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Abstract. This paper shows numerically that the lack of power and size distortions 
of the Dickey-Fuller type tests for unit roots (very well documented in the unit root 
literature) are similar to and in many situations even smaller than the lack of power 
and size distortions of the standard Student t tests for stationary roots of an 
autoregressive model. 
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1. INTRODUCTION 

If we open a contest to select the most mentioned sentence in time series 
econometrics or even applied macroeconomics, during the last 10 years, 
almost certainly the winner would be something like ‘the lack of power of the 
unit root test’. Many papers have shown numerically this lack of power and 
also the size distortions of the unit root tests. A partial list includes 
Agiakloglou and Newbold (1992), Bierens (1993), DeJong et al. (1992a, b), 
Dickey and Fuller (1979, 1981), Elliot et al. (1992), Hall (1992), Ng and 
Perron (1993, 1995), Perron (1989), Said and Dickey (1984), Schmidt and 
Phillips (1992), Schwert (1989) and a survey by Stock (1995). To the best of 
our knowledge, no paper has considered whether this lack of power is typical 
only in the unit root tests or whether it can also be found in any standard test 
for stationary roots (for instance, in tests for zero first-order correlation). 
This article claims that the Student t tests for stationary roots of an 
autoregressive (AR) model have as bad performance as and sometimes even 
worse performance than the Dickey-Fuller (DF) t type tests for unit roots. 

This paper does not claim that testing for a unit root is the same as testing 
for a stationary root. There are two main differences. First, the limit 
distribution in the unit root case is nonstandard and it depends on the 
specification of the deterministic component of the analyzed variable. Second, 
in economics, to be able to tell between 1.0 and 0.9 is more important than to 
be able to distinguish between 0.0 and non-zero or between 0.5 and 0.4. 
Nonrejection of the hypothesis of a unit root implies the existence of 
permanent shocks and also the possibility of having spurious regressions. 
Therefore all the effort and interest that has been dedicated to the unit root 
case is understandable, but these two differences are not enough to explain 
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the huge amount of papers that have been trying to convince the profession 
that the DF test has a big lack of power and awful size distortions. This paper 
only tries to show that the sentence ‘lack of power of the unit root tests’, 
although accurate in absolute terms, is totally inaccurate in relative terms. 
The power of a test should be judged in both dimensions. 

In order to show our claim, we re-do the experiments produced in the unit 
root literature, but this time to test not only for a root that equals one but 
also for a stationary root of an AR model. We compare the power and size 
distortions of the t tests in both scenarios, 1(1) and I(0). The analysis 
concentrates only on the t type tests because they are the most commonly 
used in practice, specially the DF test for unit roots. 

This paper is neither a survey on unit roots nor does it propose a new unit 
root test. The paper is organized as follows. Section 2 introduces the notation 
and the models used in the Monte Carlo experiment. Section 3 investigates 
the power of the t tests for the null hypotheses of 1(1) and I(O), in a model 
with AR errors. Section 4 analyzes the size distortion of the t tests for the 
same null hypotheses as in Section 3, first in a model with moving-average 
(MA) errors, and second in a model with heteroskedastic (GARCH) errors. 
Section 5 concludes. 

2. NOTATION AND MODELS 

Let the time series { y , }  be the stochastic process generated by the linear 
model 

Y f  = dl + Xf (1) 

dl = Po + P l t  

(1 - aL)x,  = u, 

(1 - pL)u, = (1 - 8L)ef  

where L is the lag operator. We assume that xo = 0, el i.i.d N(0, a2), p 
and 8 <  1. 

1 

LEMMA 1. Let C ( L )  = zT=,cjLj. Then 

(0 
C ( L )  = C(1) - (1 - L)C(L)  

where C ( L )  = C T = o ~ j ~ j ,  with c “ ~  = C r = j + l c k .  
(ii) Provided a. Z 0, 

C ( L )  = C(l/ao) - (1 - aoL)C*(L) 

where C*(L) = zi”,ocrL*j, with cT= (l/ao)’cj and L* = aoL. 
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A proof of the algebraic decomposition (i) can be found in Gelfand (1989, 
p. 160). This decomposition was used by Beveridge and Nelson (1981) to 
decompose economic variables into permanent and transitory components. 

