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Abstract 

We examine the performance of Johansen's (1988) likelihood ratio tests for cointegra- 
tion in the presence of GARCH and compare with other cointegration tests. The tests 
tend to overreject the null hypothesis of no cointegration in favor of finding cointegra- 
tion, but the problem is generally not very serious. 

Key words: Cointegration test; GARCH 
JEL classification: CI 5; C32 

1. Introduction 

Cointegration is an important issue in time series and conditional hctcro- 
skedasticity seems ubiquitous in macro and financial time series. In this paper 
we examine the performance of Johansen's (1988) likelihood ratio tests for 
cointegration under the presence of conditional heteroskedasticity of the 
GARCH form (Engle, 1982; Bollerslev, 1986; Bollerslev, Engle, and Nelson, 
1995). Comparisons arc also conducted with the tests of Dickey and Fuller 
(1979, DF hereaft¢0 and Sargan and Bhargava (1983). 

The main assumption of the Johansen tests is that the disturbances in vector 
error correction models are i.i.d. Gaussian. Many studies have examined the 
performance of the Johansen tests under various situations where the assump- 
tions are violated. Cheung and Lai {1993), Gonzalo (1994), Reimers (1991), and 
Reinsel and Ahn (1992) have examined the effect of dynamic components of the 
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system on the performance of the Johansen tests. Gonzalo and Pitarakis (1994) 
examine the effect of the dimension of the system. Gonzalo and Lee (1995) 
consider situations where variables are not exactly I(1) but are very difficult to 
tell from 1(1) using standard unit root tests. Franses and Haldrup (1994) examine 
the effect of outliers. Cheung and Lai (1993) and Gonzalo (1994) examine the 
effect of non-Gaussian error distribution. In many of these studies it is found 
that the Johansen procedure tends to find spurious cointegration more often 
than it should. 

Cheung and Lai (1993) examine the bias in the test size due to nonnormal 
innovations, including nonsymmetric and ieptokurtic ones. They find that the 
Johansen te.~ts are reasonably robust to excess kurtosis. A commonly known 
source of leptokurtic innovations is conditional heteroskedasticity, which leads 
to a heavy-tailed distribution. In this paper we examine the results of Cheung 
and Lai (1993) more specifically by considering the case that the error variances 
follow a GARCH(I,I)  model. We examine the empirical size and power of the 
Johansen trace test (trace, hereafter) and the Johansen maximum eigenvalue test 
(maxeigen). For  comparison, we also consider the DF tests and the cointegrating 
regression Durbin-Waton test (CRDW) studied by Sargan and Bhargava 
(1983). The DF ~-statistic (denoted 3) is the usual t-value from the DF OLS 
regression, and another DF test statistic, T(al - 1), is obtained using the OLS 
estimate of the first-order autoregressive coefficient ct of the DF regression and 
the sample size T. 

Our experiment is an extension of the work by Kim and Schmidt (1993, KS 
hereafter) on unit root tests to the cointegration tests. KS examine the DF unit 
root tests when the errors are conditionally heteroskedastic. They find the DF 
tests overreject but only moderately. Our results are similar to and confirm the 
results of Cheung and Lai and KS. These cointegration tests tend to overreject 
the null hypothesis of no cointegration in favor of finding cointegration in the 
presence of GARCH errors, but the bias is not very serious. The results of KS for 
the DF unit root tests with GARCH errors generally carry over to cointegration 
tests under the presence of GARCH errors. 

2. The simulation design 

In the experiment for examining the size of the tests, we generate noncointe- 
grated systems with GARCH(1,1) errors. Let X a  = (x~ t  . . .  x s t ) '  b e  an N × 1 
vector of integrated series with /IX, = e,. The error vector ~, = ( e l ,  . . .  e s , ) '  is 
assumed to follow an N-variate conditional normal distribution with 
E(e/tl.~,- 1) = 0 and E(e~l.~,- 1) = o2, where i = 1 . . . . .  N, .~ -1  is the (~-field 
generated by all information available at time t - 1, and 

~o 2 o, 2, = ~,o + ~ , ,  , . , - ,  + ~,2~,-,. 
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Let z i t -  eit/ait be i.i.d, with E(zi,)= 0, va r ( z , )=  1, and E(zitzit)= O, i # j .  
Drawings of the pseudo random innovations zi,, for i = 1 . . . . .  N and 
t = 1 . . . . .  T + d, are performed from the standard normal distribution. The first 
d = 500 observations are discarded. 

