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NONPARAMETRIC BOOTSTRAP
TESTS FOR NEGLECTED

- NONLINEARITY IN TIME SERIES
- REGRESSION MODELS*

TAE-HWY LEE' and AMAN ULLAH!

Department of Economics, University of California, Riverside, CA 92521
{ Received 15 June 2000; In final form 6 July 2000)

Various nonparametric kernel regression estimators are presented, based on which we
consider two nonparametric tests for neglected nonlinearity in time series regression
models. One of them is the goodness-of-fit test of Cai, Fan and Yao (2000) and another
is the nonparametric conditional moment test by Li and Wang (1998) and Zheng (1996).
Bootstrap procedures are used for these tests and their performance is examined via
monte carlo experiments, especially with conditionally heteroskedastic errors.

Keywords: Nonparametric test; Nonlinearity; Time series; Functional-coefficient model;
Conditional moment test; Naive bootstrap; Wild bootstrap; Conditional heteroskedas-
ticity; GARCH; Monte carlo

1. INTRODUCTION

Much research in empirical and theoretical econometrics has been
centered around the estimation and testing of various functions such
as regression functions (e.g., conditional mean and variance) and
density functions. A traditional approach to studying these functions
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426 T.-H. LEE AND A. ULLAH

has been to first impose a parametric functional form and then
proceed with the estimation and testing of interest. A major
disadvantage of this approach is that the econometric analysis may
not be robust to the slight data inconsistency with the particular
' parametric specification and this may lead to erroneous conclusions.
In view of these problems, in the last four decades or so a vast amount
of literature has appeared on the nonparametric and semiparametric
approaches to econometrics, e.g., see the books by Hérdle (1990); Fan
and Gijbels (1996) and Pagan and Ullah (1999). The basic point in the
nonparametric approach to économetrics is to realize that, in many
instances, one is attemnpting to estimate an expectation of one variable,
¥, conditional upon others, x. This identification directs attention to
the need to be able to estimate the conditional mean of y given x from
the data y, and x,, t=1,...,n. A nonparametric estimate of this
conditional mean simply follows as a weighted average >, w(x;, X)y,,
where w(x,, x) are a set of weights that dépend upon the distance of
x, from the point x at which the conditional expectation is to be
evaluated.

Based on these nonparametric estimation techniques of the
conditional expectations, in recent years a rich literature has evolved
on the consistent model specification tests in econometrics. For ex-
ample, various test statistics for testing a parametric functional form
have been proposed by Bierens (1982); Ullah (1985); Robinson (1989);
Eubank and Spiegelman (1990); Yatchew (1992); Wooldridge (1992);
Gozalo (1993); Hirdle and Mammen (1993); Hong and White (1995);
Zheng (1996); Bierens and Ploberger (1997) and Li and Wang (1998).
Also, see Ullah and Vinod (1993); Whang and Andrews (1993);
Delgado and Stengos (1994); Lewbel (1993, 1995); Ait-Sahalia er al.
(1994); Fan and Li (1996); Lavergne and Vuong (1996) and Linton
and Gozalo (1997) for testing problems related to insignificance of
regressors, non-nested hypothesis, semiparametric versus nonpara-
metric regression models, among others. Most of these tests, especially
the test for a parametric specification, are developed under the
following goodness of fit measures: (i) compare the expected values of
the squared error under the null and alternative hypotheses (e.g.,
Ullah, 1985 type F statistic), (i) calculate the expected value of the
squared distance between the null and alternative model specifications
(e.g., Hirdle and Mammen, 1993; Ullah and Vinod, 1993; Ait-Sahalia
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et al., 1994) and (iii) calculate the expected value of the product of the
error under the null with the model specified under the alternative
(e.g., conditional moment tests of Bierens, 1982; Zheng, 1996; Fan and
Li, 1996 and Li and Wang, 1998). All these three alternative goodness
of fit measures are equal to zero under the null hypothesis of correct
specification. For details, see Pagan and Ullah (1999).

We note here that the asymptotic as well as the simulation based
finite sample properties of the most of the above mentioned test
statistics have been extensively analyzed for the cross sectional models
with independent data. However, not much is known about the
asymptotic as well as the small szimple performance of these test sta-
tistics for the case of time series models with weak dependent data,
although see the recent works of Chen and Fan (1999); Hjellvik and
Tiestheim (1995, 1998); Hijellvik et al. (1999); Kreiss et al. (1998); Berg
and Li (1998) and a very important contribution by Li (1999) where he
develops the asymptotic theory results of Li-Wang-Zheng (LWZ) test
under the goodness of fit measure (iii). The modest goal of this paper is
to conduct an extensive monte carlo study to analyze the size and
power properties of two kernel based tests for time series models. One
of them is the bootstrap version of Ullah-type goodness of fit test (i)
due to Cai, Fan and Yao (2000, henceforth CFY), and another is the
nonparametric conditional moment goodness of fit test (iii) of LWZ.
We examine the bootstrap performances of these two goodness of fit
tests because of the asymptotic validity results of using bootstrap
methods for these statistics due to CFY (2000) and Berg and Li (1998).
Berg and Li (1998) also support the better performance of LWZ over
the Hirdle and Mammen (1993) type tests considered for time series
data in Hjellvik and Tjestheim (1995, 1998); Hjellvik er al. (1998)
and Kreiss et al. (1998). For the purpose of our simulation study
we consider the testing of linearity against a large class of nonlinear
time series models which include threshold autoregressive, bilinear,
exponential autoregressive models, smooth transition autoregressive
models, GARCH models, and various nonlinear autoregressive and
moving average models. Both naive bootstrap and wild bootstrap
procedures are used for our analysis. We also compare the bootstrap
results with the results using the asymptotic distribution for LWZ test.