The proof of part (ii) follows from applying (i) to the polynomial C*(L*) .  
Phillips and Solo (1992) show that a sufficient condition for (5) to make 

sense (cT=oZy < w) is that the polynomial C ( L )  is 1/2-summable, 
m 

~ j 1 ~ l C j 1  < w .  (7) 
j =  1 

It can be shown that condition (7) is sufficient for c~=o(c"~)2 < m. All the 
cases treated in this paper satisfy sondition (7). 

Substituting (4), (3) and (2) into (l) ,  using Lemma 1, and rearranging gives 
the above data-generating process (DGP) as a single equation model, 

m 

(1 - aOL)y, = h + p l t  + Ay,-, + C S i ( l  - c ~ ~ L ) y , - ~  + e, (8) 
i= 1 

where the parameter of interest is 

A =  1 - -  1 - -  (a- ao). ( Lo) 
The null hypothesis that { y , }  has an autoregressive root that equals a,,, 

H,: = CUO 

can be tested by the t ratio 
h 

h 
f. = - i =  1 , 2 , 3  
' sd(1) 

(9) 

where 1 and sd(fi), the standard error of 2, are obtained by applying 
ordinary least squares (OLS) to the following regressions R1, R2 and R3, 
respectively, 

R1: 

~ 2 :  

R3: 

Dyt = Ay,-, + c y = l S i D y , - i  + e, 

o y t  = 16 + A Y , - ~  + ~ , P , , S , D ~ , - ,  + e, 

Dy, = p,, + plf + Ay,-, + c f = 1 6 i D , - i  + e, 
where D = (1 - aoL). 

The 5% critical values of the t l ,  t2 and t3 tests, for T = 100, are tabulated 
in Table I for different values of ao. To generate these critical values it is 
assumed that d, = 0, p = 0 = 0 and p = 0. Under the null hypothesis of 
a = 1.0, the tests t l ,  t2 and t3 have nonstandard asymptotic distributions, see 
Hamilton (1994, p. 486) for a complete summary. These distributions depend 
on the specification of the deterministic component included in the regres- 
sions. The distributions are skewed to the left and have too many negative 
values relative to the Student f distribution. The asymptotic distribution of tl, 
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TABLE I 
CRITICAL VALUES (5% LEVEL, T = 100) 

[Y t l  f2  13 

1 .o -1.933 -2.889 -3.451 
0.9 -1.795 -2.209 -2.609 
0.8 -1.764 -2.050 -2.339 
0.7 -1.739 -1.965 -2.197 
0.6 - 1.724 -1.915 -2.113 
0.5 -1.716 -1.878 -2.048 
0.4 -1.704 -1.847 -1.993 
0.3 -1.689 -1.819 -1.948 
0.2 -1.674 -1.792 -1.912 
0.1 -1.664 -1.770 c -1.880 
0.0 -1.657 - 1.756 -1.846 
~ 

Notes: { y , }  is generated by y ,  = cuy,_, + e,, e, is i.i.d. N(O,l), t = 1, . . ., T = 100 and y ,  = 0. 
Three t ratios for the OLS estimate of 1 are computed: t ,  from the regression (1 - cuL)y, = 
Ay,-] + e,, t2 from the regression (1 - cuL)y, = + AyrFI + e, and t 3  from (1 - a L ) y ,  = 

+ plt + Ay,-, + e,. The 5% critical values are computed from 50000 replications. 

t2 and t3  is Normal (0, l) ,  for testing for a hypothesis of a stationary root 

The critical values of Table I will be used in the next two sections to 
(la( < 1.0). 

evaluate the power and size of the f tests. 