We consider T = 100, 1000 and N = 2 with ;arious choices of parameter 
values of ({//)iO,~)il,t/~i2), i =  1,2. As we use the same parameter values 
(~io, ~il, ~bi2) for all i, we use the simpler notation oI and (~o,~t ,  q~2), omitting 
the index i in reporting the results. We use T = 1000 to examine the large- 
sample properties for the case when the asymptotic theory is not available. We 
generate the critical values for T = 100, 1000, based on 10,000 replications. For  
consistency, we use the same seed for all the simulations so that we work with 
the same random numbers. All simulations are based on 10,000 replications. All 
the reported results arc at the nominal 5% significance level. The asymptotic 
95% confidence interval of the empirical size is (0.0456, 0.0544). In all simula- 
tions to compute the residual-based test statistics (such as z, T ( ~ -  1), and 
CRDW), x ,  is used as the dependent variable in the cointegrating regressions. 

In the experiment for examining the power of the tests, we generate bivariate 
cointegrated series with GARCH errors. The system generated is 
A x ,  = -- 0.2(x~.t- t -- x2,t- l) + e ,  and AXzI = e2t, where e ,  and ezl have the 
coa,litional variances of the GARCH(1,1) form discussed above. As we consider 
only a particular data generating process (DGP) the power of the test is 
dependent on the specification of the DGP, the results may only be illustrative. 
For a general study, see the method used in Johansen (1989) who investigates the 
power function using the theory of near-integrated processes developed in 
Phillips (1988). 

Following KS, the DF z-static with White's (1980) correction for hetero- 
skedasticity is also examined. In computing the size and power of the z-statistic 
with the White correction, we use two different critical values. One critical value 
is obtained from the 5% low tail percentile of the DF r-statistic with the White 
correction. The other critical value is obtained from the 5% low tail percentile of 
the DF z-static without the correction (the same one used for t). The size and 
power using the first critical value (with the White correction) are reported 
under the notation 'z-White', and the results using the second critical value are 
reported under the notation "¢'-White'. 

The paper is organized as follows. Tables 1, 3, 4, 5, and 6 show the empirical 
size of tests, the frequency that the null hypothesis stating that truly noncointe- 
grated processes are not cointegrated is rejected in 10,000 trials. Table 2 shows 
the empirical power of tests, the frequency that the null hypothesis stating that 
truly cointegrated processes are not cointegrated is rejected in 10,000 trials. {za} 
are generated from the standard normal distribution, except for Table 5 where 
{zi,} are drawn from the Student-t distribution. Asymmetric conditional hetero- 
skedasticity of the exponential GARCH (EGARCH) form and the time-varying 
conditional covariance are also considered in Table 6. 
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3. Results 

Table  I conta ins  the results on the size of  the tests. The size d is tor t ion  is larger 
when ~ t  + ~2 is larger. The condi t ion  for the existence of  the uncondi t ional  
fourth  momen t  is 3~b~ z + 2qb~2 + q~2 < I (Bollerslev, 1986); accordingly,  the 
condi t ion  is 4~2 < 0.606 i fOl  = 0.3 and ~b2 < 0.890 i f ~  = 0.1. In many  appl ica-  
t ions with high-frequency financial da t a  the es t imate  for tk, + ~b2 turns out  to be 
very close to one and ~bo is a lmost  zero. F o r  example,  French et al. (1987) ob ta in  
the sum of  the G A R C H  parameters  equal  to 0.996 and a very small  (but 
significant) es t imate  ~0 = 6e-7 for a dai ly  s tock marke t  return process. Fo r  the 
same value of  ~ + ~b2, the size d is tor t ion  is bigger with a higher qbl (see also 
Table  4). This is because,  fixing q~t + q~2, the uncondi t ional  kurtosis  increases as 
~b~ increases (Bollerslev, 1986). The size bias general ly increases with sample  size 
T when ~ +q~2 =0 .999 ,  while it general ly decreases with T when 
~b~ + ~b2 = 0.9 and  0.95. 

