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NONPARAMETRIC BOOTSTRAP 
TESTS FOR NEGLECTED 

NONLINEARITY IN TIME SERIES 
REGRESSION MODELS* 

TAE-HWY LEE+ and AMAN ULLAH* 

Department of Economics, University of Calgornia, Riverside, CA 92521 

(Received 15 June 2000: Infinol form 6 July 2000) . 

Various nonparametric kernel regression estimators are presented, based on which we 
consider two nonparametric tats for neglected nonlinearity in time sqrics regression 
models. One of them is the goodness-of-fit test of Cai, Fan and Yao (2000) and another 
is the nonparametric conditional moment test by Li and Wang (1998) and Zheng (1996). 
Bootstrap procedures are used for these tests and their performance is examined via 
monte carlo experiments, especially with conditionally heteroskedastic errors. 

Keywork Nonparametric test; Nonlinearity; Time series; Functionalcoefficient model; 
Conditional moment test; Naive bootstrap; Wild bootstrap; Conditional heteroskedas- 
ticity; GARCH; Monte carlo 

1. INTRODUCTION 

Much research in empirical and theoretical econometrics has been 
centered around the estimation and testing of various functions such 
as regression functions (e.g., conditional mean and variance) and 
density functions. A traditional approach to studying these functions 
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426 T.-H. LEE AND A. ULLAH 

has been to first impose a parametric functional form and then 
proceed with the estimation and testing of interest. A major 
disadvantage of this approach is that the econometric analysis may 
not be robust to the slight data inconsistency with the particular 
parametric specification and this may lead to erroneous conclusions. 
In view of these problems, in the last four decades or so a vast amount 
of literature has appeared on the nonpararnetric and semiparametric 
approaches to econometrics, e.g., see the books by Hiirdle (1990); Fan 
and Gijbels (1996) and Pagan and UUah (1999). The basic point in the 
nonparametric approach to econometrics is to realize that, in many 
instances, one is attempting to estimate an expectation of one variable, 
y, conditional upon others, x. This identification directs attention to 
the need to be able to estimate the conditional mean of y given x from 
the data y, and x,, t =  1,. . . ,n. A nonparametric estimate of this 
conditional mean simply follows as a weighted average C, w(x,, x)y,, 
where w(x,,x) are a set of weights that depend upon the distance of 
x, from the point x at which the conditional expectation is to be 
evaluated. 

Based on these nonparametric estimation techniques of the 
conditional expectations, in recent years a rich literature has evolvdd 
on the consistent model specification tests in econometrics. For ex- 
ample, various test statistics for testing a parametric functional form 
have been proposed by Bierens (1 982); Ullah (1985); Robinson (1 989); 
Eubank and Spiegelman (1 990); Yatchew (1992); Wooldridge (1 992); 
Gozalo (1993); Hardle and Mammen (1993); Hong and White (1995); 
Zheng (1996); Bierens and Ploberger (1997) and Li and Wang (1998). 
Also, see Ullah and Vinod (1993); Whang and Andrews (1993); 
Delgado and Stengos (1994); Lewbel (1993,1995); Kit-Sahalia et al. 
(1994); Fan and Li (1996); Lavergne and Vuong (1996) and Linton 
and Gozalo (1997) for testing problems related to insignificance of 
regressors, non-nested hypothesis, semiparametric versus nonpara- 
metric regression models, among others. Most of these tests, especially 
the test for a parametric specification, are developed under the 
following goodness of fit measures: (i) compare the expected values of 
the squared error under the null and alternative hypotheses (e.g., 
Ullah, 1985 type F statistic), (ii) calculate the expected value of the 
squared distance between the null and alternative model specifications 
(e.g., Hardle and Mammen, 1993; Ullah and Vinod, 1993; A'it-Sahalia 
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NONPARAMETRIC BOOTSTRAP TJ3TS 427 

et al., 1994) and (iii) calculate the expected value of the product of the 
error under the null with the model specified under the alternative 
(e.g., conditional moment tests of Bierens, 1982; Zheng, 1996; Fan and 
Li, 1996 and Li and Wang, 1998). All these three alternative goodness 
of fit measures are equal to zero under the null hypothesis of correct 
specification. For details, see Pagan and Ullah (1999). 