3. POWER COMPARISONS 

In this section we compare numerically the power of the one-sided t tests ( t l ,  
t2  and t 3 )  for nonstationary (NS) and stationary (S) roots. This comparison 
has been done for different values of the null hypothesis (ao = 1.0, 0.9, . . ., 
0.0) and different alternatives (a,, - a = 0.3, 0.2, 0.1, 0.05 and 0.01), 

(NS) H,: a,, = 1 versus Ha: a < 1 

( S )  H,: a = a,,, a. < 1, versus Ha: a < a,,. 
In Table I1 the DGP is 

(1 - aL)y,  = e, (11) 
and the regressions R1, R2 and R3 do not contain lags (p = 0) of 
(1 - aoL)y,. We only report results for a. = 1.0, 0.9, . . ., 0.0 and 
(ao - a) = 0.1 and 0.05. Other results are available upon request. 

The main feature of Table I1 is the drastic decrease in power of the DF test 
when the regression contains a trend and/or a constant term. This is a 
well-known result (see Stock, 1995). The reason for this decrease in power is 
the random collinearity that exists in the unit root case between a constant 
and y,-l and between a deterministic trend and yt- l .  For the stationary roots 
the power is very uniform across regressions, and although there is also a 
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TABLE I1 
POWER OF TESTING VARIOUS AUTOREGRESSIVE ROOTS 

a - a,, = -0.1 - = -0.05 

a0 a tl r 2  13 a0 a tl  t 2  r 3  

1.0 0.9 0.7766 0.3083 0.1826 1.0 0.95 0.3356 0.1150 0.0836 
0.9 0.8 0.4659 0.3789 0.3032 0.9 0.85 0.1966 0.1601 0.1334 
0.8 0.7 0.3605 0.3277 0.2846 0.8 0.75 0.1569 0.1430 0.1314 
0.7 0.6 0.3140 0.2964 0.2691 0.7 0.65 0.1416 0.1351 0.1273 
0.6 0.5 0.2878 0.2737 0.2564 0.6 0.55 0.1316 0.1305 0.1237 
0.5 0.4 0.2693 0.2610 0.2470 0.5 0.45 0.1269 0.1255 0.1208 
0.4 0.3 0.2608 0.2531 0.2425 0.4 0.35 0.1263 0.1235 0.1200 
0.3 0.2 0.2534 0.2466 0.2435 0.3 0.25 0.1248 0.1226 0.1217 
0.2 0.1 0.2513 0.2490 0.2445 0.2 0.15 0.1241 0.1236 0.1205 
0.1 0.0 0.2534 0.2508 0.2470 0.1 0.05 0.1262 0.1231 0.1197 
0.0 -0.1 0.2564 0.2495 0.2515 0.0 -0.05 0.1254 0.1231 0.1224 

Nores: 5% level, T = 100, loo00 replications, d, = 0 (Po = PI = 0), p = 0 = 0. a is the true 
autoregressive root in the DGP (i.e. under the alternative hypothesis) and a,, is the value of a 
claimed under the null hypothesis, H,,: a = a,,. The difference (a - a,,) measures the departure 
from the null hypothesis. The critical values in Table I are used. 

random collinearity between a deterministic trend and Y , - ~ ,  this collinearity 
does not show up in the limit distribution. 

Comparing both situations (NS and S) the only case where the DF test has 
clearly lower power than the t test for a stationary root a is when there is a 
trend in the regression ( t3) .  Many will argue (see Campbell and Perron, 1991) 
that this is the relevant case in practice because it is never known whether y, 
has a drift or not, and the t3  test is invariant to that. Therefore in applied 
research we are forced to run the regression R3. In Table 111, we investigate 
if this finding of lower power of the DF t3  test is robust to other standard 
misspecifications that occur in practice, like misspecifications in the number 
of lags p. In the stationary case, the inclusion of irrelevant lags of 
(1 - aoL)y,-l introduces collinearity in the regression models. This collinear- 
ity is not random but causes similar power problems (under local alternatives) 
to the ones created by a deterministic trend in the DF t3 test. 