In Table  2, we investigate the power  of  the tests. As the system generated is 
Axlt  = -- 0.2(x~.~_ ~ -- x 2 j -  ~) + e~t and  Ax2t = e2~, the er ror  correct ion term 
wt =- x~t - x2t follows an AR(I )  model  with the first autoregress ive coefficient 
equals  to  0.8, i.e., w, = 0.8w,_ 1 + (,,  where (, - et,  - e~, is a white noise. The 

Table I 
The size of the tests at 5% level 

T 100 1000 I00 1000 100 1000 

(~,  ~z) {0.3, 0.6) (0.3, 0.65) (0.3, 0.699) 

trace 0.0721 0.0609 0.0774 0.0648 0.0946 0.0987 
maxeigen 0.0716 0.0606 0.0790 0.0670 0.0970 0.1032 
CR DW 0.0712 0.0648 0.0753 0.0784 0.0806 0.1217 
T(~ - i) 0.0711 0.0630 0.0756 0.0755 0.0819 0.1188 

0.0696 0.0628 0.0748 0.0748 0.0818 O. i 195 
r-White 0.0449 0.0413 0.0439 0.0356 0.0428 0.0266 
z'- White 0.0907 0.0650 0.0883 0.0539 0.0845 0.0438 

(q~, # 2) (0. I, 0.8) (0. I, 0.85) (0. I, 0,899) 

t race 0.0571 0.0521 0.0612 0.0548 0.0683 0.0803 
maxeigen 0.0565 0.0531 0.0617 0.0566 0.0674 0.0865 
CRDW 0.0548 0.0507 0.0545 0.0546 0.0578 0.0867 
T ( ~ -  I) 0.0557 0.0506 0.0568 0.0542 0.0587 0,0882 

0.0560 0.0511 0.0572 0.0530 0.0600 0.0885 
z-White 0.0474 0.0475 0.0479 0,0476 0.0470 0,0335 
z'- White 0.0984 0.0747 0.0989 0.0743 0.0969 0.0582 

~o = o02(! - ~, - ~2), ao 2 = I. 
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Table 2 
The power of the tests at 5% level 

405 

T 100 1000 100 1000 100 1000 100 1000 

(~b~,q~2) (0,0) (0.3,0.6) (0.3,0.65) (0.3,0.699) 

trace 0.9856 1 . 0 0 0 0  0.9594 1 . 0 0 0 0  0.9488 0.9999 0.9278 1.13000 
maxeigen 0.9906 1 . 0 0 0 0  0.9637 1 . 0 0 0 0  0.9537 0.9999 0.9345 !.0000 
CRDW 0.7056 1 . 0 0 0 0  0.6884 1 . 0 0 0 0  0.6828 1 . 0 0 0 0  0.6773 !.0000 
T(~ - I) 0.6750 1 . 0 0 0 0  0.6669 1 . 0 0 0 0  0.6635 0.9999 0.6584 0.9999 
z 0.6782 1 . 0 0 0 0  0.6680 0.9999 0.6634 0.9999 0.6579 0.9999 
~-White 0.5283 1 . 0 0 0 0  0.3504 0.9932 0.3274 0.9733 0.2974 0.9056 
T'- White 0.7335 1 . 0 0 0 0  0.5295 0.9946 0.4964 0.9786 0.4584 0.9210 

t~ 1,4~ 2) 10. I, 0.8) (0. I, 0.85) (0.1,0.899) 

trace 0.9797 1 . 0 0 0 0  0 . 9 7 3 1  1 . 0 0 0 0  0.9284 !.0000 
maxeigen 0.9834 1 . 0 0 0 0  0.9784 1 . 0 0 0 0  0.9356 ! .0000 
CRDW 0.6991 1 . 0 0 0 0  0.6975 !.0000 0.6885 1.0000 
T(~ - I ) 0.6762 1 . 0 0 0 0  0.6720 1 . 0 0 0 0  0.6676 1.0000 
~r 0.6750 !.0000 0.6713 1 . 0 0 0 0  0.6684 1.0000 
r-White 0.4719 1 . 0 0 0 0  0.4626 1 . 0 0 0 0  0.4495 0.9977 
r'- White 0.6746 1 . 0 0 0 0  0.6645 !.0000 0.6394 0.9991 

0o = tro2(I - 0~ - 02), ao 2 = I. The data are generated from z l x ,  = - 0.2(xI . , -  i - x2, f -  ~) + et~ and 
Axzl = e2t. 

regression-based tests for cointegration in (xttxzt)'  is to test for a unit root in wt 
when (t is conditionally heteroskedastic. A comparable simulation result when 
(0t,42) = (0,0) and T = 100 may be found in Engle and Granger (1987, 
Table I!), where the power of CRDW and z are simulated for the case when 
w, = 0.8wt- t + ~, without GARCH in ~,. The power of the Johansen tests in 
Table 2 for T = 100 is higher than that of the DF and CRDW tests. When the 
conditional heteroskedasticity is stronger (i.e., when 41 + 42 is higher and 4t  is 
larger if 41 + 42 is the same), all of the tests have lower power even when they 
are oversized. 