We note here that the asymptotic as well as the simulation based 
finite sample properties of the most of the above mentioned test 
statistics have been extensively analyzed for the cross sectional models 
with independent data. However, not much is known about the 
asymptotic as well as the small sample performance of these test sta- 
tistics for the case of time series models with weak dependent data, 
although see the recent works of Chen and Fan (1999); Hjellvik and 
Tjerstheim (1995,1998); Hjellvik et al. (1999); Kreiss et al. (1998); Berg 
and Li (1998) and a very important contribution by Li (1999) where he 
develops the asymptotic theory results of Li-Wang-Zheng (LWZ) test 
under the goodness of fit measure (iii). The modest goal of this paper is 
to conduct an extensive monte carlo study to analyze the size and 
power properties of two kernel based tests for time series models. One 
of them is the bootstrap version of Ullah-type goodness of fit test (i) 
due to Cai, Fan and Yao (2000, henceforth CFY), and another is the 
nonparametric conditional moment goodness of fit test (iii) of LWZ. 
We examine the bootstrap performances of these two goodness of fit 
tests because of the asymptotic validity results of using bootstrap 
methods for these statistics due to CFY (2000) and Berg and Li (1998). 
Berg and Li (1998) also support the better performance of LWZ over 
the Hardle and Mammen (1993) type tests considered for time series 
data in Hjellvik and Tjerstheim (1995,1998); Hjellvik et al. (1998) 
and Kreiss et al. (1998). For the purpose of our simulation study 
we consider the testing of linearity against a large class of nonlinear 
time series models which include threshold autoregressive, bilinear, 
exponential autoregressive models, smooth transition autoregressive 
models, GARCH models, and various nonlinear autoregressive and 
moving average models. Both naive bootstrap and wild bootstrap 
procedures are used for our analysis. We also compare the bootstrap 
results with the results using the asymptotic distribution for LWZ test. 

The plan of the paper is as follows. In Section 2, we present the 
nonparametric kernel regression estimators and the tests of CFY and 
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428 T.-H. LEE AND A. ULLAH 

LWZ based on them. Then in Section 3, we present the monte carlo 
results. Finally, Section 4 gives conclusions. 

2. NONPARAMETRIC REGRESSION 
AND SPECIFICATION TESTING 

2.1. Nonparametric Regression 

Let b,, x,), t = 1,. . . , n, be stochastic processes, where y, is a scalar 
and x, = (x t l ,  . . . , xtk) is a 1 x k vector which may contain the lagged 
values of y,. Consider the regression model 

y, = m(x,) + ut (1) 

where m(xJ = E(ytJxt) is the true but unknown regression function and 
u, is the error term such that E(u,lx,) = 0. 

If m(x,) =g(x,, 6) is a correctly specified family of parametric re- 
gression function then y, =g(x,, 6)+u, is a correct model and, in this 
case, one can construct a consistent Ieast squares (LS) estimator of 
m(x,) given by g(x,, $1, where 8 is the LS estimator of the parameter 6. 

In general, if the parametric regression g(x,, 6) is incorrect or the 
form of m(x,) is unknown then g(xl ,8)  may not be a consistent 
estimator of m(xJ. For this case, an alternative approach to estimate 
the unknown m(xJ is to use the consistent nonparametric kernel 
regression estimator which is essentially a local constant LS (LCLS) 
estimator. To obtain this estimator take Taylor series expansion of 
m(x,) around x so that 

where e, = (x,  - x)m(')(x) + ( 1  /2)(x, - ~ ) ~ m ( * ) ( x )  + . . . + u, and m(")(x) 
represents the s-th derivative of m(x) at x, =x. The LCLS estimator 
can then he derived by minimizing 

with respect to constant m(x), where K, = ((xt-x) /h)  is a decreasing 
function of the distances of the regressor vector x, from the point 
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NONPARAMETRIC BOOTSTRAP TESTS 429 

x = (x,, . . . , xk), and h -+ 0 as n 4 oo is the window width (smoothing 
parameter) which determines how rapidly the weights decrease as the 
distance of x, from x increases. The LCLS estimator so estimated is 

where K(x) is the n x n diagonal matrix with time diagonal elements 
K,(t = I, . . . , n), i is an n x 1 column vector of unit elements, and y is 
an n x 1 vector with elements ydt = I,. . . ,n). The estimator m(x) is 
due to Nadaraya (1964) and Watson (1964) (NW) who derived this in 
an alternative way. Generally rii(x) is calculated at the data points x,, 
in which case we can write the leave-one out estimator as 

where Kt, = K((xf - x,)/h). The assumption 
gives x, - x = O(h) -+ 0 and hence Ee, + 0 as 
timator m(x) will be consistent under certain 

that h-0 as n-oo 
n 4  oo. Thus the es- 
smoothing conditions 

on h, K, and m(x). In small samples however Ee,#O so m(x) will be a 
biased estimator, see Pagan and Ullah (1999) for details on asymptotic 
and small sample properties. 