To make the paper shorter and without loss of generality, we only report 
(through the rest of the paper) results for the following two cases, 

(NS) H,: a, = 1 versus Ha: a = 0.9 

(S) H,: a. = 0.5 versus Ha: a = 0.4. 

The selection of a metric, the distance between the null and the alternative 
hypotheses, to compare power in NS and S is not clear. There are several 
distance measures for stochastic processes in the literature (see Zinde-Walsh 
(1992) for a comparison of some of them). We have selected the one 
proposed by Piccolo (1990), that in our case is equivalent to the absolute 
distance (la,, - (YI = 0.1). We could also have chosen as a metric, the 
standard deviation of the finite sample distribution of i2 under the different 
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TABLE rrr 
POWER WITH AR(1) ERRORS 

(u = 0.9, LY~ = 1.0 (u = 0.4, a,, = 0.5 

P [ I  t 2  t 3  f l  t 2  t 3  

Using p = 0 
0.0 
0.1 
0.3 
0.5 
0.7 
0.9 
1.0 

Using p = 1 
0.0 
0.1 
0.3 
0.5 
0.7 
0.9 
1.0 

Using p = 4 
0.0 
0.1 
0.3 
0.5 
0.7 
0.9 
1 .o 

0.7766 
0.6251 
0.2767 
0.0526 
0.0026 
O.oo00 
O.oo00 

0.7409 
0.7320 
0.7071 
0.6666 
0.5855 
0.3428 
0.0551 

0.6277 
0.6270 
0.6044 
0.5743 
0.5123 
0.3185 
0.0552 

0.3083 
0.1711 
0.0273 
0.0018 
O.oo00 
0.0012 
0.1345 

0.2997 
0.2961 
0.2824 
0.2589 
0.2230 
0.1308 
0.0673 

0.2361 
0.2342 
0.2246 
0.2105 
0.1880 
0.1221 
0.0703 

0.1826 
0.0856 
0.0120 
0.0013 
0.0011 
0.0092 
0.0481 

0.1804 
0.1778 
0.1716 
0.1624 
0.1364 
0.0961 
0.0614 

0.1405 
0.1394 
0.1363 
0.1310 
0.1185 
0.0899 
0.0704 

0.2693 
0.0648 
o.oO05 
0 . 0 0  
O.oo00 
O.oo00 
O.oo00 

0.1347 
0.1219 
0.0862 
0.0513 
0.0263 
0.0088 
0.0033 

0.0535 
0.0531 
0.0491 
0.0473 
0.0445 
0.0421 
0.0354 

0.2610 
0.0627 
0.0005 
O.oo00 
O.oo00 
O.oo00 
O.oo00  

0.1333 
0.1199 
0.0861 
0.0549 
0.0290 
0.0098 
0.0043 

0.0561 
0.0542 
0.0528 
0.0501 
0.0473 
0.0452 
0.0359 

0.2470 
0.0606 
O.OOO4 
O.oo00 
O.oo00 
O.oo00 
O.oo00 

0.1297 
0.1155 
0.0851 
0.0540 
0.0302 
0.0112 
0.0070 

0.0549 
0.0563 
0.0530 
0.0513 
0.0494 
0.0469 
0.0428 

Notes: 5% level, T = 100, loo00 replications, d, = 0 (Po = PI = 0), 0 = 0. (Y is the truc 
autoregressive root in the DGP (i.e. under the alternative hypothesis) and a. is the value of a 
claimed under the null hypothesis, H,,: LY = ao. The difference ((u - ao) measures the departurt 
from the null hypothesis. Three t ratios for A are computed: t l  from the regression Dy, = Ay,-, + 
Cf,IGiDy,- i  + e,, t2 from the regression Dy, = b + Ay,-, + Cf,IGiDy,-i + e, and t 3  fron 
Dy, = b + p,t + AY,-~ + ~ p , , G , D y , _ ,  + e,, where D = 1 - a0L. p is the number of lagged Dyr- 
in the regressions. If p = 0 is used when p > 0, the number of lags is underparameterized. I 
p = 1, the number of lags is correctly parameterized. If p > 1, it is overparameterized. Tht 
critical values in Table I are used. 

null hypotheses. In this case the metric would have depended on T as well as 
on ao. The main conclusions of this paper are invariant to the chosen metric. 