As KS conclude that the White correction for T for testing unit roots is 
generally helpful, we consider it for testing cointegration. The results in Table 1 
shows that W bite's correction, z-White (but not z'-White), may improve the size 
distortion problem, especially when (4~ + 02) is close to one. However, even 
if this optimistic perspective is taken for z-White or z'-White statistics, the 
story is only half-told, since the power of the tests must come into question. 
Although KS (p. 293) notice that the empirical size falls significantly below the 
nominal size when the White correction is made, especially for large T, they did 
not examine the power performance of z-White (or z'-White). It seems that 
White's heteroskedasticity correction lowers the power of the DF test when the 
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heteroskedastici ty is larger (when 4 t  + 42 is larger and 4 t  is larger i f 4 t  + 42 is 
the same). 

Nelson (1990a) shows that  if 4o = 0 and E[ ln(42 + 41z 2] < 0, then a 2 --*0 
with probabi l i ty  one from any start ing point. In particular,  I G A R C H  is degener- 
ate if 4o = 0. Consequently,  if 4o = 0, the componen t s  in X, = (xtt x2t)' tends to 
zero when t gets large and they behave like being cointegrated (trivially), and 
therefore the tests reject the null hypothesis of  no cointegration. But this 
degenerate case is not  empirically interesting, since in the real world volatility 
does not seem to decline inexorably toward zero over  time. Nelson (1990a) also 
shows that  the a 2 process has a strictly s ta t ionary  and ergodic distribution if and 
only if 4o > 0 and El In(42  + 41z2)] < 0. In particular,  I G A R C H  with 4o > 0 
has a strictly and ergodic limit distribution. Therefore there is a fundamental  
difference between 4o = O  and 4o small but positive. We thus investigate the 
cases with 4o > 0 in Table  3, where we set 4 t  + ~b2 = 1 and vary 40. 

When 4o > 0, 4o is s imply scale pa ramete r  - e.g., doubl ing 4o shifts the 
density of  ln(~rt 2) a distance In(2) to the right. The  results are invariant  to changes 
in the initial variance ~ro 2, so long as 4o /ao  2 is held constant.  In our  experiment,  
however,  we fix ao 2 (at ao 2 = l) and change 40. Will 4o affect the size of  the tests? 
No,  if a Monte  Car lo  is proper ly  designed. If 4o is very small, ~ro 2 = 1 is 
initialized too far in the right tail of  its s ta t ionary distribution, so a 2 tends to 
decline as t gets large. Thus,  in order  for the results not to depend on 4o for fixed 
ao a, d should be fairly large. Discarding enough observat ions  makes  the empiri-  
cal sizes in Table  3 very similar for all 4o > 0-t 

T o  be comparab le  with KS's  results we also consider an experiment  in KS's  
Table  4, following the parameter izat ion of Nelson (1990b), where 4o = 0.017, 
41 = 0.3~ 1/2, 42 = 1 -- 4 t ,  ao 2 = 1. The  performance  of the tests improves  as 
7 declines, since the uncondit ional  kurtosis becomes smaller as 4 t  declines. This 
is also observed in Table  1, where the size distort ion is more  serious when 
4 t  = 0.3 than when 4 t  = 0.1. The  problem is worse when T is larger. 

