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Abstract

We examine the performance of Johansen’s (1988) likelihood ratio tests for cointegra-
tion in the presence of GARCH and compare with other cointegration tests. The tests
tend to overreject the null hypothesis of no cointegration in favor of finding cointegra-
tion, but the problem is generally not very serious.
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1. Introduction

Cointegration is an important issue in time series and conditional hetero-
skedasticity seems ubiquitous in macro and financial time series. In this paper
we examine the performance of Johansen’s (1988) likelihood ratio tests for
cointegration under the presence of conditional heteroskedasticity of the
GARCH form (Engle, 1982; Bollerslev, 1986; Bollerslev, Engle, and Nelson,
1995). Comparisons are also conducted with the tests of Dickey and Fuller
(1979, DF hereafter) and Sargan and Bhargava (1983).

The main assumption of the Johansen tests is that the disturbances in vector
error correction models are ii.d. Gaussian. Many studies have examined the
performance of the Johansen tests under various situations where the assump-
tions are violated. Cheung and Lai (1993), Gonzalo (1994), Reimers (1991), and
Reinsel and Ahn (1992) have examined the effect of dynamic components of the
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system on the performance of the Johansen tests. Gonzalo and Pitarakis (1994)
examine the effect of the dimension of the system. Gonzalo and Lee (1995)
consider situations where variables are not exactly I(1) but are very difficult to
tell from I(1) using standard unit root tests. Franses and Haldrup (1994) examine
the effect of outliers. Cheung and Lai (1993) and Gonzalo (1994) examine the
effect of non-Gaussian error distribution. In many of these studies it is found
that the Johansen procedure tends to find spurious cointegration more often
than it should.

Cheung and Lai (1993) examine the bias in the test size duc io nonnormal
innovations, including nonsymmetric and ieptokurtic ones. They find that the
Johansen tests are reasonably robust to excess kurtosis. A commonly known
source of leptokurtic innovations is conditional heteroskedasticity, which leads
to a heavy-iailed distribution. In this paper we examine the results of Cheung
and Lai (1993) more specifically by considering the case that the error variances
follow a GARCH(1,1) model. We examine the empirical size and power of the
Johansen trace test (trace, hereafter) and the Johansen maximum eigenvalue test
{maxeigen). For comparison, we also consider the DF tests and the cointegrating
regression Durbin—Waton test (CRDW) studied by Sargan and Bhargava
(1983). The DF 1-statistic (denoted 7) is the usual t-value from the DF OLS
regression, and another DF test statistic, T (& — 1), is obtained using the OLS
estimate of the first-order autoregressive coefficient « of the DF regression and
the sample size T.

Our experiment is an extension of the work by Kim and Schmidt (1993, KS
hereafter) on unit root tests to the cointegration tests. KS examine the DF unit
root tests when the errors are conditionally heteroskedastic. They find the DF
tests overreject but only moderately. Our results are similar to and confirm the
results of Cheung and Lai and KS. These cointegration tests tend to overreject
the null hypothesis of no cointegration in favor of finding cointegration in the
presence of GARCH errors, but the bias is not very serious. The results of KS for
the DF unit root tests with GARCH errors generally carry over to cointegration
tests under the presence of GARCH errors.

2. The simulation design

in the experiment for examining the size of the tests, we generate noncointe-
grated systems with GARCH(1,1) errors. Let X, = (xy, ... x5) be an N x 1
vector of integrated series with AX, = ¢,. The error vector ¢ = (ey, ... ex,) is
assumed to follow an N-variate conditional normal distribution with
E(e,|.#,_1) =0 and E(e2|.%#,_,) =62, where i = 1, ... ,N, #,_, is the o-field
generated by all information available at time ¢ — 1, and

05 = io + dieli—1 + G207y
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Let z, = e,/0;, be iid. with E(z,) =0, var(z;) = 1, and E(z;z;) =0, i #}.
Drawings of the pseudo random innovations z;,, for i=1,...,N and
t=1, ..., T + d, are performed from the standard normal distribution. The first
d = 500 observations are discarded.

