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ECONOMETRIC REVIEWS, 18(3), 259-269 (1 999) 

T H E  EFFECT OF AGGREGATION ON NONLINEARITY' 

Clive W.J. Granger and Tae-Hwy Lee 

University of California, San Diego, La Jolla, CA 92093 
University of California, Riverside, CA 92521 

Abstract: This paper investigates the interaction between aggregation and non- 
linearity through a monte carlo study. Various tests for neglected nonlinearity are 
used to compare the power of the tests for different nonlinear models to different lev- 
els of aggregation. Three types of aggregation, namely, cross-sectional aggregation, 
temporal aggregation and systematic sampling are considered. Aggregation is inclined 
to simplify nonlinearity. The degree to which nonlinearity is reduced depends on the 
importance of common factor and extent of the aggregation. The effect is larger when 
the size of common factor is smaller and when the extent of the aggregation is larger. 

1. Introduction 

Most important macroeconomic series are aggregates, both cross-sectional and tempo- 
ral. Total consumption may be the aggregate of many million individual consunlption 
figures, and actual consumption decisions may be made more frequently than the avail- 
able monthly official figures. I t  might also be claimed that many economic theorists 
believe that  relationships between economic variables are nonlinear and, possibly, it 
follows that  univariate series are generated by nonlinear mechanisms. In this paper 
the interaction between aggregation and nonlinearity is explored. The basic plan is 
to consider series generated nonlinearly a t  the micro level, to then form aggregated 
series, either cross-sectional or temporal, and then to test these series using various 
tests for nonlinearity. Thus nonlinearity can be said to be present if it is detected by 
part of a battery of appropriate tests. The questions that naturally arise are what 
tests of nonlinearity are appropriate and how powerful they are ? These questions 
have been investigated in a companion paper by Lee, White, and Granger (1993) - 
henceforth denoted by LWG. In that  paper the results of a large scale sirnulati011 using 
11 different tests are presented. The tests are based on many different approaches 
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260 GRANGER AND LEE 

including neural network theory, deterministic chaos, Volterra series expansions and 
various nonlinear parametric forecast models. In general it was found that  no sin- 
gle test dominated in all the nonlinear situations considered. In this paper four of 
the generally better performing tests in LWG are used. These tests are described in 
Section 3 and their power illustrated in Sections 4 and 5.' 

As these tests are for linearity it is relevant to ask how this concept should be 
defined.3 Suppose that  yt is the series of interest and let X t  be an information set 
available at  time t ,  

Xt : yt-i, Z tP j ,  i > 0, j 2 0. 

For forecasting purposes the second series Z t ,  which may be a vector, should only 
enter the information set with j > 0. 

Define gn,h = E(yn+hl X,) being the optimum least squares h-step forecast of 
yn+h made at  time n. g,,h will generally be a nonlinear function of the contents of 
X,. Denote fn ,h  to be the optimum linear forecast of yn+h made at  time n, being 
the best forecast tha t  is constrained to be a linear combination of the contents of X,. 
Further, define e,,h = (ynth - gn,h) the h-step forecast error. yt may be said to be 
completely linear if it obeys both conditions: 

(B) The conditional distribution of e,,h given X, is equal to the unconditional 
distribution of e,,h for all h. 

If yt obeys just condition A for h = 1, it can be called linear in mean. 
Although some tests have power against B being incorrect, especially against 

forms of heteroskedasticity such as ARCH, in this paper only condition A with h = 1 
is considered. 

2. Some Simple Theoretical Considerations 

Consider a bilinear model for a series y,t generated by 

where j = 1,. . . , N. For example yjt may be the consumption of the j t h  family a t  
time t .  ~ j t  is a zero mean white noise with decomposition 

where et , uj t  are independent and u j t ,  ukt are independent for all j ,  k. If &jt is viewed 
as the shock to the j t h  family, this has a shock component et common to all families, 
the common factor, plus an innovation ujt individual to that  family. Substituting 
into (2.1) and aggregating over j give 
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AGGREGATION AND NONLINEARITY 

where the notation Syt = zGl yjt is used. The last two terms are sums of uncorre- 
lated components and so will have variance O ( N )  whereas the term Net  has variance 
O(N2)  and so for N large this latter term will dominate. In this case (2.2) will be 
well approximated by, 