So far we have generated {z~,} f rom the s tandard normal  distribution. In 
Table  5 we simulate the series {z~,} from the Student- t  distr ibution with the 
degree of f reedom iv) being equal to 5 and 8. The  values of  v are chosen based on 
the empirically est imated v by Bollerslev (1987) and Baillie and Myers  (1991). 
The  kurtosis of  the Student- t  density is given by 3(v - 2)/(v - 4) for v > 4: it is 
9 for v = 5 and 4.5 for v = 8. The results for (4~,42)  = (0.3, 0.65) are reported. 
When v = 8, the sizes of  the tests are similar to those reported in Table  1 using 

t Wc thank a referee for drawing our attention to this point. We choose d = 500 alter examining 
plots. When qb0 = 0.0001 in Table 3, but if only d = 50 observations are discarded, the empirical size 
is very much different than reported {for example, when ~bo = 0.0001, the size of the trace test is 
0.2277 for T = 100 and 0.,*382 for T = 1000). When ~bo = 0.01 or larger, we find that either using 
d = 50 or d = 500 does not matter, suggesting that d -- 50 is enough when ~o is not too small. 
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Table 3 
The size of the tests at 5% level 

~bo 0.0081 0.01 I !00 

T 100 1000 100 1080 100 1000 100 1000 

trace 0.0933 0.0937 0.0929 0.0997 0.0914 0.1006 0.0912 0.1003 
maxeigen 0.0956 0.0990 0.0948 0.1052 0.0922 0.1060 0.0919 0.1060 
CRDW 0.0810 0.1228 0.0810 0.1228 0.0810 0.1228 0.0810 0.1228 
T(~--  I) 0.0822 0.1204 0.0822 0.1203 0.0822 0.1203 0.0822 0.1203 

0.0819 0.1215 0.0819 0.1214 0.0819 0.1214 0.0819 0.1214 
t-White 0.0431 0.0263 0.0431 0.0263 0.0431 0.0263 0.0431 0.0263 
f -  White 0.0845 0.0437 0.0845 0.0437 0.0845 0.0437 0.0845 0.0437 

~l = 0.3, ~b 2 = 0.7, a t = I. 

Table 4 
The size of the tests at 5% level 

7 I 009 0.01 

(~bo, ~P ~, ~b2 ) (0.0 I, 0.3, 0.7) (0.0009, 0.09, 0.9 I) (0.0001,0.03, 0.97) 

T 100 1000 100 1000 100 1000 

trace 0.0929 0.0997 0.0661 0.0817 0.0545 0.0677 
maxeigen 0.0948 0.1052 0.0657 0.0859 0.0536 0.0753 
CRDW 0.0810 0.1228 0.0575 0.0842 0.0514 0.0598 
T ( , ; -  1) 0.0822 0.1203 0.~q582 0.0876 0.0522 0.0635 
t 0.0819 0.1214 0.0587 0.0887 0.0520 0.0650 
t-White 0.0431 0.0263 0.0480 0.0345 0.0502 0.0480 
t'-White 0.0845 0.0437 0.0982 0.0572 0.1051 0.0766 

~Po = 0.017, ~Pl = 0.37 I/2, ~Pz = ! - ~Pl, ~ = !. 

the normal distribution. However, when v = 5, the size distortion becomes 
larger. 

In an attempt to capture the asymmetric impact of innovation on volatility, 
Nelson 0991) develops the EGARCH model of the form 

ln(o "2) =~Xo -F o q ( [ z t - i  I -  Elzt-ll)'t-Ozt-i + ~21n(o '~-  t). 

He shows that 0 is significantly negative for modeling the stock market index 
volatility, suggesting that the variance tends to rise (fall) when the past innova- 
tion is negative (positive) in accordance with the empirical evidence for stock 
returns. In the first part of Table 6, we generate series with the conditional 
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Table 5 
The size of the tests at 5% level, t-distribution (v = degrees of freedom} 

v 8 5 8 5 8 5 

T 100 100 100 100 1000 1000 

(0~, 4,2) (0, 0) (0.3, 0.65) (0.3, 0.65} 

trace 0.0560 0.0508 0.0776 0.0842 0.0717 0.0972 
maxeigen 0.0554 0.0497 0.0794 0.0846 0.0734 0.1032 
CRDW 0.0529 0.0560 0.0859 0.0888 0.0847 0.1273 
T(~ - 1) 0.0516 0.0544 0.0851 0.0889 0.0805 0.1262 
r 0.0522 0.0544 0.0858 0.0867 0.0815 O. 1257 
t-White 0.0457 0.0364 0.0416 0.0382 0.0323 0.0256 
r'-White 0.0921 0.0809 0.0858 0.0767 0.0511 0.0446 

~0 = a2(l - ~, - ¢2),  ~2  = I. 