We consider T = 100, 1000 and N = 2 with varicus choices of parameter
values of (Pip.¢i1,¢iz), i=1,2. As we usec the same parameter values
(Gi0, Dir» $i2) for all i, we use the simpler notation 67 and (¢o, @1, ¢2), omiiting
the index i in reporting the results. We use T = 1000 to examine the large-
sample properties for the case when the asymptotic theory is not available. We
generate the critical values for T = 100, 1000, based on 10,000 replications. For
consistency, we use the same seed for all the simulations so that we work with
the same random numbers. All simulations are based on 10,000 replications. All
the reported results are at the nominal 5% significance level. The asymptotic
95% confidence interval of the empirical size is (0.0456, 0.0544). In all simula-
tions to compute the residual-based test statistics (such as t, T(& — 1), and
CRDW), x,, is used as the dependent variable in the cointegrating regressions.

In the experiment for examining the power of the tests, we generate bivariate
cointagrated series with GARCH errors. The system generated is
Axy = — 02(x, -1 — X24-1) + €1, and Ax,, = e,,, Where e, and e,; have the
conditional variances of the GARCH(1,1) form discussed above. As we consider
only a particular data generating process (DGP) the power of the test is
dependent on the specification of the DGP, the results may only be illustrative.
For a general study, see the method used in Johansen {1989) who investigates the
power function using the theory of near-integrated processes developed in
Phillips (1988).

Following KS, the DF z-static with White’s (1980) correction for hetero-
skedasticity is also examined. In computing the size and power of the t-statistic
with the White correction, we use two different critical values. One critical value
is obtained from the 5% low tail percentile of the DF z-statistic with the White
correction. The other critical value is obtained from the 5% low tail percentile of
the DF t-static without the correction (the same one used for 7). The size and
power using the first critical value (with the White correction) are reported
under the notation ‘z-White’, and the results using the second critical value are
reported under the notation ‘z’-White'.

The paper is organized as follows. Tables 1, 3, 4, 5, and 6 show the empirical
size of tests, the frequency that the null hypothesis stating that truly noncointe-
grated processes are not cointegrated is rejected in 10,000 trials. Table 2 shows
the empirical power of tests, the frequency that the null kypothesis stating that
truly cointegrated processes are not cointegrated is rejected in 10,000 trials. {z;,}
are generated from the standard normal distribution, except for Table 5 where
{z;} are drawn from the Student-t distribution. Asymmetric conditional hetero-
skedasticity of the exponential GARCH (EGARCH) form and the time-varying
conditional covariance are also considered in Table 6.
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3. Resuits

Table | contains the results on the size of the tests. The size distortion is larger
when ¢, + ¢, is larger. The condition for the existence of the unconditional
fourth moment is 3¢? + 2, ¢, + ¢3 < 1 (Bollerslev, 1986); accordingly, the
condition is ¢, < 0.606if ¢; = 0.3 and ¢, < 0.890if ¢, = 0.1. In many applica-
tions with high-frequency financial data the estimate for ¢, + ¢, turns out to be
very close to one and ¢, is almost zero. For example, French et al. (:1987) obtain
the sum of the GARCH parameters equal to 0.996 and a very small (but
significant) estimate ¢, = 6e-7 for a daily stock market return process. For the
same value of ¢, + ¢, the size distortion is bigger with a higher ¢, (see also
Table 4). This is because, fixing ¢, + ¢, the unconditional kurtosis increases as
¢, increases (Bollerslev, 1986}. The size bias generally increases with sample size
T when ¢ + ¢, =0999, while it generally decreases with T when
¢1 + ¢2 = 0.9 and 0.95.

In Table 2, we investigate the power of the tests. As the system generated is
Axy = —02(xy -1 — X24-1) + €1, and Ax,, = e, the error correction term
w, = xy, — X3, follows an AR(1) model with the first autoregressive coefficient
equals to 0.8, i.e, w, = 0.8w,_, + {,, where {, = e|, — e,, is a white noise. The

Table |
The size of the tests at 5% level

T 100 1000 100 1000 100 1000
($1.92) (0.3,0.6) {0.3,0.65) {0.3,0.699)

trace 0.0721 0.0609 0.0774 0.0648 0.0946 0.0987
maxeigen 00716 0.0606 0.0790 0.0670 0.0970 0.1032
CRDW 00712 0.0648 00753 0.0784 0.0806 0.1217
T@G-1) 00711 0.0630 0.0756 00755 0.0819 0.1188
T 0.0696 00528 0.0748 0.0748 0.0818 0.1195
7-White 0.0449 00413 0.0439 00356 0.0428 0.0266
- White 00907 0.0650 0.0883 0.0539 0.0845 0.0438
(P12 {0.1,0.8) (0.1,0.85) (0.1,0.899)

trace 00571 00521 00612 00548 0.0683 0.0803
maxeigen 0.0565 00531 00617 0.0566 0.0674 0.0865
CRDW 0.0548 0.0507 0.0545 0.0546 0.0578 0.0867
TG-1) 0.0557 0.0506 0.0568 0.0542 0.0587 0.0882
T 0.0560 00511 00572 00530 0.0600 0.0885
1-White 00474 00475 00479 00476 0.0470 0.0335
7'~ White 0.0984 00747 0.0989 00743 0.0969 0.0582

do=0d(l ~¢; — i) ol =1.
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Table 2
The power of the tests at 5% level