The plan of the paper is as follows. In Section 2, we present the
nonparametric kernel regression estimators and the tests of CFY and
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428 T.-H. LEE AND A. ULLAH

LWZ based on them. Then in Section 3, we present the monte carlo
results. Finally, Section 4 gives conclusions.

2. NONPARAMETRIC REGRESSION
AND SPECIFICATION TESTING

2.1. Nonparametric Regression

Let {y,x;}, t=1,...,n, be stochastic processes, where y, is a scalar
and x,=(x,,...,Xu) is @ 1 x k vector which may contain the lagged
values of y,. Consider the regression model

ye =m(x;) + (1)

where m(x,) = E(y,)x,) is the true but unknown regression function and
u, is the error term such that E(u,|x,) =0.

If m(x,)=g(x,, &) is a correctly specified family of parametric re-
gression function then y,= g(x,, §)+u, is a correct model and, in this
case, one can construct a consistent least squares (LS) estimator of
m(x,) given by g(x,,8), where & is the LS estimator of the parameter 6.

In general, if the parametric regression g(x,, 8) is incorrect or the
form of m(x,) is unknown then g(x,,g) may not be a comsistent
estimator of m(x,). For this case, an alternative approach to estimate
the unknown m(x,) is to use the consistent nonparametric kernel
regression estimator which is essentially a local constant LS (LCLS)
estimator. To obtain this estimator take Taylor series expansion of
m(x,) around x so that

Yo =m(x;) + u
= m(x) + e ‘ (2)
where e, = (x,— x)mV(x)+(1/2)(x,— x)°’mP(x)+- - -4+u; and m(x)

represents the s-th derivative of m(x) at x,=x. The LCLS estimator
can then he derived by minimizing

S K = 300 = m(x)) K 3
=1 =1

with respect to constant m(x), where K, = ((x,— x)/h) is a decreasing
function of the distances of the regressor vector x, from the point
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x=(x1,...,Xx), and h— 0 as n — oo is the window width (smoothing
parameter) which determines how rapidly the weights decrease as the
distance of x, from x increases. The LCLS estimator so estimated is

() = =2 _ g K (o) @
t=1 x

where K(x) is the n x n diagonal matrix with time diagonal elements
K. (t=1,...,n),iis an n x 1 column vector of unit elements, and y is
an n x 1 vector with elements y(t=1,...,n). The estimator A1(x) is
due to Nadaraya (1964) and Watson (1964) (NW) who derived this in
an alternative way. Generally #i(x) is calculated at the data points x,,
in which case we can write the leave-one out estimator as

ZLI,#;&: K"’ ’

where Ky, = K((xy — x,)/h). The assumption that h—0 as n— oo
gives x,—x=0(h)— 0 and hence Ee,— 0 as n—oo. Thus the es-
timator #1(x) will be consistent under certain smoothing conditions
on h, K, and m(x). In small samples however Ee,#0 so 7r(x) will be a
biased estimator, see Pagan and Ullah (1999) for details on asymptotic
and small sample properties.

An estimator which has a better small sample bias and hence the
mean square error (MSE) behavior is the local linear LS (LLLS)
estimator due to Stone (1977) and Cleveland (1979); also see Fan and
Gijbels (1996) and Ruppert and Wand (1994) for their properties. In
the LLLS estimator we take first order Taylor-Series expansion of
m(x,) around x so that

(x)

yo = m(x,) +u, = m(x) + (x, — x)mB(x) + v,
= a(x) + x,8(x) + v
= X,5(x) + v, (6)

where X, = (1 x,) and &(x) =[a(x) B(x)] with a(x) =m(x)— xB(x) and
B(x)=mY(x). The LLLS estimator of §(x) is then obtained by
minimizing

3K = 3 0 - Xl K )
=1 =1
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and it is given by
§(x) = (X'K(x)X) " X'K(x)y. 8)

where X is an n x (k+1) matrix with the r-th row X (t=1,...,n).
The LLLS estimator of o(x) and B(x) can be calculated as a(x) =
(1 0)6(x) and B(x) = (0 1)é(x). This gives

m(x) = (1 x)8(x) = &(x) + xB(x). (9)

Obviously when X =i, 8(x) reduces to the NW’s LCLS estimator
m(x). An extension of the LLLS is the local polynomial LS (LPLS)
estimators, see Fan and Gijbels (1996).