In Table 111, the DGP is 

(1 - aL)y,  = (1 - pL)-'e, 

with p = (0.0, 0.1, . . ., 1.0). By Lemma 1, (12) can be re-written as 

Table I11 considers situations where the number of lags p is correctly 
specified (p = l ) ,  underparametrized (p = 0) and overparametrized (p = 4). 
The case of p = 4 is extremely important because as we mentioned before, 
the irrelevant variables (1 - aoL)y,-i, i = 2, 3, 4, are correlated with Y + ~ ,  if 
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y, is stationary. This case is in some sense similar to the DF t3 where the 
deterministic trend is correlated with yt - l .  

Several features of Table I11 stand out. For example, the power of the DF 
type tests is always higher than the power of the t ratio for the null 
hypothesis of a 0.5 root, when there are some lags in the regression model 
(p = 1 or p = 4). This is true even for p = 0. When there are no lags in the 
regressions, the only situation where the power of the DF is lower is for 1, 
with p = 0 (the result previously mentioned in Table I1 and so much cited in 
the unit root literature). These results indicate the strong conclusion, that in 
general the DF t type tests do not have less power than the t ratio tests for a 
stationary root, even if we include a deterministic trend in the regression 
model. 

4. SIZE COMPARISONS 

The most influential Monte Carlo study in the unit root literature is Schwert’s 
(1989), who found large size distortions in several unit root tests (DF is one 
of them) when the errors u, have an MA component. In this section following 
Schwert’s DGP we compare the size distortions of DF tests with the t tests 
for the null hypothesis that a. = 0.5. 

The DGP in Table IV is 

(1 - aoL)y, = (1 - 8L)e, (14) 
with 8 = (0.1, 0.3, 0.5, 0.7 and 0.9). Only positive values of 8 have been 
considered, not because we think they are the most relevant values in practice 
(maybe it is the opposite) but because these are the ones that produce higher 
size distortions in Schwert (1989). For the same reason Agiakloglou and 
Newbold (1992) consider only positive values for 8. 

Following Schwert (1989) and Agiakloglou and Newbold (1992) the tests 
are based on the OLS estimates of the approximating autoregressive regres- 
sions R1, R2 and R3. We also report the results of the tests based on the 
regression models selected by the Akaike information criteria (AIC). The 
most striking feature of Table IV is that the t test for the stationary root 
(ao = 0.5) has even larger size distortions than the DF test. This is even true 
for 8 = 0.9, if we choose the autoregressive model selected by the AIC. 

Recently there has been some concern about the size distortions when 
there is conditional heteroskedasticity in the errors. Kim and Schmidt (1993) 
show that the DF tests tend to overreject in the presence of GARCH errors. 
The DGP in Table V is 

(1 - %L)Yt = e, (15) 

erlZt--1 is N(0, h,) (16) 

h, = + @1e5-1 + hh-1 (17) 
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TABLE IV 
SIZE WITH MA(1) ERRORS 

Using p = pais 
0.1 

0.3 

0.5 

0.7 

0.9 

Using p = 0 
0.1 
0.3 
0.5 
0.7 
0.9 

Using p = 1 
0.1 
0.3 
0.5 
0.7 
0.9 

Using p = 4 
0.1 
0.3 
0.5 
0.7 
0.9 

Using p = 9 
0.1 
0.3 
0.5 
0.7 
0.9 

0.0723 
(0.98) 
[1.72] 
0.0810 

(1.81) 
[1.68] 
0.1060 

(2.57) 
[1.69] 
0.1735 

(3.62) 
[1.89] 
0.4364 

[2.92] 
(3.79) 