Syt = cret-1Syt-2 + N e t  (2.3) 

and so the aggregated series will still follow a bilinear model to a close approxima- 
tion. However, if et r 0, so that there is no common factor the first two terms in (2.2) 
will be absent and there will generally be little or no correlation between terms like 
zgl y3,t-2uj,t-1 and powers of Syt-2 or products Syt-2Sut-l and so little or no non- 
linearity will remain in the aggregate. This same type of analysis can be extended to 
other nonlinear models, such as nonlinear autoregressions, a threshold autoregressive 
and nonlinear relationship between stationary series using various approximations. 
The suggested results are similar; if common factors are present at  the micro level, 
then some form of nonlinearity is likely to be present in the aggregates but with- 
out the common factors nonlinearity is likely to be weak or even nonexistent when 
aggregation is over large number of components, as pointed out in Granger (1987). 

3. The Tests for Nonlinearity 

3.1. T h e  Neura l  N e t w o r k  Tes t  

White (1989) developed a test for neglected nonlinearity likely to have power against 
a range of alternatives based on a neural network model, a nonlinear flexible func- 
tional form being capable of approximating any measurable function. We consider 
an augmented single hidden layer network in which network output o (a scalar) is 
determined given input x as 

where 5 = (1 x')'; 9 is a vector of connection strength from the input layer to the 
output layer; y, is a vector of connection strength from the input layer to the hidden 
units; Dj is a (scalar) connection strength from the hidden unit j to the output unit; 
and $ is a squashing function (e.g., the logistic squasher). Input units 2 send signals 
to intermediate hidden units, then each of hidden unit produces an activation $ that  
then sends signals toward the output unit. The integer q denotes the number of 
hidden units added to the affine (linear) network. 

When q = 0, we have a two layer af ine  network o = 5'9. If the affine network is 
capable of an exact representation of the unknown function E(yt /  X t ) ,  then there exists 
a vector 8' such that Ho : E(yt lXt)  = XLQ* with probability one, which constitutes 
the null hypothesis of interest. This implies E(e:IXt) = 0 where et = yt - xis*, 
and thus et  is uncorrelated with any measurable functions of Xi ,  say h (Xi ) .  That  
is, E[h(Xt)e;] = 0 with probability one. Neural network test is based on a test 
function h chosen as the activations of "phantom" hidden units + ( ~ l r , ) ,  where r3 
are random column vectors independent of Xt. Thus E(QteS) = 0 under Ho where 
Qt = ( $ ( ~ ; r , ) ,  . . . , $ ( ~ i r , ) ) ' .  E (Ote t )  can be estimated by n-' C Qtdt where 
2t = yt -  XI^, and 8, is consistent for 8' when Ho is true. As in LWG we conduct 
test on q* < q principal components of Qt not collinear with X t  (denoted Q:) and 
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262 GRANGER AND LEE 

d 
compute nR2 -+ X2(q*) where R~ is uncentered squared multiple correlation from a 
standard linear regression of dt on Q t ,  x ~ . ~  This test is to determine whether or not 
augmenting the linear network by including an additional hidden unit with activations 
would permit an improvement in network performance. 

3.2. T h e  T s a y  Tes t  

Let yt be series of interest and denote Xt = (yt-l ,  . . . , yt-,)' being the information 
set used to explain yt. Xt may also include other explanatory variables. Tsay (1986) 
test is to determine the possibility of improving forecastibility by including product 
terms such as yt-jyt-k or Y:-j. 

3.3. T h e  W h i t e  D y n a m i c  In fo rmat ion  M a t r i x  Tes t  

White (1987) proposed a specification test based on covariance of conditional score 
functions. Let yt be series of interest and Xt the information set. As before, we 
consider a linear model yt = x i 0  + e t ,  where et N N(0, a2). The log likelihood for this 
model is 

1 2 1  log f t (Xt ,  0, a )  = constant - - log a - -(yt - ~ 1 0 ) ~  
2 2a2 

so that ,  with ut = (yt - ~ ; 0 ) / a ,  the conditional score function is 

where V is the gradient with respect to Q and a. Denoting 1; = l t (Xt,  OLIu*) l  correct 
specification implies E( l t )  = 0 and E (ltlt:,) = 0, t = 1 ,2 ,  . . . , T = 1, . . . , t .  Thus 
we base the test on m t  = Sveclt l i_,  where S is a nonstochastic selection matrix 
focusing attention on particular form of misspecification. Denoting i t  = l t (Xt,  en, 8,), - ,. 
7jZt = S vec ltli-,, and a,, 8, being QMLEs, n-' EL1 7jZt should be close to zero 

under Ho. Then it can be shown that  nR2 3 x2(*) under Ho, where R2  is the squared 
multiple correlation coefficient from the regression of fit = (yt - x;lle,)/8, on xt and 
k t ,  with kt being defined from kt = i t f i t ,  and q is the dimension of m t .  