variances  of  E G A R C H .  W e  use ~to = - 0.0082, a l  = 0.19, and  oe2 = 0.91, which 
are  the  pa rame te r  values es t imated in French  and Sichel (1993), who model  
quar te r ly  U.S. real G N P  for 19,17:2 to 1991:1. Thei r  es t imated 0 is - 0.19. The 
asymmetr ic  volat i l i ty  with 0 = - 0.19 does  not  seem to make  much difference 
from the previous  cases with symmetr ic  G A R C H  models.  However ,  when we 
increase the symmetr ic  volat i l i ty  pa r ame te r  to 0 = - 0 . 5 0 ,  the bias of  the 
empir ical  size becomes larger.  

Al though  we have repor ted  the results under  the a s sumpt ion  that  the condi-  
t ional  covar iances  are  zero for all  t, E(el,e2, I ~ - t )  = 0, we a lso  exper imented 
with t ime-varying condi t iona l  covar iances  in the second par t  of  Table  6. The 
condi t iona l  covar ianee  is E(ette2, [ .~t-  ~) - Pttr~ttr2,, where Pt is the condi t ional  
correla t ion.  Let us assume .that the condi t iona l  cor re la t ion  is cons tant  over  time, 
i.e., Pt = P for all t, as  in Bollerslev (1990). We  use this specification of  the 
t ime-cons tant  cond i t iona l  cor re la t ion  because we want  to  control  only  one 
pa rame te r  p. The  da ta  z~  is genera ted  f rom the s t anda rd  normal  dis t r ibut ion,  
and  z2~ = pz~t + (1 - p2)l/2z3t, where z3t, where  z3, is genera ted  from the s tan-  
da rd  normal  d i s t r ibu t ion  and  independent  of  zt , .  Thus  Eztt  = E z 2 t - - 0 ,  
Ez2t = Ez2t = 1, and  E(zltz21) = p. The  results with p = 0, 0.5, and  0.9 are 
repor ted.  2 The G A R C H  paramete r s  used are  ( ~ t , ~ 2 ) = ( 0 . 3 ,  0.65), 
~bo --  ao2(l - ~bi - ~k2), and  ao 2 = 1. I t  is shown tha t  the size d is tor t ion  increases 
modera te ly  vdth p.3 

"A large p is very likely in practice. For example, in Kroner and Sultan (i 993), estimated p is ranged 
from 0.96 to 0.99 for weekly spot and future foreign currency series. 

a If  ¢kl = 0 z  = 0, p does not affect the tests at all. 
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Table 6 
The size of the tests at  5°./0 level, EGARCH and time-varying conditional covariance, T = 100 

EGARCH Time-vaLving conditional covarianc¢ 

0 =  - 0 . 1 9  0 =  - 0 . 5 0  p = 0  p=0.5 p = 0 . 9  

trace 0.0580 0.0803 0.0774 0.0810 0.0920 
maxeigen 0.0574 0.0772 0.0790 0.0830 0.0946 
CRDW 0.0613 0.1070 0.0753 0.0819 0.0965 
T(~ - 1) 0.0629 0.1097 0.0756 0.0836 0.0999 
r 0.0821 0.1105 0.0748 0.0838 0.0965 
•-White 0.0457 0.0301 0.0439 0.0452 0.0445 
z'-White 0.0965 0.0605 0.0883 0.0914 0.0899 

1. EGARCH: ln (~ )  = ao + ~(1:,-11 - Eiz , - !  I) + 0z,_~ + ~t21n(a~-,), where 
at = 0.19, a2 = 0.91, and EIz , - l l  = (2/lip n. 

2. p = E(zl,z2,1..~_ l), (01,0,)  = (0.3,0.65), 0o = ~g(l -- 01 - ~,) ,  ~ro 2 = !. 

• o = - 0.0082, 

4. Concluding remarks 

We examine the performance of various tests for cointegration under the 
presence of GARCH. These tests are generally oversized, but not very seriously, 
except when ~bt + 02 is close or equal to unity and 0t i~ large. The White (1980) 
heteroskedasticity correction on the Dickey-Fuller tests improves the size of the 
test but lowers power performance. The size distortion under the presence of 
conditional heteroskedasticity increases when the Student-t distribution, 
EGARCH, and time-varying conditional covariance are considered. 
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