0.0813 
0.2137 
0.4465 
0.7916 
0.9946 

0.0531 
0.0829 
0.1889 
0.4686 
0.8771 

0.0531 
0.0553 
0.0648 
0.1311 
0.4429 

0.0585 
0.0598 
0.0591 
0.0652 
0.1694 

0.0775 

[1.80] 
0.0963 

(1.78) 
[1.74] 
0.1301 

(2.48) 
[1.74] 
0.2519 

(3.22) 
[ 1.951 
0.7596 

[2.48] 

(1.00) 

(2.00) 

0.0832 
0.2376 
0.5847 
0.9371 
1.oooO 

0.0506 
0.0788 
0.2100 
0.6203 
0.9986 

0.0542 
0.0543 
0.0618 
0.1334 
0.7259 

0.0619 
0.0614 
0.0617 
0.0689 
0.2486 

0.1007 
(1.03) 
[1.91] 
0.1486 

(1.66) 
[1.85] 
0.2077 

(2.16) 
[ 1.791 
0.4343 

(2.37) 
[1.96] 
0.9136 

[1.88] 
(1.02) 

0.0954 
0.3551 
0.7987 
0.9952 
1.oooO 

0.0578 
0.1039 
0.3082 
0.8170 
1 .oooO 

0.0536 
0.0534 
0.0645 
0.1711 
0.7891 

0.0621 
0.0605 
0.0578 
0.0682 
0.2506 

0.2498 
(0.77) 
(1.671 
0.7105 

(0.80) 
[1.67] 
0.8840 

(0.77) 
[1.66] 
0.9532 

(1.62) 

0.9766 
(4.13) 
[2.47] 

0.2248 
0.8863 
0.9996 
1.oooO 
1 .oooO 

[2.01] 

0.0658 
0.2092 
0.7226 
0.9902 
0.9998 

0.0467 
0.0499 
0.0791 
0.2696 
0.7430 

0.0581 
0.0586 
0.0598 
0.0743 
0.2697 

0.2538 
(0.82) 
(1.721 
0.7062 

(0.W 
[1.72] 
0.8816 

(0.81) 
[1.71] 
0.9523 

(1.66) 

0.9729 
(4.14) 
[2.47] 

[2*041 

0.2239 
0.8794 
0.9996 
1 .oooo 
1.oooO 

0.0650 
0.2046 
0.7080 
0.9872 
0.9997 

0.0505 
0.0527 
0.0773 
0.2549 
0.6882 

0.0615 
0.0585 
0.0612 
0.0770 
0.2387 

0.2730 
(0.90) 
[1.86] 
0.7264 

(0.89) 
[1.83] 
0.8964 

(0.92) 
[1.85] 
0.9531 

(1.89) 
[2.19] 
0.9673 

(4.29) 
[2.51] 

0.2177 
0.8722 
0.9994 
1 .m 
1.oooO 

0.0636 
0.2007 
0.6868 
0.9833 
0.9994 

0.0507 
0.0525 
0.0778 
0.2423 
0.6302 

0.0621 
0.0613 
0.0614 
0.0779 
0.2077 

Nores: 5% level, T = 100, loo00 replications, d, = 0 (Po = P1 = 0) ,  p = 0. (r = a,, to examine the 
size. The number of lags paic is chosen using the AIC among p = 0 to 9. When p = paic is used, 
the mean of paic and the standard deviation of psie in loo00 replications are reported in the 
parentheses and brackets, respectively. The 95% confidence interval of the empirical size is 
(0.0456, 0.0544), since if the true nominal size is s (s = 0.05), the observed size follows the 
asymptotic normal distribution with mean s and variance s(1 - s)/lOOOO for loo00 replications. 
The critical values in Table I are used. 
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TABLE V 
SIZE WITH GARCH( 1 , l )  ERRORS 