3.4. T h e  R a m s e y  R E S E T  Tes t  

From the linear regression yt = x i 0  + et, let f t  = ~ l 9  be the one step linear forecast. 
Using the polynomials in f t  Ramsey (1969) proposed a test to test Ho : c2 = . . . = 
ck = 0 in the alternative model yt = X ~ Q  +c2 ff +. . .+ck f$ +vt  for some k 2 2. As in 
the neural network tests, to retain power without increasing possibility of collinearity, 
we form the principal components of (ff , . . . , f$) and regress dt on the p* < (k - 1) 
largest of them (except the first principal component so as not to be collinear) and 
xt, which gives an R' value. Then nR2 is distributed as x ' (~* )  for n large, under 
Ho . 

3.5. T h e  Simulat ion Design 

For all the simulations, the information set is X t  = yt-1 for univariate models, and 
X t  = x t  for bivariate models. 
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AGGREGATION AND NONLINEARITY 263 

In performing neural network tests the logistic squasher 

is used with y being generated from the uniform distribution on [-2, 21 and yt ,  X t  
being rescaled onto [0, 11. The number of additional hidden units to the affine network 
q = 10. q* = 2 largest principal components (excluding the first principal component) 
of these are chosen. 

For the White dynamic information matrix tests, appropriate construction of S 
gives 

rn; = 0-'( utut-1 Xtutut-1 Xt-1Wt-1 XtXt-1utut-1 ) 

so that q = 4. In RESET test k = 5 and p* = 1 are selected. 
5% critical values for the various tests were constructed either using the asymptotic 

theory or by simulation using a linear AR(1) model xt = 0 . 6 ~ ~ - ~  + ~ t ,  ~t N ( 0 , l )  
for sample size 200 and with 10,000 replications. The empirical power of the four 
tests at  5% level are computed using 1,000 replications for sample size 200. 

4. Effects of Cross-sectional Aggregation 

Micro data was generated in two ways, one using a univariate mechanism and the 
second is a bivariate case. The univariate models were 

(a)  Bilinear 
Y j t  = 0.7Yj,t-1Ej,t-2 + E j t  

(b) Threshold Autoregressive (TAR) 

(c) Sign Nonlinear Autoregressive (SGN) 

where sgn(x) = 1 if x > 0, 0 if x = 0, and -1 if x < 0. 

(d) Rational Nonlinear Autoregressive (NAR) 

0.7 l ~ j , t - 1  l 
Y j t  = + E j t .  

l ~ j , t - 1  I + 2 

These series were generated for t = 1,. . . ,n and j = 1 , .  . . .m ,  so that n is the 
sample size and m the extent of the aggregation. The values used are n = 200, and 
m = 1 (no aggregation) and m = 20. The input innovation had three forms, with 

v a r ( ~ ~ ~ )  = 1 all j 

where e t ,  qJt are independent, all j, and q j t , qk t  are independent for all k ,  j and e t ,  qJt 
are always nornlally distributed with zero mean. The three cases considered are 
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GRANGER AND LEE 

case (i) var(et) = 0 and var(vjt) = 1 
case (ii) var(et) = 0.5 and var(qjt) = 0.5 
case (iii) var(et) = 0.9 and var(vjt) = 0.1. 

Thus in case (i) there is no common factor and in cases (ii) and (iii) the common 
factor exists and is of different level of importance. 

The bivariate models take the form 

where xjt = 0 . 6 ~ ~ , ~ - 1  + ~ j t ;  a j t  N N(0 ,u2) ;  a j t ,  €jt  are independent and €jt  has the 
three cases as above. Thus any common factor for the yjt's comes through the xjt .  
Four values of u are used, u = 1,5 ,10,20 giving different signal-noise ratios. I t  is then 
assumed that both x and y (for their aggregates) are observed, and suitably expanded 
versions of the tests are used as discussed in the previous section. Two functions g(x) 
are used, x2 and exp(x). 