An estimator which has a better small sample bias and hence the 
mean square error (MSE) behavior is the local linear LS (LLLS) 
estimator due to Stone (1977) and Cleveland (1979); also see Fan and 
Gijbels (1996) and Ruppert and Wand (1994) for their properties. In 
the LLLS estimator we take first order Taylor-Series expansion of 
m(x,) around x so that 

Yr = m(xt) + u, = m(x) + (x, - x)m(')(x) + v, 

= a(x) + x,P(x) + v, 
= m ( x )  + v, (6) 

where XI = (1 x,) and 6(x) = [a(x) /3(x)'I1 with a(x) = m(x) - xP(x) and 
P(x)=m(')(x). The LLLS estimator of 6(x) is then obtained by 
minimizing 
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430 T.-H. LEE AND A. ULLAH 

&d it is given by 

where X is an n x (k+ 1) matrix with the r-th row Xt(t = 1,. . . , n). 
The LLLS estimator of a(x) and P(x) can be calculated as &(x )  = 

( 1  0)8(x) and &x) = (0 l)$(x). This gives 

Obviously when X=i, b(x) reduces to the NW's LCLS estimator 
&(x). An extension of the LLLS is the local polynomial LS (LPLS) 
estimators, see Fan and Gijbels (1996). 

In fact one can obtain the local estimators of a general nonlinear 
model g(x,, 6) by minimizing 

with respect to 6(x). For g(xt, &x)) = X,S(x) we get the LLLS in (8). 
Further when h = co, K, = K(0) is a constant so that the minimization 
of K(0) Cb,-g(x,, S(x))12 is the same as the minimization of Cb,- 
g(x,, 6)12, that is the local LS becomes the global LS estimator 8. 

The LLLS estimator in (8) can also be interpreted as the estimator 
of the functional coefficient (varying coefficient) linear regression 
model 

where 6(x,) is approximated locally by a constant 6(xt)=6(x). The 
minimization of C ~ K , ,  with respect to 6(x) then gives the LLLS 
estimator in (8), which can be interpreted as the LC varying coefficient 
estimator. An extension of this is to consider the linear approximation 
6(xt) - S(x) + D(x)(x, - x)' where D(x) = %(x,)/ag evaluated at x, = 
x. In this case 
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NONPARAMETRIC BOOTSTRAP TESTS 43 1 

where X: = [XI (x, - x) 63 X,] and Sx(x) = [b(x)' (vec D(x))'If. The LL 
varying coefficient estimator of bx(x) can then be obtained by 
minimizing 

with respect to SX(x) as 

From this b(x) = (I O)BX(x), and hence 

The above idea can be extended to the situations where 5, = (x, z,) 
such that 

where the coefficients are varying with respect to only a subset of &; z, 
is 1 x f and 5, is 1 x p, p = kf f .  Examples of these include functional 
coefficient autoregressive model (Chen and Tsay, 1993; C N ,  2000), 
smooth coefficient model (Li, Huang and Fu, 1997), random 
coefficient model (Raj and Ullah, 1981), smooth transition autore- 
gressive model (Granger and Terasvirta, 1993), exponential autoreg- 
ressive model (Haggan and Ozaki, 1981), and threshold autoregressive 
model (Tong, 1990). Also see Section 3. 

To estimate 6(z,) we can again do a local constant approximation 
6(z,) -- S(z) and then minimize Cbt - XI b(z)12 Kt= with respect to &), 
where Kt= = K((z, - z)/h). This gives the LC varying coefficient 
estimator 

where K(z) is a diagonal matrix of Kt=, t = 1, . . . , n. When z = x, (1 7) 
reduces to the LLLS estimator 8 (x )  in (8). 

CFY (2000) consider a local linear approximation b(z,)-b(z)+ 
D(z)(z,-2)'. The LL varying coefficient estimator of CFY is then 
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obtained 

T.-H. LEE AND A. ULLAH 

by minimizing 

with respect to 67.2) = [6(z)' (vec D(z))T where = [X, ( z ,  - z )  8 x,]. 
This gives 

and 8(z) = (I 0) & ( 2 ) .  Hence 

For the asymptotic properties of these varying coefficient estimators, 
see CFY (2000). When z = x, (19) reduces to the LL varying coefficient 
estimator 8x(x)  in (14). 