T 100 1060 100 1000 100 1000 100 1000
($1.92) 0,0) (0.3,0.6) (0.3,0.65) (0.3,0.699)
trace 0.9856 1.0000 09594 1.0000 09488 09999 09278 1.0000
maxeigen 0.9906 1.0000 09637 1.0000 09537 09999 09345 1.0000
CRDW 0.7056  1.0000 0.6884 1.0000 0.6828 1.0000 0.6773  1.0000
T@E-1 0.6750 1.0000 0.6669  1.0000 0.6635 09999 0.6584 0.9999
T 06782 1.0000 0.6680 0.9999 0.6634 09999 0.6579 0.9999
t-White 0.5283  1.0000 0.3504 0.9932 0.3274 09733 0.2974 09056
t’- White 0.7335 1.0000 0.5295 09946 04964 09786 04584 09210
(¢1.¢3) (0.1,0.8) (0.1,0.85) (0.1,0.899)

trace 09797 1.0000 09731  1.0000 09284 1.0000
maxeigen 09834 1.0000 09784 1.0000 09356 1.0000
CRDW 06991 1.0000 0.6975 1.0000 0.6885 1.0000
T@—1) 0.6762  1.0000 0.6720 1.0000 0.6676  1.0000
T 0.6750  1.0000 0.6713  1.0000 0.6684 1.0000
1-White 04719  1.0000 0.4626 1.0000 04495 09977
7'- White 0.6746  1.0000 0.6645 1.0000 0.6394 0.9991
@0 = 63(1 — ¢; — @), 6% = 1. The data are generated from 4x,, = — 0.2(X; .., — X24-1) + €3, and
Axy = ey

regression-based tests for cointegration in (x,x,,)’ is to test for a unit root in w,
when {, is conditionally heteroskedastic. A comparable simulation result when
(01,¢2)=(0,0) and T =100 may be found in Engle and Granger (1987,
Table II), where the power of CRDW and 7 are simulated for the case when
w; = 0.8w,_; + {, without GARCH in {,. The power of the Johansen tests in
Table 2 for T = 100 is higher than that of the DF and CRDW tests. When the
conditional heteroskedasticity is stronger (i.e., when ¢, + ¢, is higher and ¢, is
larger if ¢, + ¢, is the same), all of the tests have lower power even when they
are oversized.

As KS conclude that the White correction for 7 for testing unit roots is
generally helpful, we consider it for testing cointegration. The results in Table 1
shows that Wiite’s correction, t-White (but not 7-White), may improve the size
distortion problem, especially when (¢, + ¢,) is close to one. However, even
if this optimistic perspective is taken for t-White or v-White statistics, the
story is only half-told, since the power of the tests must come into question.
Although KS (p. 293) notice that the empirical size falls significantly below the
nominal size when the White correction is made, especially for large T, they did
not examine the power performance of t-White (or 7-White). It seems that
White's heteroskedasticity correction lowers the power of the DF test when the
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heteroskedasticity is larger (when ¢, + ¢, is larger and ¢, is larger if ¢ + ¢, is
the same).

Nelson (1990a) shows that if ¢ = 0 and E[In(¢, + ¢,22] <0, then 62 -0
with probability one from any starting point. In particular, IGARCH is degener-
ate if ¢ = 0. Consequently, if ¢o = 0, the components in X, = (x;,x3,)’ tends to
zero when t gets large and they behave like being cointegrated (trivially), and
therefore the tests reject the null hypothesis of no cointegration. But this
degenerate case is not empirically interesting, since in the real world volatility
does not seem to decline inexorably toward zero over time. Nelson (1990a) also
shows that the 67 process has a strictly stationary and ergodic distribution if and
only if ¢o > 0 and E[In(¢; + ¢,23)] < 0. In particular, IGARCH with ¢¢ > 0
has a strictly and ergodic limit distribution. Therefore there is a fundamental
difference between ¢o = 0 and ¢ small but positive. We thus investigate the
cases with ¢ > 0 in Table 3, where we set ¢, + ¢ = 1 and vary ¢,.