I t  is assumed that  the only quantities observed are Smyt = x,"=l yjt and equiva- 
lently Smxt,  where either m = 1 or 20 in the simulation. 

Table A1 shows a typical set of results, using the neural network test, 5% critical 
values and sample size 200. The values shown are the frequencies of times that  a 
null hypothesis of linearity is rejected, out of 1,000 replications, using the simulated 
critical values (results using the theoretical asymptotical critical values are shown in 
brackets). The first column shows the case of no aggregation, m = 1 and here the 
common factors are irrelevant, so the figures just illustrate the power of the neural 
network test against the various nonlinear models. For the four univariate models 
the power is seen to vary considerably, being low for the nonlinear autoregressive but  
very high for the sign nonlinear autoregressive models. When applied to the bivariate 
series, the power is excellent for the higher signal-noise ratios but naturally declined 
as this ratio goes to smaller. For these two bivariate cases, the signal to noise ratio 
var(g(x))/u2 is 

The power of the tests seem to be respectable even with a signal-noise ratio of 2% or 
less. Results with u = 1 and 20 are reported to save space. 

The second column shows similar results when aggregation over 20 microunits 
occurs and there is no common factor. In all cases the tests find nonlinearity less 
often, as suggested by the theory. The final two columns are with aggregation and 
different levels of common factor presence. As expected, more nonlinearity is found 
with aggregation and in bivariate cases even enhances nonlinearity compared to the 
no aggregation case. 

To show that these results do not depend on the test used Tables A2, A3, A4 show 
the comparable results for the three tests with n = 200 and 5% critical values. 

5. Effects of Temporal Aggregation 

A series may be generated a t  one time interval but only observed at a greater interval, 
leading to temporal aggregation of flow variable and systematic sampling of stock 
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T A B L E  A.1. 
Effects of Cross-Sectional  Aggregation 

N e u r a l  Ne twork  Test  

Model case (i) case (i) case (ii) case (iii) 
m = 1  m = 2 0  m = 2 0  m = 2 0  

BILINEAR 
(575) (205) (382) (562) 

(762) (165) (476) 
SGN 982 76 279 780 

(156) (54) (94) (151) 
SQUARE a =  1 1000 720 1000 1000 

(1000) (704) (1000) (1000) 
a = 20 283 64 871 999 

(264) (58) (860) (997) 
EXP u = l  1000 507 1000 1000 

Power using the simulated critical values is shown. Power using the asymp- 
totic critical values is shown in ( ). F'requencies of rejection out of 1,000 
replications are reported a t  5% level for sample size 200. 

T A B L E  A.2. 
Effects of  Cross-Sectional  Aggregation 

T s a y  Test  

Model case (i) case (i) case (ii) case (iii) 
m = l  m = 2 0  m = 2 0  m = 2 0  

BILINEAR 445 169 316 452 
(414) (146) (292) (429) 

TAR 52 7 1 56 68 
(42) (58) (43) (48) 

SGN 142 7 3  72  117 
(122) (61) (54) (98) 

NAR 229 75 148 215 
(191) (55) (126) ( 1  82) 

SQUARE c 7 =  1 1000 824 1000 1000 
(1000) (796) (1000) (1000) 

a = 20 370 6 7 924 1000 
(327) (47) (909) (1000) 

EXP u = l  1000 609 1000 1000 
(1000) (578) (1000) (1000) 

a = 20 373 72 889 979 
(343) (56) (871) (978) 
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GRANGER AND LEE 

TABLE A.3. 
Effects of Cross-Sectional Aggregation 

Dynamic Information Matrix Test 

Model case ( i)  case ( i)  case (ii) case ( i i i )  
m = 1  m = 2 0  m = 2 0  m = 2 0  

I 

I BILINEAR 995 56 1 1000 998 
(995) (540) (1000) (998) 

TAR 46 46 7 1 85 
(41) (41) (67) (76) 

SGN 876 102 358 726 
(868) (92) (347) (708) 

NAR 114 54 90 121 

TABLE A.4. 
Effects of Cross-Sectional Aggregation 

RESET Test 

Model case (i) case ( i )  case (ii) case ( i i i )  
m = 1  m = 2 0  m = 2 0  m = 2 0  

