potential financial crisis.

5. Conclusions

In this paper, a comprehensive predictive assessment of various VaR models is studied

for the Japanese stock market. We have made the assessment of on 27 VaR models using
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three different loss functions via White (2000) reality check. The Riskmetrics model,

RM(0.94), is used as a benchmark model for the comparison. The reality check with the

various loss functions indicates that none of the methods studied in this paper exhibits

consistently superior predictive ability for all periods. Unlike the recent findings in the

literature, we could not confirm that the EVT models produce superior risk forecasts for

crisis period. This finding highlights the difficulties in risk modelling and attempts to unify

risk measurement practice to avoid potential financial crisis. To further investigate this

important topic, more work on both theoretical and applied aspects of risk modelling is

necessary.
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Embrechts P., Klüppelberg, C., Mikosch, T., 1997. Modelling Extremal Events for Insurance and Finance.

Springer Verlag, New York.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation.

Econometrica 50, 987–1008.

FRBNY, 2000., Economic Policy Review, Special Issue: Lessons from Recent Crises in Asian and Other

Emerging Markets, Vol. 6, No. 3. Federal Reserve Bank of New York, New York.

Fischer, S., 1998. The Asian Crisis, the IMF, and the Japanese Economy, www.imf.org.

Glosten, L.R., Jaganathan, R., Runkle, D., 1993. On the relationship between the expected value and the

volatility of the nominal excess return on stocks. Journal of Finance 48, 1779–1801.

Goldstein M., Kaminsky, G.L., Reinhart, C.M., 2000. Assessing Financial Vulnerability: An Early Warning

System for Emerging Markets. Institute for International Economics, Washington, DC.

Haggard, S., 2000. The Political Economy of the Asian Financial Crisis. Institute for International Economics,

Washington, DC.

Hill, B.M., 1975. A simple general approach to inference about the tail of a distribution. Annals of Statistics 19,

1547–1569.

Ho, L.C., Burridge, P., Cadle, J., Theobald, M., 2000. Value-at-risk: applying the extreme value approach to

asian markets in recent financial turmoil. Pacific–Basin Finance Journal 8, 249–275.

Hull, J., 1997. Options Futures and Other Derivatives. Prentice-Hall, New York.

Jenkinson, A.F., 1955. The frequency distribution of the annual maximum (or minimum) values of

meteorological elements. Quarterly Journal of the Royal Meteorological Society 81, 145–158.

Morgan, J.P., 1995. Riskmetrics Technical Manual, 3rd Edition.

Jorion, P., 2000. Value-at-Risk, 2nd Edition. McGraw Hill, New York.

Krugman, P., 1998. Japan’s Bank Bailout: Some Simple Arithmetic. MIT Press, New York.

Koenker, R., Bassett, G., 1978. Regression quantiles. Econometrica 46 (1), 33–50.

Lejeune, M., Sarda, P., 1988. Quantile regression: a non-parametric approach. Computational Statistics and Data

Analysis 6, 229–239.

Lo, A.W., MacKinlay, A.C., 1999. A Non-Random Walk Down Wall Street. Princeton University Press, Princeton.

Longin, F., 1996. The asymptotic distribution of extreme stock market returns. Journal of Business 69 (3),

383–408.

Longin, F., 2000. From value-at-risk to stress testing: the extreme value approach. Journal of Money Banking

and Finance 24, 1097–1130.

Mason, D.M., 1982. Law of large numbers for sum of extreme values. Annals of Probabilty 10, 754–764.

Mikitani, R., Posen, A.S., 2000. Japan’s Financial Crisis and its Parellels to US Experience. Special Report 13,

Institute for International Economics.

Mises, R.V., 1936. La Distribution de la plus grande de n valeurs, Reprinted in Selected Papers II. American

Mathematical Society, Providence, RI, 1954, pp. 271–294.

Mishkin, F.S., 1999. Lessons from the Asian Crisis. NBER Working Paper No. 7102.

Mishkin, F.S., 2000. Financial Policies and the Prevention of Financial Crises in Emerging Market Countries.

Graduate School of Business, Columbia University, Columbia.

Mittnik, S., Paolella, M.S., Rachev, S.T., 1998. Unconditional and conditional distributional model for the nikkei

index. Asia Pacific Financial Markets 5, 99–128.
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