2.2. Nonparametric Tests for Functional Forms 

Consider the problem of testing a specified parametric model against a 
nonparametric (NP) alternative 

In particular, if we are to test for neglected nonlinearity in the 
regression models, set g(&, 6) = 54. Then under Ho the process Cy,) is 
linear in mean conditional on & 

Ho: P[E(y,l<,)=&S] = 1 for s o r n e 6 ~ R ~ .  (21)  

The alternative of interest is the negation of the null, that is, 

H I  : P[E(y,I<,) = CIS] < 1 for all 6~ RP. (22) 

When the alternative is true, a linear model is said to suffer from 
'neglected nonlinearity'. Note that [, = (x,  2,) = x ,  when z, = x,. 
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NONPARAMETRIC BOOTSTRAP TESTS 433 

Using the nonparametric estimation technique to construct con- 
sistent model specification tests was first suggested by Ullah (1985). 
The idea is to compare the parametric residual sum of squares (RSS'), 
C #, where ir, = y, - g(&, 8)  with the nonparametric RSS (RSS~'), 
C iif, where ii, = y, - k(&). The test statistic is 

or simply T' = (RSS'- R S S ~ .  We reject the null hypothesis when T 
is large. f i T  has a degenerate distribution under Ho. Yatchew (1992) 
avoids this degeneracy by splitting sample of n into nl and nz and 
calculating C iif based on nl observations and C $ based on n2 
observations. Lee (1992) uses density weighted residuals and compares 
C w,$ with C 3. Fan and Li (1992) uses different normalizing factor 
and show the asymptotic normality of nhPI2~'. 

An alternative way is to use the bootstrap method as suggested 
by CFY (2000). The bootstrap allows the implementation of (23) and 
it involves the following steps to evaluate p-values of T to test for 
g(& 4 = Xt6. 

1. Generate the bootstrap residuals {ii:) from the centered NP 
residuals (5, - ii) where ii = n-' C ii,. 
(a) For naive bootstrap, (6:) is obtained from randomly 

resarnpling {ii, - ii) with replacement. 
(b) For wild bootstrap, ii: = a(ii, - ii) with probability r = ( f i  + 

1)/2fi  and ii; = b(ii, - ii) with probability 1 - r (t = 1,. . . , n),  
where a = -(fi - 1)/2 and b = ( f i  + 1)/2. See Li and Wang 
(1998, pp. 150,151). 

2. Generate the bootstrap sample {y;):=,: 

(a) When x, is lagged dependent variables (e.g., see Blocks 1,2, 5, 6 
in Section 3), generate initial values of y; for t = 1, . . . , k, from 
N@, 6$), and then get y; = qi + ii; recursively for t = k+ 
1, ..., n. 

(b) When x, is exogenous (Blocks 3, 4 in Section 3), then x: = x,  
and y; =x&+<(t = 1 ,  ..., n). 
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434 T.-H. LEE AND A. ULLAH 

3. Using the bootstrap sample {y;):,,, calculate the bootstrap test 
statistic T using, for the sake of simplicity, the same h used in 
estimation with the original sample as done in CFY (2000). 

4. Repeat the above steps B times and use the empirical distribution 
of T as the null distribution of T. We use B = 500. The bootstrap 
p-value of the test T is simply the relative frequency of the event 
{T 2 7') in the bootstrap resamples. 

Kreiss et al. (1998) provide more detailed reasons why the bootstrap 
works in general nonparametric regression setting. They proved that 
asymptotically the conditional distribution of the bootstrap test 
statistic is indeed the distribution of the test statistic under the null 
hypothesis. As mentioned by CFY (2000) it may be proved that the 
similar result holds for T as long as 8 converges to 6 at the rate n-'I2. 
We use both naive bootstrap (Efron, 1979) and wild bootstrap 
(Wu, 1986; Lin, 1988). The wild bootstrap method preserves the con- 
ditional heteroskedasticity in the original residuals. For wild boot- 
strap, see also Shao and Tu (1995, p. 292); Hardle (1990, p. 247); 
or Li and Wang (1998, p. 150). 

Another test of the parametric specification follows from the com- 
bined regression 

where = ur- E(u,l&) such that E(q/&) = 0. The test for the 
parametric specification is then the conditional moment test for 
E(utl&) = 0, which is identical to testing 

wheref(&) is the density of E. A sample estimator of the left hand side 
of (25) is 
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NONPARAMETRIC BOOTSTRAP TESTS 435 

where E(&(G) = C r +  irKrt/ CrZ, Krt from ( 5 )  and 3(&) = [(n- 
1 ) ~ ] - '  Cr+, Krt is the kernel density estimator; Kt, = K((tr- & ) / h ) .  
The asymptotic test statistic is then given by 

where 3 = 2(n(n - 1 ) ~ ) - '  C, Cr+, $i$G, is a consistent estimator 
of the asymptotic variance of nhpJ2~', see Zheng (1996); Fan and Li 
(1996); Li and Wang (1998); Fan and Ullah (1999) aud Rahrnan and 
Ullah (1999), for details. Also, see Pagan and Ullah (1999, Ch. 3) and 
Ullah (1999) for the relationship of this test statistic with .other 
nonparametric specification tests. Based on the asymptotic results of 
Fan and Li (1996, 1997, 1999) and Li (1999) for dependent data, Berg 
and Li (1998) establish the asymptotic validity of using the wild 
bootstrap method for L for time-series. The bootstrap p-values for L 
to test for the adequacy of the linear parametric model, g(&, 6) = X8, 
can be computed as follows. 