I 

I BILINEAR 428 168 309 438 
(408) (150) (286) (416) 

TAR 59 70 58 76 
(41) (57) (46) (61) 

SGN 369 78 11 1 235 
(330) (61) (84) (191) 

NAR 229 73 147 209 
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AGGREGATION AND NONLINEARITY 

T A B L E  B.1. 
Effects of Tempora l  Aggregat ion 

N e u r a l  Ne twork  Test  

Model No aggregation Systematic sampling Temporal aggregation 
k = 4  k = 1 0  k = 4  k = 10 

BILINEAR 589 310 116 154 43 
(575) (298) (107) (144) (38) 

TAR 780 59 57 53 47 
(762) (55) (49) (49) (41) 

SGN 982 66 43 163 4 5 
(98'3) (60) (37) (151) (40) 

NAR 179 58 74 44 43 
(156) (52) (61) (36) (37) 

T A B L E  B.2. 
Effects of T e m p o r a l  Aggregation 

T s a y  Test  

Model No aggregation Systematic sampling Temporal aggregation 
k = 4  k = 1 0  k = 4  k = 10 

BILINEAR 445 222 88 137 47 
(414) (197) (74) (120) (37) 

TAR 52 70 6 1 57 47 
(42) (51) (45) (44) (38) 

SGN 142 55 55 67 64 
(122) (38) (39) (54) (43) 

NAR 229 66 53 64 58 

variable. Systematic sampling occurs when a series st is observed at  every kth point, 
giving an aggregate series 

k Sr = Z k t .  

This may occur with a stock variable, such as temperature, price, money stock, wealth 
or inventory gellerated monthly but observed only quarterly, so that k = 3. However, 
some series cannot be measured instantaneously but have to be accumulated over a 
time period, like flow variables such as rainfall, sales or production. This gives a 
temporal aggregation where the aggregate is now 
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GRANGER AND LEE 

T A B L E  B.3. 
Effects of T e m p o r a l  Aggregat ion 

Dynamic  In fo rmat ion  M a t r i x  Tes t  

Model No aggregation Systematic sampling Temporal aggregation 
k = 4  k = 1 0  k = 4  k = 10 

BILINEAR 995 303 9 1 133 50 

(41) (54) (37) (56) (44) 
SGN 876 123 53 65 53 

(868) (110) (51) (57) (50) 
NAR 114 5 1 4 1 49 46 

T A B L E  B.4. 
Effects of Tempora l  Aggregat ion 

R E S E T  Tes t  

Model No aggregation Systematic sampling Temporal aggregation 
k = 4  k = 1 0  k = 4 k =  10 

L I 

I BILINEAR 428 222 87 136 48 1 

(41) (53) (46) (43) (39) 
SGN 369 5 1 55 67 62 

The sinlulation was organized by first generating series using the univariate mod- 
els discussed in the previous section and then forming temporally aggregated and 
systematically sampled series of 200 terms after aggregation using k = 4 and k = 10. 
Tables B1 to B4 show even when a test is powerful in the no aggregation case, the 
tests find less evidence of nonlinearity after either temporal aggregation or systematic 
sampling and generally this effect increases as the extent of the aggregation increases. 

The models considered in this study can all be characterized as being 'short mem- 
ory' in that their optinlum forecasts decline to the unconditional mean of the series 
as the forecast horizon increases. Thus, the expected effect of temporal aggregation 
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AGGREGATION AND NONLINEARITY 269 

on univariate nonlinear series is a decline of any structure, including nonlinearity as 
the series is sampled less frequently. However, nonlinear relationships between pairs 
of series can be expected to be less affected by temporal aggregation. 

6 .  Conclusions 

Through a simulation study it is found that  aggregation is inclined to simplify non- 
linearity. If common factors are present at  the micro level nonlinearity is likely to 
remain in the aggregate macro level, but  without common factors nonlinearity is likely 
to decline. I t  is also seen that  nonlinearity is reduced after temporal aggregation or 
systematic sampling. I t  is observed that  all these are true for all the types of univariate 
nonlinear series and bivariate nonlinear relationships considered in this paper. The 
degree to which nonlinearity is declined after aggregation depends on the importance 
of common factor and the extent of the aggregation. Generally the effect is larger 
when the size of common factor is smaller and when the extent of the aggregation is 
larger. 
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