In fact one can obtain the local estimators of a general nonlinear
model g(x,, §) by minimizing

Y by — (%, 6(x)) 1 Kix (10)
1=] :
with respect to 8(x). For g(x,, 6(x)) = X,5(x) we get the LLLS in (8).
Further when A = 0o, K, = K(0) is a constant so that the minimization
of K(0) 3" [y, —g(x, 6(x))I* is the same as the minimization of ¥ [y,~
g(x,, 6))%, that is the local LS becomes the global LS estimator 5.

The LLLS estimator in (8) can also be interpreted as the estimator
of the functional coefficient (varying coefficient) linear regression
model

ye = m(x;) + u
= de(x,) -+ U; (1 1)

where 6(x,) is approximated locally by a constant §(x;) =~ &(x). The
minimization of Zu,zK,x with respect to 6(x) then gives the LLLS
‘estimator in (8), which can be interpreted as the LC varying coefficient
estimator. An extension of this is to consider the linear approximation
8(x,) =~ 6(x)+ D(x)(x,— x)' where D(x) = 86(x,)/0x} evaluated at x,=
x. In this case

e =m(x,) + u, = X,8(x;) + u,
& X,6(x) + X,D(x)(x; — x)' + u
= X,8(x) + [(x: — x) ® X,]vec D(x) + u,
= X[6%(x) + u, (12)
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where X7 = [X; (x, — x) ® X,} and 6%(x)=[6(x) (vec D(x))'Y. The LL
varying coefficient estimator of §*(x) can then be obtained by
minimizing

i[y, — X756 (%) Ko (13)
=1

with respect to §(x) as

5% (x) = (X¥K(x)X*) ' X¥K(x)y. (14)
From this é(x) = (I 0)6*(x), and hence

m(x) = (1 x 0)6*(x) = (1 x)é(x). (15)

The above idea can be extended to the situations where £, =(x, z,)
such that

E(ile) = m(&) = m(x,,z.) = X,6(z,), (16)

where the coefficients are varying with respect to only a subset of &;; z,
is 1 x [/ and £, is | x p, p=k+I. Examples of these include functional
coefficient autoregressive model (Chen and Tsay, 1993; CFY, 2000),
smooth coefficient model (Li, Huang and Fu, 1997), random
coefficient model (Raj and Ullah, 1981), smooth transition autore-
gressive model (Granger and Terdsvirta, 1993), exponential autoreg-
ressive model (Haggan and Ozaki, 1981), and threshold autoregressive
model (Tong, 1990). Also see Section 3.

To estimate 6(z,) we can again do a local constant approximation
8(z,) ~ 6(z) and then minimize } [y, ~ X, 8(2)? K,; with respect to §(z),
where K,,=K((z,—z)/h). This gives the LC varying coefficient
estimator

§(2) = (X'K(2)X)'X'K(2)y (17)

where K(z) is a diagonal matrix of K,,, t=1,...,n. When z=x, (17)
reduces to the LLLS estimator §(x) in (8).

CFY (2000) consider a local linear approximation 6(z,)=&(z)+
D(z)(z,—zY. The LL varying coefficient estimator of CFY ‘is then
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obtained by minimizing

ib’t - Xlé(zl)]thz

=1

= > b~ Xi8(2) = (21— ) @ X vee (=) K

t=1 .

R | as)

=1
with respect to §%(2) =[6(z) (vec D(2))] where X = [X, (z, — 2) @ X|].
This gives
§(z) = (X"K(2)X*) "' X7K(2)y, (19)
and 4(z) = (I 0)4%(z). Hence
(€) = (1 x 0)6%(2) = (1 x)é(2). (20)

For the asymptotic properties of these varying coefficient estimators,
see CFY (2000). When z = x, (19) reduces to the LL varying coefficient
estimator 6*(x) in (14). i

2.2. Nonparametric Tests for Functional Forms

Consider the problem of testing a specified parametric model against a
nonparametric (NP) alternative

Hy: E(ylé) = 8(&,9)
Hy : E(y|&) = m(&).
In particular, if we are to test for neglected nonlinearity in the

regression models, set g(£,, §) =£,8. Then under H, the process {y,} is
linear in mean conditional on &,

Hy: PE(yl&) = &6 =1 for some € RP. (21
The alternative of interest is the negation of the null, that is,

Hy: PE(e) =&6) <1 forall 5€RP. (22)

When the alternative is true, a linear model is said to suffer from
‘néglected nonlinearity’. Note that &, =(x; z,) =X, when z,=x,.
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Using the nonparametric estimation technique to construct con-
sistent model specification tests was first suggested by Ullah (1985).
The idea is to compare the parametric residual sum of squares (RSSF),
> z‘tf, where # =y, — g(£,, 8) with the nonparametric RSS (RSS™D),
3.2, where &, = y, — m(&,). The test statistic is

r_ (RSS"—RSS™) _yi -2

RSS™ 2 (23)

or simply T’ = (RSS* — RSS™F). We reject the null hypothesis when T
is large. /nT has a degenerate distribution under Hy. Yatchew (1992) -
avoids this degeneracy by splitting sample of n into n; and n, and
calculating 32 based on m, observations and Y i based on n,
observations. Lee (1992) uses density weighted residuals and compares
3" w,i with 3" &2. Fan and Li (1992) uses different normalizing factor
and show the asymptotic normality of nh?T".