1. Generate the bootstrap residuals (ir:) from 2, = y, - x,d: 
(a). For naive bootstrap, (2:) is obtained from randomly re- 

sampling (2,) with replacement. 
(b) For wild bootstrap, fi,' = air, with probability r and irf: = bii, 

with probability 1 - r as for T discussed above. 

2. Generate the bootstrap sample lyf ):=, : 

(a) When x, is lagged dependent variables (Blocks 1, 2, 5, 6), 
generate initial values of y,' for t = 1,. . . , k, from N ( y ,  61, and 
then get y: s ~8 + ir; recursively for t = k+ I,. . . , n. 

(b) When x, is exogenous (Blocks 3, 4), then x; = x, and 
y;' ~ x , b ^ + i r f ( t =  1, ..., n). 

3. Using the bootstrap sample {y;'):,,, calculate the bootstrap test 
statistic L*. 

4. Repeat the above steps B times and use the empirical distribution of 
L* as the null distribution of L. We use B=500. The bootstrap 
p-value of the test L is the relative frequency of the event {L* 2 L) 
in the bootstrap resamples. 
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436 T.-H. LEE AND A. ULLAH 

3. MONTE CARLO 

In this section we examine the finite sample properties of the T test and 
the L test especially with the empirical null distributions being 
generated by the bootstrap method. Asymptotic critical values are also 
used for the L test. To generate data we use the following models, all 
of which have been used in the related literature. Most of them are 
univariate while there are some multivariate situations. There are six 
blocks. The error term E,  below is i.i.d. N(0,l) unless otherwise is 
indicated. The models will be referred by the name in parentheses in 
bold.' 

Block 1 (Lee, White and Granger, 1993). 
Linear (AR) 

Linear AR with GARCH (AR') 

Bilinear (BL) 

Threshold Autoregressive (TAR) 

Sign Nonlinear Autoregressive (SGN) 

where sign(x) = 1 if x > 0,O if x = 0, and - 1 if x < 0. This is a process 
examined in Granger and Terasvirka (1999), which is a first-order 
nonlinear autoregressiie model but has such misleading linear prop 
erty that estimated autocorrelations are similar to those of a long- 
memory process. 
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NONPARAMETRIC BOOTSTRAP TESTS 

Rational Nonlinear Autoregressive (NAR) 

Block 2 (Lee, White and Granger, 1993). 
MA(2) OMl) 

Heteroskedastic MA(2) (M2) 

Note that M2 is linear in conditional mean as the forecastable part of 
M2 is linear, and the final term introduces heteroskedasticity. 
Nonlinear MA (M3) 

Block 3 (Lee, White and Granger, 1993). 
Square (SQ) 

Exponential (EXP) 

These are bivariate models where x, = 0 . 6 ~ ~ -  1 + E,, a, N N(0, 52), and 
a,, E, are independent. 
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438 T.-H. LEE AND A. ULLAH 

Block 4 (Zheng, 1996). 
Five models with St= (xtl xn) are considered in this block. Let 

utl and ur2 be drawn from IN(0,l). Two regressors xtl and xt2 are de- 
fined as xrl =url and xr2 = (url + ur2)/fi. 
Linear (Zl) 

Linear with conditionally hetcroskedastic error (Zl') 

Quadratic (22) 

Y l  = 1 + Xrl + X12 + X,lX,2 + El  

Concave (Z3) 

yt = (1  XI^)"^ f Er 

Convex (24) 

Block 5 (Cai, Fan and Yao, 2000). 
Exponential AR (EXPAR) 

YI = 01 (yt-l)yr-l + a2(y1-~)y1-2 + 
a1 (yr-I) = 0.138 + (0.316 + 0.982~~-I)  exp(-3.89$-,) 

a2(yt-l) = -0.437 - (0.659 + 1.260~,-~) e ~ ~ ( - 3 . 8 9 ~ f - , )  

E, - IN(0,0.2') 

Threshold AR (TAR) D
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NONPARAMETRIC BOOTSTRAP TESTS 439 

Block 6 (Terasvirta, Lin and Granger, 1993). 
Logistic smooth transition AR (LSTAR) 

Exponential smooth transition AR (ESTAR) 

To estimate ict for the linear model and ii, for the NP model, the 
information set used are t,=y,- for Block 1, &= (yt- Y , - ~ )  for 
Blocks 2, 5 and 6, E, = x, for Block 3 and & = (x,, xt2) for Block 4. 