When ¢ > 0, ¢, is simply scale parameter - e.g., doubling ¢, shifts the
density of In(?) a distance In(2) to the right. The results are invariant to changes
in the initial variance 63, so long as ¢,/6?3 is held constant. In our experiment,
however, we fix 62 (at g4 = 1) and change ¢,. Will ¢, affect the size of the tests?
No, if a Monte Carlo is properly designed. If ¢¢ is very small, 63 =1 is
initialized too far in the right tail of its stationary distribution, so ¢? tends to
decline as ¢ gets large. Thus, in order for the results not to depend on ¢, for fixed
62, d should be fairly large. Discarding enough observations makes the empiri-
cal sizes in Table 3 very similar for all ¢, > 0.!

To be comparable with KS’s results we also consider an experiment in KS’s
Table 4, following the parameterization of Nelson (1990b), where ¢, = 0.017,
¢1=039"2 ¢, =1 — ¢, 65 = 1. The performance of the tests improves as
y declines, since the unconditional kurtosis becomes smaller as ¢, declines. This
is also observed in Table 1, where the size distortion is more serious when
¢; = 0.3 than when ¢, = 0.1. The problem is worse when T is larger.

So far we have generated {z,} from the standard normnal distribution. In
Table 5 we simulate the series {z;} from the Student-t distribution with the
degree of freedom (v) being equal to 5 and 8. The values of v are chosen based on
the empirically estimated v by Bollerslev (1987) and Baillie and Myers (1991).
The kurtosis of the Student-t density is given by 3(v — 2)/(v — 4) for v > 4 it is
9 for v =5 and 4.5 for v = 8. The results for (¢,, §,) = (0.3, 0.65) are reported.
When v = 8, the sizes of the tests are similar to those reported in Table 1 using

' We thank a referee for drawing our attention to this point. We choosc d = 500 after examining
plots. When ¢, = 0.0001 in Table 3, but if only d = 50 obscrvations arc discarded, the empirical size
is very much different than reported (for example, when ¢, = 0.0001, the size of the trace test is
0.2277 for T = 100 and 0.4382 for T = 1000). When ¢, = 0.01 or larger, we find that either using
d = 50 or d = 500 does not matter, suggesting that d = 50 is enough when ¢, is not too small.
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Table 3
The size of the tests at 5% level

o 0.0001 0.01 1 100

T 100 1000 100 1000 100 1000 100 1000
trace 0.0933  0.0937 0.0929 0.0997 00914 01006 00912 0.1003
maxeigen 0.0956  0.0990 0.0948 0.1052 0.0922  0.1060 00919 0.1060
CRDW 0.0810 0.1228 0.0810 0.1228 00810 01228 0.0810 0.1228
T@-1 00822 0.1204 0.0822 0.1203 00822 0.1203 00822 0.1203
T 00819 0.1215 0.0819 0.1214 0.0819 01214 00819 0.1214
7-White 0.0431 0.0263 0.0431 0.0263 0.0431 00263 00431 00263

7- White 00845 0.0437 0.0845 0.0437 0.0845 00437 00845 0.0437

¢| = 0.3, ¢2 = 0.7, 0'(2) =1.

Table 4

The size of the tests at 5% level

bl 1 009 0.01

(do. 1, 92) (0.01,03,0.7) (0.0009,0.09,0.91) (0.0001,0.03,0.97)

T 100 1000 100 1000 100 1000
trace 00929 0.0997 0.0661 0.0817 0.0545 0.0677
maxeigen 0.0948 0.1052 0.0657 0.0859 0.0536 0.0753
CRDW 0.0810 0.1228 0.0575 0.0842 0.0514 0.0598
T@E@—-1) 0.0822 0.1203 0.0582 0.0876 0.0522 0.0635
T 0.0819 0.1214 0.0587 0.0887 0.0520 0.0650
t-White 0.0431 0.0263 0.0480 0.0345 0.0502 0.0480
t'-White 0.0845 0.0437 0.0982 0.0572 0.1051 0.0766

$o =001y, ¢, =039, ¢, =1 — ¢, a3 = 1.

the normal distribution. However, when v = 5, the size distortion becomes
larger.

In an attempt to capture the asymmetric impact of innovation on volatility,
Nelson (1991) develops the EGARCH model of the form

In(6?) = oo + a1(1z,=1] — E|2,—,]) + 02,y + a2ln(a7- ).