An alternative way is to use the bootstrap method as suggested
by CFY (2000). The bootstrap allows the implementation of (23) and
it involves the following steps to evaluate p-values of T to test for
8., o) =X.6.

1. Generate the bootstrap residuals {#;} from the centered NP
residuals (i, — #) where & = n~'Y_#,.

(a) For naive bootstrap, {i;} is obtained from randomly
resampling {i, — &} with replacement.

(b) For wild bootstrap, & = a(#, — &) with probability r = (v/5 +
1)/2V/5 and % = b(#, — &) with probability 1 —r (t=1,...,n),
where a = —(v/5 — 1)/2 and b = (V/5 + 1)/2. See Li and Wang
(1998, pp. 150, 151).

2. Generate the bootstrap sample {y}};_;:

(a) When x, is lagged dependent variables (e.g., see Blocks 1, 2, 5, 6

in Section 3), generate initial values of y; for r=1,...,k, from
N(3,6%), and then get y: =X+ @ recursively for t=k+
I,...,n.

(b) When x, is exogenous (Blocks 3, 4 in Section 3), then x7 = x;,
and y; = X6+ (t=1,...,n).
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3. Using the bootstrap sample {y;}".,, calculate the bootstrap test
statistic T* using, for the sake of simplicity, the same & used in
estimation with the original sample as done in CFY (2000).

4. Repeat the above steps B times and use the empirical distribution
of T* as the null distribution of T. We use B=500. The bootstrap
p-value of the test T is simply the relative frequency of the event
{T* > T} in the bootstrap resamples.

Kreiss et al. (1998) provide more detailed reasons why the bootstrap
works in general nonparametric regression setting. They proved that
asymptotically the conditional distribution of the bootstrap test
statistic is indeed the distribution of the test statistic under the null
hypothesis. As mentioned by CFY (2000) it may be proved that the
similar result holds for T as long as § converges to & at the rate n~'/2,
We use both naive bootstrap (Efron, 1979) and wild bootstrap
(Wu, 1986; Lin, 1988). The wild bootstrap method preserves the con-
ditional heteroskedasticity in the original residuals. For wild boot-
strap, see also Shao and Tu (1995, p. 292); Hirdle (1990, p. 247);
or Li and Wang (1998, p. 150).

Another test of the parametric specification follows from the com-
bined regression

yr = 8(&,0) + E(u/|&) + & (24)

where ¢,=u,—E(u]€é) such that E(g)§)=0. The test for the
parametric specification is then the conditional moment test for
E(u,|€,) =0, which is identical to testing

E{uE(ul&)f(€)] =0, (25)

where j(g,) is the density of €. A sample estimator of the left hand side
of (25)is

1< .
L= ;Z W E (4| &,)f (&)

=1

l n n

=n(n—1)hl’;f,=;ﬂ

ity Kp, (26)
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where E(&&) = X pu #rKer) Lopps Ker from (5) and f(&) = [(n—
H)™ 2_r4: Ke: is the kernel density estimator; Ky, = K((&— &)/h).
The asymptotic test statistic is then given by

L= nh"/z% ~N(0,1) (27)

where & = 2(n(n— 1)¥)"' T, PP 22 K2, is a consistent estimator
of the asymptotic variance of nk”2L’, see Zheng (1996); Fan and Li
(1996); Li and Wang (1998); Fan and Ullah (1999) aud Rahman and
Ullah (1999), for details. Also, see Pagan and Ullah (1999, Ch. 3) and
Ullah (1999) for the relationship of this test statistic with other
nonparametric specification tests. Based on the asymptotic results of
Fan and Li (1996, 1997, 1999) and Li (1999) for dependent data, Berg
and Li (1998) establish the asymptotic validity of using the wild
bootstrap method for L for time-series. The bootstrap p-values for L
to test for the adequacy of the linear parametric model, g(£,, §) = X9,
can be computed as follows.

1. Generate the bootstrap residuals {i}} from &, = y, — X,é:

(a) For naive bootstrap, {i} is obtained from randomly re-
sampling {#&} with replacement.

(b) For wild bootstrap, & = ai, with probability r and #; = bi,
with probability 1 —r as for T discussed above.

2. Generate the bootstrap sample {y;},_;:

(a) When x, is lagged dependent variables (Blocks 1, 2, 5, 6),
generate initial values of y! for t=1,...,k, from N(,6%), and
then get y; = X;‘5+ i; recursively for t=k+1,...,n. )

(b) When x, is exogenous (Blocks 3, 4), then x} =x, and
yiEXb+al(t=1,...,n).