For the T test, as suggested by CFY (2000), we select h using out-of- 
sample cross-validation. Let m and Q be two positive integers such 
that n > mQ. The basic idea is first to use Q sub-series of lengths 
n - qm(q = 1, . . . , Q) to estimate the coefficient functions 6,(z,) and 
then to compute the one-step forecast errors of the next segment of the 
time series of length m based on the estimated models. That is to 
choose h minimizing the average of the mean square forecast errors 

where 

and e(.) are computed from the sample {y, &):ifm. We use m= 
[O. ln], Q = 4, and the Epanechinikov kernel K(z) = (3/4)(1- 
z2)1(1z1 < 1). We use a scalar 'threshold variable' z, (with I =  1) for 
all models: z, = y, - 1 for Blocks 1, 2 and 6, z, = x, for Block 3 and 
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440 T.-H. LEE AND A. ULLAH 

zt = xtl for Block 4. For Block 5, zt = yt- 1 for EXPAR and zt = yt-2 
for TAR. 

For the L test, as in Li and Wang (1998, p. 154), we use a standard 
normal kernel. Note that Ct is an 1 x p vector, and p = 1 for Blocks 1,3 
and p=  2 for Blocks 2, 4, 5, 6. Thus the smoothing parameter h . 
is chosen as hi = c&n-'ls(i = 1) for Blocks 1 and 3, and hi = 
~&n- ' /~ f i  = 1,2) for Blocks 2,4, 5, 6, where Si is the sample standard 
deviation of i-th elemnent of 5. The three values of c = 0.5, 1 and 2 are 
used, and the corresponding estimated rejection probability will be 
denoted as LC. In computing L, K shown in (26) and (27) is replaced 
with HPi,, hi. 

Test statistics are denoted as T~ and Li,, with the superscripts 
j = A, B, W referring to the methods of obtaining the null distributions 
of the test statistics; asymptotics (j= A), naive bootstrap (j= B), and 
wild bootstrap (j= W). Monte carlo experiments are conducted with 
500 bootstrap resamples and 1000 monte carlo replications. 

Table I gives the estimated size of the tests for the data generating 
processes which are linear in conditional mean with the conditional 
homoskedastic errors. The size performance of the tests are different 
for dependent processes (AR, MI, M4) than for independent process 
(21). For 21 process, the naive bootstrap CFY test tends to under- 
reject the null while the wild bootstrap test tends to over-reject the 
null. The LWZ tests work better for 21 than for AR, M1 and M4, for 
all three values of c. For the three dependent processes (AR, M 1, M4), 
both bootstrap procedures work relatively well with c=0.5: b . 5  is 
better than Ll.o which is better than L2.0, and the size of L is quite 
sensitive to the choice of c and hence bandwidth h. On the other hand, 
for the independent process Z1, the LWZ tests work well with all 
c=0.5, 1 and 2. Both bootstrap tests L,B and L: are better than the 
asymptotic test L$ . This tells that the optimal choice of c for time series 
is more important than for independent processes. The two bootstrap 
procedures are generally similar because the errors are homoskedastic 
in Table I. 

For parametric models, Davidson and MacKinnon (1999) show 
that the size distortion of a bootstrap test is at least of the order n-' I2 
smaller than that of the corresponding asymptotic test. For nonpara- 
metric models, h also enters the order of refinement. Li and Wang 
(1998) show that if the distribution of L~ (j= A, B, W) admit an 
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442 T.-H. LEE AND A. ULLAH 

Edgeworth expansion then the bootstrap distribution approximates 
the null distribution of L with an error of order n- '/2hp/2 improving 
over the normal approximation. Since L is asymptotically normal 
under the null, the bootstrap tests L~ and L" are more accurate than 
the asymptotic test L ~ ,  as codinned in the simulation. See Hall (1992) 
for further discussion on Edgeworth expansions and the extent of the 
refinements in various contexts. 

Table I1 gives the estimated size of the tests for the data generating 
processes which are linear in conditional mean with conditional 
heteroskedastic errors. For AR', we consider GARCH errors with 
five different parameter values: (a, P) = (0.5,0.0), (0.7,0.0), (0.1 ,O.89), 
(0.3,0.69) and (0.5,0.49). The condition for the existence of the un- 
conditional fourth moment is 3aZf 2a@+@ < I (Bollerslev, 1986). 
Accordingly, the condition is a < 0.577 if P = 0; P < 0.890 if a = 0.1; 
p < 0.606 if cr = 0.3; and < 0.207 if a = 0.5. Thus, for a given values 
of p or a+P,  the series becomes more leptokurtic as a increases. 
Table I1 shows that with P = 0 fixed, the size distortion is larger with 
the larger a. With a + P  = 0.99 fixed, the size distortion is larger also as 
cr increases. The size distortion generally gets worse as n increases. 
This is niost apparent with LB as the naive bootstrap does not preserve 
the conditional heteroskedasticity in resampling. 