ffo = 1.0 (YO = 0.5 

(4 4 44 f l  h t 3  t l  t 2  t 3  

When + ~#5< 1 and (Po= 1 - - 4 
(1 0 0 ) 0.0493 0.0500 0.0503 0.0481 0.0490 0.0483 
(0.1 0.3 0.6 ) 0.0518 0.0761 0.0777 0.1011 0.1007 0.0998 
(0.05 0.3 0.65) 0.0499 0.0825 0.0824 0.1063 0.1055 0.1041 
(0.05 0.1 0.85) 0.0506 0.0620 0.0586 0.0610 0.0617 0.0626 

When +, + 4 = 1 and +, = 0.3 
(0.OOOl 0.3 0.7) 0.0412 0.0956 0.0939 0.1131 0.1112 0.1074 
(0.01 0.3 0.7) 0.0505 0.0956 0.0939 0.1131 0.1112 0.1074 

0.3 0.7) 0.0535 0.0956 0.0939 0.1131 0.1112 0.1074 
0.0939 0.1131 0.1112 0.1074 (100 0.3 0.7) 0.0535 0.0956 

When + A =  1 and 9, =0.1 
(0.OOOl 0.1 0.9) 0.0469 0.0710 0.0657 0.0647 0.0642 0.0647 
(0.01 0.1 0.9) 0.0503 0.0627 0.0597 0.0635 0.0642 0.0646 

0.0599 0.0637 0.0642 0.0642 (100 0.1 0.9) 0.0497 0.0623 

Notes: 5% level, T = 100, loo00 replications, d,  = 0 (bo = = 0), p = 0 = 0. (Y = a0 to examine 
the size. h, = &, + + &h,-,. ho = 1. The critical values in Table I are used. &, is simply a 
scale parameter when 4 > 0. This is true only if a fairly large number of initial observations are 
discarded. When 4 is very small, ho = 1 is initialized too far in the right tail of the stationary 
distribution of the process h,, and so h, tends to decline as t gets large. Thus, in order for the 
results not to depend on 4 for fixed ho, the first 500 observations were discarded. 

(1 

0.1 0.9) 0.0493 0.0623 0.0599 0.0637 0.0642 0.0642 (1 

where Z,-l is the information available at time t - 1. Let z ,  = e,/h:’2 be i.i.d. 
N(0,l) and ho = 1. Nelson (1990) shows that the h, process has a strictly 
stationary and ergodic distribution if and only if $o > 0 and E{ln(& + 
$lzi} < 0. By Jensen’s inequality and the strict concavity of In ( x ) ,  E(1n (& + 
G l z , ) }  <In {& + cP,E(z;)}.  If E ( z : )  = 1, then + s 1 are 
sufficient conditions for the process h, to be strictly stationary and ergodic. 
When & > 0 and $1 + & S 1, it is seen from Table V that the size distortions 
are slightly larger for the stationary root tests than for the unit root tests. 

Summarizing, the results in this section show that in general the size 
distortions of the DF type tests are similar or even smaller than the size 
distortions of the standard t ratio tests for a stationary root. 

> 0 and 

5 .  CONCLUSIONS 

In this paper we compare numerically the lack of power and size distortions 
of the DF t type tests, with the lack of power and size distortions of the 
standard t ratio tests for stationary AR roots. 

Two clear conclusions emerge from our analysis. First, the DF t type tests 
do not have less power than the t ratio tests for a stationary root, when the 
number of lags is unknown (in practice always). This is true even if we 
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include a deterministic trend in the regression. In other words, the well- 
known result of lack of power of the DF test when there is a deterministic 
trend in the regression model is not robust (in relative terms) to correlated 
errors. Second, the size distortions of the t tests for stationary roots are as big 
as the ones of the DF tests for unit roots. This is the case with MA errors as 
well as GARCH errors. 
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