3. Using the bootstrap sample {y}}..,, calculate the bootstrap test
statistic L*.

4. Repeat the above steps B times and use the empirical distribution of '
L* as the null distribution of L. We use B=500. The bootstrap
p-value of the test L is the relative frequency of the event {L* > L}
in the bootstrap resamples.
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3. MONTE CARLO

In this section we examine the finite sample properties of the T test and
the L test especially with the empirical null distributions being
generated by the bootstrap method. Asymptotic critical values are also
used for the L test. To generate data we use the following models; all
of which have been used in the related literature. Most of them are
univariate while there are some multivariate situations. There are six
blocks. The error term &, below is i.i.d. N(0,1) unless otherwise is
indicated. The models will be referred by the name in parentheses in
bold.

Block 1 (Lee, White and Granger, 1993).
Linear (AR)

¥ = 0.6y, +¢
Linear AR with GARCH (AR’)

yi = 0.6y1-1 +&
b = E(Elyi1) = (1 — o — B) + aei_y + Bhi-y

Bilinear (BL)
yi =07y 160-2 + &
Threshold Autoregressive (TAR)

»=09%._1+& |y|g1l
=-03y1+& |yl >1

Sign Nonlinear Autoregressive (SGN)

y = sign(y.-1) + &

where sign(x)=1if x> 0,0if x=0, and —1 if x < 0. This is a process
examined in Granger and Terdsvirta (1999), which is a first-order
nonlinear autoregressive model but has such misleading linear prop-
erty that estimated autocorrelations are similar to those of a long-
MEemory process. :
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Rational Nonlinear Autoregressive (NAR)

- 07[)’1-—1'
b’t—l' +2

t + &

Block 2 (Lee, White and Granger, 1993).
MA(2) M1)

=€ —04e,1+0.3¢,_2
Heteroskedastic MA(2) (M2)
yr=¢€ —04e,1 + 0355 + 0.5¢,6,-2

Note that M2 is linear in conditional mean as the forecastable part of
M2 is linear, and the final term introduces heteroskedasticity.
Nonlinear MA (M3)

i =& — 0.3e,- +0.26,-» + 0.4, 16,2 — 0.2562,
AR(2) (M4)
| ' ¥ =04y, —03y,2 +¢
Bilinear AR (M5)
yi =04y, — 0.3y,.2 + 0.5y—16~1 + &
Bilinear ARMA (M6)

v =04y,1 —03y,_24+0.5y,161~1 + 0.8,y + &

Block 3 (Lee; White and Granger, 1993).
Square (SQ)

y=xt+a
Exponential (EXP)
y. = exp(x;) + a

These are bivariate models where x,=0.6x,_,+¢,, a, ~ N(0, 5%, and
a,, £, are independent.
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Block 4 (Zheng, 1996).

Five models with £,=(x,; x) are considered in this block. Let
u, and u,, be drawn from IN(0, 1). Two regressors x,; and x,; are de-
fined as x,; =u and X = (uy + up)/ V2.

Linear (Z1)

y=1l+xq+xo+¢
Linear with conditionally heteroskedastic error (Z1')

nw=1l+x1+x0+¢
h = E(€816) = (1 + x}, + x5) /3

Quadratic (Z2)
| Ye=b4+x0 4+ x2+ x0x2 + ¢
Concave (Z3)
yi=(1+ x4 ~i—x,2)‘/3 +&
Convex (Z4)

yi=(1+xn+x2)" +¢

Block 5 (Cai, Fan and Yao, 2000).
Exponential AR (EXPAR)
Ye =4y ()’t-l))’r-l + ax(yi-1)yi-2 + &
ay(yi-1) = 0.138 + (0.316 + 0.982y,_1) exp(—3.89y2 ;)
ay(yi—1) = ~0.437 — (0.659 + 1.260y,-1) exp(—3.89y%_,)
g, ~ IN(0,0.2%)
Threshold AR (TAR)
| Yi=a e=2)ye-1 + 82(31=2)yr-2 + &
ai(yi-2) = 0.4I(y,-2 < 1) = 0.8/(y,—> > 6)

az(y,-z) = —0.6],(.y,_.2 < 1) +0.21(y,_2 > 1)
g ~ IN(0,1)
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Block 6 (Teridsvirta, Lin and Granger, 1993).
Logistic smooth transition AR (LSTAR)

¥ = L8y, — 1.06y,2
+(0.02 — 0.9y,1 + 0.795y,_2)F(yi_) + &

F(yi—1) = [1 + exp{—100(y,—; — 0.02)}]""
&, ~ IN(0,0.02?)

Exponential smooth transition AR (ESTAR)
= 1.8yr..1 - 1.06}'1_2 + ("‘09}’1_1 + 0.795}”_2)1701_1) + &

F(yi-1) = [1 — exp{—4000y2_ }]™*
&, ~ IN(0,0.01%)

To estimate i, for the linear model and #, for the NP model, the
information set used are & =y,_; for Block 1, &,=(y,—, y,_2) for
Blocks 2, 5 and 6, &, =x, for Block 3 and £,=(x,; x,) for Block 4.