Generally, as discussed in Lee et al. (1993, p. 288), the conditional 
heteroskedasticity will have one of two effects: either it will cause the 
size of a test to be incorrect while still resulting in a test statistic 
bounded in probability under the null, or it will directly lead 
(asymptotically) to rejection despite linearity in mean. The test statistic 
L is a conditional moment test based on the fact that E(u,l&) = 0 under 
the null hypothesis (21) which will then imply Eq. (25) for L. As this 
moment condition will hold even under the presence of the conditional 
heteroskedasticity (which can be shown by the law of iterated expe- 
ctations), L should not have power to reject the null for the DGPs AR' 
and Z1' which are linear in conditional mean with conditionally 
heteroskedastic errors. Note that the asymptotic test L;! works well 
with the conditionally heteroskedastic errors. However, the size of the 
naive bootstrap test 15: is adversely affected by the conditional 
heteroskedasticity, which is more serious with a larger sample size. 

Two remedies may be considered: one may either (1) remove the 
effect of the conditional heteroskedasticity or (2) remove the 
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TABLE I1 Size under conditional heteroskedasticity 

Panel A 5% nominal level of significance 
1 AR' 50 .I96 .I64 

a = .5 100 .304 .179 
f3= .O 200 ,450 .I95 

1 A R' 50 .283 .234 
a = . 7  100 ,452 .267 
p= .O 200 ,662 .309 

1 A R' 50 .057 .068 
a = . l  100 ,079 ,060 
p= .89 200 ,165 .076 

1 A R' 50 .I54 .I47 
a = . 3  100 .274 .I41 
P= .69 200 .568 ,228 

1 A R' 50 ,229 .190 
a = . 5  . 100 .441 .242 
/3= .49 200 .7 1 1 .324 

4 Z1' 50 .264 ,367 
100 .382 .357 
200 SO6 .386 

Panel B 10% nominal level of significance 
1 A R' 50 .287 .241 

a = . 5  100 .398 .258 
p= .O 200 .548 ,295 

1 A R' 50 .374 .308 
a=.7  100 .562 363 
p=.O 200 .747 .409 
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TABLE I1 (Continued) 

B I O C ~  DGP n TB l+ GS GS G,w, L b  G.0 CO G.0 e.0 LLWO 
I A Ri 50 :097 .I 17 .024 .066 .067 .005 .039 .041 .000 .013 .014 

a= . l  100 ,146 .lo8 .040 .068 .068 .018 .061 .052 ,002 .029 .023 
B=.89 200 .247 .I23 .062 .098 .092 .043 .091 .075 .009 .069 .051 

1 A R' 50 .228 .204 .048 .I05 .079 .022 .090 .058 .001 .047 .022 
a=.3 100 .363 .213 .068 .I23 .091 .034 .I18 .070 .006 .093 .038 
B=.69 200 .653 .321 .091 ,163 ,101 .07 1 .I85 .I03 .032 .I88 .08 1 

1 A Ri 50 .327 .271 .050 .I26 .073 ,035 .I16 .072 .009 .08 1 .037 
a=.S 100 .537 .330 .078 .I60 .092 .MI .I63 .072 .om .I62 .o60 
p= .49 200 ,776 .434 .I37 .231 .I42 .I20 .265 .I38 .066 .286 .I12 

4 Z1' 50 ,372 .465 .085 .I52 .I 12 .055 .209 .I 14 .011 .257 .I38 
100 .483 .436 .077 .I49 .098 .055 .207 .097 .017 .260 .I09 
200 .614 .464 .08 1 .I49 .I06 .076 .I96 .I08 .027 .27 1 .I20 

Notes: AR' is A R  with GARCH(I.1) h = (1 - a - P) + na:-, + ~ h > , .  Z I '  is Z1 with h, a E(€:(c,) = (1 +$, + +;)/3. 
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NONPARAMETRIC BOOTSTRAP TESTS 445 

conditional heteroskedasticity itself. The first is relevant to L whose 
size is adversely affected. The effect of the conditional heteroskedas- 
ticity can be removed using a heteroskedasticity-consistent covariance 
matrix estimator or using the wild bootstrap that preserves the 
heteroskedasticity in resampling. We use the wild bootstrap here. The 
results in Table I1 show that the LWZ test with the wild bootstrap L,W 
generally has the adequate size for the both DGPs AR' and 21'. 