He shows that 0 is significantly negative for modeling the stock market index
volatility, suggesting that the variance tends to rise (fall) when the past innova-
tion is negative (positive) in accordance with the empirical evidence for stock
returns. In the first part of Table 6, we generate series with the conditional
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Table 5

The size of the tests at 5% level, t-distribution (v = degrees of freedom)

v 8 5 8 5 8 5

T 100 100 100 100 1000 1000
(D1, 92) 0.0) (0.3,0.65) (0.3,0.65)

trace 0.0560 00508 0.0776 0.0842 0.0717 0.0972
maxeigen 0.0554 0.0497 0.0794 0.0846 0.0734 0.1032
CRDW 0.0529 0.0560 0.0859 0.0888 0.0847 0.1273
T@-1) 0.0516 6.0544 0.0851 0.0889 0.0805 0.1262
T 0.0522 0.0544 0.0858 0.0867 0.0815 0.1257
-White 6.0457 00364 0.0416 0.0382 0.0323 0.0256
7’-White 0.0921 0.0809 0.0858 0.0767 0.0511 0.0446

o = 03(1 — ¢ — ¢2), 03 =1

variances of EGARCH. We use a5 = — 0.0082, o; = 0.19, and a, = 0.91, which
are the parameter values estimated in French and Sichel (1993), who model
quarterly U.S. real GNP for 1947:2 to 1991:1. Their estimated 0 is ~ 0.19. The
asymmetric volatility with 0 = — 0.19 does not seem to make much difference
from the previous cases with symmetric GARCH models. However, when we
increase the symmetric volatility parameter to # = — 0.50, the bias of the
empirical size becomes larger.

Although we have reported the results under the assumption that the condi-
tional covariances are zero for all ¢, E(ey,e2,| ;- 1) = 0, we also experimented
with time-varying conditional covariances in the second part of Table 6. The
conditional covariance is E(eq,e5|.%; - 1) = p,64,62,, where p, is the conditional
correlation. Let us assume that the conditional correlation is constant over time,
ie, p, = p for all ¢, as in Bollerslev (1990). We use this specification of the
time-constant conditional correlation because we want to control only one
parameter p. The data z,, is generated from the standard normal distribution,
and z3, = pzy, + (1 — p?)'/2z5,, where z3,, where z,, is generated from the stan-
dard normal distribution and independent of z,,. Thus Ez,, = Ez, =0,
Ez?, = Ez%, =1, and E(z,25) = p. The results with p =0, 0.5, and 0.9 are
reported.2 The GARCH parameters used are (¢;,¢;)=(03, 0.65),
¢o = 6(1 — ¢ — ¢3), and 63 = 1. It is shown that the size distortion increases
moderately with p.?

2 A large p is very likely in practice. For example, in Kroner and Sultan (1993), estimated p is ranged
from 0.96 to 0.99 for weekly spot and future foreign currency series.

31 ¢y = ¢ =0, p does not affect the tests at all.
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Table 6
The size of the tests at 5% level, EGARCH and time-varying conditional covariance, T = 100
EGARCH Time-varving conditional covariance
0= -0.19 f#=—050 p=0 p=05 p=09
trace 0.0580 0.0803 0.0774 0.0810 0.0920
maxeigen 0.0574 0.0772 0.0790 00830 0.0946
CRDW 0.0613 0.1070 0.0753 00819 0.0965
T@E-1 0.0629 0.1097 0.0756 0.0836 0.0999
T 0.0621 0.1105 0.0748 0.0838 0.0965
t-White 0.0457 0.0301 0.0439 0.0452 0.0445
7’-White 0.0965 0.0605 0.0883 00914 0.0899

1. EGARCH: In(6}) = ap + ay(|2(~1] — E{zy=1 |} + 0z, + x3In{c%,), where o= —~ 0.0082,
o =019, a, =091, and E|z,-,| = (2/a)"2

2. p = Ez122| Fi- 1), (91, 02) = (0.3,065), o = 63(1 — by — 2), 65 = 1.

4. Concluding remarks

We examine the performance of varicus tests for cointegration under the
presence of GARCH. These tests are generally oversized, but not very seriously,
except when ¢, + ¢, is close or equal to unity and ¢, is large. The White (1980)
heteroskedasticity correction on the Dickey—Fuller tests improves the size of the
test but lowers power performance. The size distortion under the presence of
conditional heteroskedasticity increases when the Student-t distribution,
EGARCH, and time-varying conditional covariance are considered.
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