For the T test, as suggested by CFY (2000), we select k using out-of-
sample cross-validation. Let m and Q be two positive integers such
that n > mQ. The basic idea is first to use Q sub-series of lengths
n—gm(g=1,...,Q) to estimate the coefficient functions §,(z,) and
then to compute the one-step forecast errors of the next segment of the
time series of length m based on the estimated models. That is to
choose » minimizing the average of the mean square forecast errors

Q2
AMS(h) =Y " AMS,(h) (28)
g=1
where
V8™
AMS () == Y [y —X:5i(2)] (29)
t=n—qm-+1

and 5;(-) are computed from the sample {y; &},_{". We use m=

[0.1n], Q=4, and the Epanechinikov kernel K(z)=(3/4)(1 -
29)1(|z] < 1). We use a scalar ‘threshold variable’ z, (with {=1) for
all models: z,=y,_; for Blocks 1, 2 and 6, z,=x, for Block 3 and
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z,= x5 for Block 4. For Block 5, z,=y,_, for EXPAR and Zy=Yi-2
for TAR.

For the L test, as in Li and Wang (1998, p. 154), we use a standard
normal kernel. Note that &, is an 1 x p vector, and p=1 for Blocks 1, 3

and p=2 for Blocks 2, 4, 5, 6. Thus the smoothing parameter / .

is chosen as h; = com~'/5(i=1) for Blocks 1 and 3, and A=
coin~1/6(i = 1,2) for Blocks 2, 4, 5, 6, where §; is the sample standard
deviation of i-th elemnent of £. The three values of ¢=0.5, 1 and 2 are
used, and the corresponding estimated rejection probability will be
denoted as L.. In computing L, #° shown in (26) and (27) is replaced
with H7=l h;.

Test statistics are denoted as 77 and L/, with the superscripts
Jj=A, B, W referring to the methods of dbtaining the null distributions
of the test statistics; asymptotics (j= 4), naive bootstrap (j=B), and
wild bootstrap (/= W). Monte carlo experiments are conducted with
500 bootstrap resamples and 1000 monte carlo replications.

Table I gives the estimated size of the tests for the data generating
processes which are linear in conditional mean with the conditional
homoskedastic errors. The size performance of the tests are different
for dependent processes (AR, M1, M4) than for independent process
(Z1). For Z1 process, the naive bootstrap CFY test T? tends to under-
reject the null while the wild bootstrap test T% tends to over-reject the
null. The LWZ tests work better for Z1 than for AR, M1 and M4, for
all three values of ¢. For the three dependent processes (AR, M1, M4),
both bootstrap procedures work relatively well with ¢=0.5: Lo is
better than L, o which is better than L., and the size of L is quite
sensitive to the choice of ¢ and hence bandwidth h. On the other hand,
for the independent process Z1, the LWZ tests work well with all
¢=0.5, 1 and 2. Both bootstrap tests L? and LY are better than the
asymptotic test L. This tells that the optimal choice of ¢ for time series
is more important than for independent processes. The two bootstrap
procedures are generally similar because the errors are homoskedastic
in Table I.

For parametric models, Davidson and MacKinnon (1999) show
that the size distortion of a bootstrap test is at least of the order n~ /2
smaller than that of the corresponding asymptotic test. For nonpara-
metric models, & also enters the order of refinement. Li and Wang
(1998) show that if the distribution of I/ (j=4, B, W) admit an
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Edgeworth expansion then the bootstrap distribution approximates
the null distribution of L with an error of order n~4#? improving
over the normal approximation. Since L is asymptotically normal
under the null, the bootstrap tests L% and L¥ are more accurate than
the asymptotic test L, as confirmed in the simulation. See Hall (1992)
for further discussion on Edgeworth expansions and the extent of the
refinements in various contexts.

Table II gives the estimated size of the tests for the data generating
processes which are linear in conditional mean with conditional
heteroskedastic errors. For AR’, we consider GARCH errors with
five different parameter values: (o, 8) =(0.5,0.0), (0.7,0.0), (0.1,0.89),
(0.3,0.69) and (0.5,0.49). The condition for the existence of the un-
conditional fourth moment is 3a’+2a8+@ <1 (Bollerslev, 1986).
Accordingly, the condition is a < 0.577 if 3=0; 8<0.890 if a=0.1;
B8 <0.606 if =0.3; and 8 < 0.207 if & =0.5. Thus, for a given values
of B or a+f, the series becomes more leptokurtic as « increases.
Table II shows that with 8 =0 fixed, the size distortion is larger with
the larger o.. With a+ 3 =0.99 fixed, the size distortion is larger also as
a increases. The size distortion generally gets worse as n increases.
This is most apparent with L? as the naive bootstrap does not preserve
the conditional heteroskedasticity in resampling.

Generally, as discussed in Lee et al. (1993, p. 288), the conditional
heteroskedasticity will have one of two effects: either it will cause the
size of a test to be incorrect while still resulting in a test statistic
bounded in probability under the null, or it will directly lead
(asymptotically) to rejection despite linearity in mean. The test statistic
L is a conditional moment test based on the fact that E(x,])§,) =0 under
the null hypothesis (21) which will then imply Eq. (25) for L. As this
moment condition will hold even under the presence of the conditional
heteroskedasticity (which can be shown by the law of iterated expe-
ctations), L should not have power to reject the null for the DGPs AR’
and Zl’ which are linear in conditional mean with conditionally
heteroskedastic errors. Note that the asymptotic test L works well
with the conditionally heteroskedastic errors. However, the size of the
naive bootstrap test L2 is adversely affected by the conditional
heteroskedasticity, which is more serious with a larger sample size.