On the other hand, T is not a conditional moment test as it is not 
based on any moment conditions. T is constructed to compare the two 
residual sums of squares RSS' and RSSNP. AS RsSNP is estimated 
from the functional coefficient (FC) model, if the FC model absorbs 
some of the conditional heteroskedasticity the size of the CFY test T 
will be incorrect, which we may observe in Table 11. Note that the size 
distortibn generally tends to get more severe as n increases especially 
for AR'. The use of the wild bootstrap reduces the size distortion but 
only by small margin. In this case one may attempt the second 
remedy by removing the conditional heteroskedasticity itselfwhenever 
one is confidently able to specify the form of the conditional hetero- 
skedasticity h, = var(y,l&). Then we may compare the weighted para- 
metric residual sum of squares ( W R S S ~ ,  C $/h,, ir, = y, - g(&, 8) 
with the weighted nonparametric RSS ( W R S S ~ ,  Ciif/h,, where 
ii, = y, - m(5,). When h, is a known function the CFY (2000) boot- 
strap procedure can be applied to the modified T statistic with the 
weighted RSS's. However, when h, is unknown, it needs to be esti- 
mated. Use of misspecified conditional variance model in the pro- 
cedure will again adversely affect the size of the test. Furthermore, if 
the alternative is true, the fitted conditional heteroskedasticity model 
can absorb some or even much of the neglected nonlinearity in 
conditional mean model. Conceivably, this could have adverse impact 
on the power of T statistic. Consideration of the second remedy 
together with the wild bootstrap could raise issues that take us well 
beyond the scope of the present study and their investigation is left for 
other work. 

Table I11 presents the power of the tests T and L at 5% level. The 
results at 1 % and 10% levels are available but not presented to save 
space. As the results obtained can be considerably influenced by the 
choice of nonlinear models, we try to include as many different types 
of nonlinear models as possible. Neither T nor L is uniformly superior 
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TABLE 111 Power (5% level) 

BL 

TAR 

SGN 

NAR 

M2 

M3 

M5 

M6 

SQ 

EXP 
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4 22 50 977 .994 .773 .842 .697 .892 .972 .892 .863 ,997 .974 
100 1.000 1.000 .979 .992 .968 .999 1.000 .995 1.000 1.000 1.000 

4 23 50 .054 .255 .072 .I34 .I28 .056 .206 .I95 .007 .283 .258 
100 ,161 .410 ,168 .255 .253 .I93 .414 All .080 541 .534 

4 24 50 .999 1.000 .998 .999 992 l.000 1.000 396 1.000 1.000 1.000 
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 EXPAR SO 3'84 .755 399 358 344 305 .281 .259 .014 .068 .061 
100 .969 .958 .7S3 .748 .746 .798 .828 .810 .267 .S15 .462 

5 TAR 50 .209 .263 ,119 .141 .13 I .082 .I43 .I47 .002 .062 .059 
100 ,389 398 .203 ,228 .224 .225 .317 308 .050 .251 .239 

6 LSTAR 50 ,669 ,679 .I59 .IS6 .I47 .044 .lo9 ,094 ,000 .013 .008 
100 945 ,920 ,504 .512 303 340 .452 ,425 .012 .158 .I21 

6 ESTAR 50 316 316 .098 .111 .I06 .MI .061 .056 .001 .013 .008 
100 .615 584 .2S9 .280 .289 .I81 .255 .249 .008 .044 .039 
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448 T.-H. LEE AND A. ULLAH 

to the other. T has relatively superior power for BL and ESTAR, and 
has power comparable to L in other cases. 

4. CONCLUSIONS 

We have presented a unified framework for various nonparametric 
kernel regression estimators, based on which we have considered two 
nonpararnetric tests T and L for neglected nonlinearity in regression 
models. We investigate them in several aspects: (1) T vs. L, (2) 
dependent process (AR) vs. independent process (Zl), (3) conditional 
homoskedasticity (AR and Z1) vs. conditional heteroskedasticity (AR' 
and Zl'), (4) naive bootstrap (B) vs. wild bootstrap (W). 

When the errors are conditionally heteroskedastic, the wild boot- 
strap LWZ test L~ works pretty well. However, the use of the wild 
bootstrap for T~ does not correct the size problem. This difference 
of the two statistics is due to the different construction of the test 
statistics: L is constructed based on a moment condition implying 
linearity in conditional mean, while T is constructed to detect any 
possible improvement in terms of residual variance via a nonpara- 
metric model over a linear model. Hence, the LWZ test can be 
robustified to the presence of conditional heteroskedasticy in test- 
ing for the linearity in conditional mean, while T will have power to 
detect neglected nonlinearity in conditional mean as well as the 
conditional heteroskedasticity. The choice of the bandwidth c in L, 
is more important for time series processes than for independent 
process. 
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