Two remedies may be considered: one may either (1) remove the
effect of the conditional heteroskedasticity or (2) remove the
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TABLE II Size under conditional heteroskedasticity

Block DGP n r v s L3s Ly L, L Ly Ly L3y LY
Panel A 5% nominal level of significance
1 AR/ 50 196 164 .029 048 .037 .010 047 .024 .000 .022 .006
a=.5 100 304 179 .045 .061 .052 025 065 042 .005 .058 023
B=.0 200 .450 195 .033 059 .042 028 074 044 .010 075 .034
] AR’ 50 .283 234 .042 071 036 025 098 .037 005 076 018
a=.7 100 452 267 .061 108 056 051 127 .053 .015 120 .037
f=.0 200 662 .309 074 RN 073 072 137 069 034 175 059
1 AR’ 50 .057 .068 014 .026 024 002 017 014 000 .006 .00}
a=.1 100 .079 060 025 038 040 013 027 027 000 011 .011
£=.89 200 165 076 .043 .058 055 024 056 047 .004 036 .021
1 AR’ 50 154 A47 030 .051 .038 012 .052 .024 .001 .026 .006
a=.3 100 274 141 .040 071 .050 020 .070 .037 .004 049 020
A=.69 200 568 228 059 091 053 044 d18 .047 .016 133 037
1 AR’/ S0 229 190 034 057 .032 023 .070 036 003 - 045 017
a=.5 100 441 242 .051 .092 046 039 102 .043 015 A12 029
B=.49 200 11 324 .093 .148 .070 .089 189 077 046 220 .060
4 zl’ 50 264 367 .048 .089 .053 033 17 062 006 170 :065
100 .382 357 .040 079 045 031 127 051 011 170 055
200 .506 .386 .046 071 055 045 125 .053 019 .193 .051
Panel B 10% nominal level of significance
i AR/ 50 .287 .241 046 104 079 019 106 068 002 056 .026
a=.5 100 .398 258 .063 119 .093 043 118 .075 .007 .104 047
A=.0 200 .548 .295 067 113 086 049 124 091 020 125 073
1 AR/ 50 374 .308 .067 131 .086 047 158 .082 .011 123 055
a=.7 100 .562 363 102 183 123 072 .193 102 027 182 074
f=.0 200 747 .409 .108 179 122 .090 237 132 .054 259 120
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TABLE I (Continued)

Block  DGP n T ™ L Lgs Lys L, LY, LYy L, 50 . Yo
1 AR’ 50 097 A17 024 .066 067 005 039 041 000 .013 014
a=.] 100 146 .108 .040 .068 068 018 .061 052 002 029 .023

£=.89 200 247 123 062 098 092 .043 .091 075 009 069 051

1 AR’ 50 228 204 048 105 079 022 .090 058 .001 .047 022
a=.3 100 363 213 068 123 091 034 118 .070 006 .093 038

A=.69 200 653 321 .091 163 101 o7 _ 185 103 032 188 081

1 AR’ 50 327 2N 050 126 073 035 116 072 009 .08t .037
a=.5 100 537 330 078 160 092 061 163 072 020 .162 060

B=.49 200 7176 434 137 231 142 120 265 138 066 286 12

4 zy 50 AN 465 085 152 112 055 209 114 011 257 138
100 483 436 077 149 .098 {055 207 097 017 .260 109

200 614 464 081 149 106 076 .196 .108 027 271 120

Notes: AR’ is AR with GARCH(1,1) &, = (1 — a — ) + ae_, + AR ,. ZY' is Z1 with b, = E(e2|&) = (1 + x}, + x3)/3.
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conditional heteroskedasticity itself. The first is relevant to L whose
size is adversely affected. The effect of the conditional heteroskedas-
ticity can be removed using a heteroskedasticity-consistent covariance
matrix estimator or using the wild bootstrap that preserves the
heteroskedasticity in resampling. We use the wild bootstrap here. The
results in Table II show that the LWZ test with the wild bootstrap L¥
generally has the adequate size for the both DGPs AR’ and Z1'.

On the other hand, T is not a conditional moment test as it is not
based on any moment conditions. T is constructed to compare the two
residual sums of squares RSS® and RSS™F. As RSS™F is estimated
from the functional coefficient (FC) model, if the FC model absorbs
some of the conditional heteroskedasticity the size of the CFY .test T
will be incorrect, which we may observe in Table II. Note that the size
distortion generally tends to get more severe as n increases especially
for AR’. The use of the wild bootstrap reduces the size distortion but
only by small margin. In this case one may attempt the second
remedy by removing the conditional heteroskedasticity itself whenever
one is confidently able to specify the form of the conditional hetero-
skedasticity A, = var(y]¢;). Then we may compare the weighted para-
metric residual sum of squares (WRSSF), 3" i2/h,, @i, =y, — g(£,6)
with the weighted nonparametric RSS (WRSS™), S"#2/h,, where
i, =y, —m(£). When h, is a known function the CFY (2000) boot-
strap procedure can be applied to the modified T statistic with the
weighted RSS’s. However, when A4, is unknown, it needs to be esti-
mated. Use of misspecified conditional variance model in the pro-
cedure will again adversely affect the size of the test. Furthermore, if
the alternative is true, the fitted conditional heteroskedasticity model
can absorb some or even much of the neglected nonlinearity in
conditional mean model. Conceivably, this could have adverse impact
on the power of T statistic. Consideration of the second remedy
together with the wild bootstrap could raise issues that take us well
beyond the scope of the present study and their investigation is left for
other work.

Table IIT presents the power of the tests T and L at 5% level. The
results at 1% and 10% levels are available but not presented to save
space. As the results obtained can be considerably influenced by the
choice of nonlinear models, we try to include as many different types
of nonlinear models as possible. Neither 7 nor L is uniformly superior
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TABLE Il Power (5% level)

Block bar n T ™ 1-3.5 11‘{5 L(‘x’.’s L'f.o L‘l'.o Lr.'o A.o L‘z’.o “.'o
1 BL 50 .380 319 043 069 040 027 084 031 .003 082 015
100 616 428 062 121 .044 053 162 .052 026 179 042
1 TAR 50 31 329 408 482 461 228 410 .398 001 069 074
100 17 .645 .876 9502 .908 191 .884 .881 .095 .527 .546
1 SGN 50 392 408 .536 629 .621 334 529 534 .005 .145 .143
100 .838 .796 .962 971 972 .890 955 960 .183 678 710
1 NAR . 50 073 .098 042 .062 .061 020 052 .047 .000 021 .026
100 045 .048 038 057 057 .019 .060 .057 004 036 039
2 M2 50 083 121 047 060 048 015 027 025 000 010 .009
100 076 120 .046 060 .050 030 .063 .050 002 027 019
2 M3 50 216 238 .081 .101 .09t 089 .141 125 019 157 128
100 484 448 .184 211 205 270 .359 346 AN A79 419
2 MS 50 .691 644 .302 344 .309 276 425 .362 019 255 155
100 956 .893 .640 .680 .651 .749 .855 .798 .346 .802 652
2 M6 50 .640 618 201 242 .184 115 253 .153 .001 124 034
100 .881 789 .500 .540 478 466 657 474 .091 449 A
3 SQ 50 .303 498 A72 .290 250 169 Al8 361 050 .561 476
100 .103 819 425 .582 .535 491 725 . 681 355 .861 815
3 EXP 50 362 499 197 294 229 197 385 .294 .108. 481 373
100 644 758 an 417 .398 407 602 .507 .326 .728 621
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53

z3

z4
EXPAR
TAR
LSTAR

ESTAR

50
100
50
100
50
100
50
100
50
100
50
100

50
100

M
1.000

054
161

.999
1.000

184
969
209
.389
.669
945
316
615

994
1.000

255
A10

1.000
1.000
55
958

.263
.398

679
.920

316
.584

113
979

072
.168

.998
1.000
.399
753
119
.203
159
.504

.098
259

842
992
134
255

.999
1.000

358
748
141
.228
.156
S12

A
.280

697
968
128
253
992
1.000
344
746
131
224
147
.503

106
.289

892
999
056
193

1.000
1.000

308
798
082
225
044
340
041
181

972
1.000
206
414

1.000
1.000

.281
.828
.143
317
109
452
.061
255

.892
995

195
411

996
1.000

.259.

810

147
.308
.094
425

.056
249

.863
1.000

007
080

1.000
1.000
014
.267

.002
.050

012

.001
.008

997
1.000

.283
541

1.000
1.000

.068
515

.062
251

013
158

013

974
1.000

258
.534

1.000
1.000
061
462
059
239
.008
121

.008
.039
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to the other. T has relatively superior power for BL and ESTAR, and
has power comparable to L in other cases.

4. CONCLUSIONS

We have presented a unified framework for various nonparametric
kernel regression estimators, based on which we have considered two
nonparametric tests T and L for neglected nonlinearity in regression
models. We investigate them in several aspects: (1) T vs. L, (2)
dependent process (AR) vs. independent process (Z1), (3) conditional
homoskedasticity (AR and Z1) vs. conditional heteroskedasticity (AR’
and Z1’), (4) naive bootstrap (B) vs. wild bootstrap (W).

When the errors are conditionally heteroskedastic, the wild boot-
strap LWZ test L” works pretty well. However, the use of the wild
bootstrap for T% does not correct the size problem. This difference
of the two statistics is due to the different construction of the test
statistics: L is constructed based on a moment condition implying
linearity in conditional mean, while T is constructed to detect any
possible improvement in terms of residual variance via a nonpara-
metric model over a linear model. Hence, the LWZ test can be
robustified to the presence of conditional heteroskedasticy in test-
ing for the linearity in conditional mean, while 7 will have power to
detect neglected nonlinearity in conditional mean as well as the
conditional heteroskedasticity. The choice of the bandwidth ¢ in L,
is more important for time -sefies processes than for independent
process. '
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