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Short Paper 
Stock Adjustment for Multicointegrated Series 

TAE-HWY LEE 1 

Department of Economics, University of California, Riverside, CA 92521, USA 

Abstract: A typical stock adjustment model is a partial adjustment process to maintain simultane- 
ously the two kinds of equilibrium relationships: a flow-flow relationship and a stock-flow relation- 
ship. We show that the stock adjustment model is an error correction model of 'multicointegrated' 
time series, and also an optimal decision rule generated from an intertemporal optimization prob- 
lem. Economic examples in inventory model, housing construction, and consumption function are 
discussed. 

JEL ClassificatiOn System-Numbers: C5, E2 

1 Introduction 

After Metzler (1941) introduces the idea of the inventory accelerator mecha- 
nism, the best known extension is in the work of Holt, Modigliani, Muth and 
Simon (1960). The following equation can be regarded as a simple form of the 
model: 

A Q t  = o~ + f l ( Q , - i  - k y t - 1 )  + ? (x t -1  - Y t -1 )  , (1) 

where d = 1 - B, B is the backshift operator, Qt is the level of stock (inventory) 
at the end of the period t, x t  and Yt are flow variables (such as production or 
delivery, and sales or shipment). The parameters fl and y measure the speeds of 
adjustment and k is the stock-flow ratio at a steady state (such as inventory- 
sales ratio). This is the stock adjustment framework studied by Lovell (1961), 
which is to maintain two kinds of long-run equilibrium relationships at the 
same time if both fl and 7 are not zero. 

This property may be discussed using a recently developed time series method. 
If x, and y, are both I(1) and if z, = x, - y, is I(0), x, and Yt are cointegrated. If a 
pair of I(1) series are cointegrated it may allow the possibility of a deeper form 
of cointegration. Since zt is I(0), Qt = ~}=oZ~-j will be I(1). Then x~ and y~ will be 

1 I would like to thank Xiaohong Chen, Clive Granger, David Hendry, Baldev Raj, Valerie 
Ramey, and two anonymous referees for helpful comments and suggestions. Any errors are mine. 
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said to be mult ico in tegrated  if Qt and x t are cointegrated (Granger, 1986). Qt and 
y~ will also be cointegrated. Thus it follows that ut = - Q t -  kyt  is I(0) for a 
constant k. Granger  and Lee (1990) show that multicointegrated series may be 
generated by the following error correction models: 

A x t  = ~1 + flt ut-1 + Ylz~-i + lagged (Axt ,  Ayt)  + residual (2a) 

Ay~ = a2 + fl2ut-1 + 72zt-1 "[- lagged (dxt, Ayt) + residual . (2b) 

It  may be noted that the stock adjustment model (1) can be derived from (2) with 
= cq - a2, fl = fla - f12, and 7 = 71 - 72 + 1. The further properties of multi- 

cointegrated series are discussed in Granger  and Lee (1990). 2 The stock adjust- 
ment may be considered as an optimal control rule. In section 2 we thus relate 
it to a particular cost minimization. The purpose of this note is to elaborate 
some of the results in Granger  and Lee (1990). This note uses an intertemporal 
cost function, while Granger  and Lee demonstrate it in a simpler setting. Three 
examples are discussed in section 3. 

2 Optimization 

We consider the following situation: xt is a series that one is attempting to 
control, x* is the target series for xt ,  and z t = xt  - x*  is the control error, being 
the extent to which the target is missed. If x t is I(1), x* should be cointegrated 
with xt with cointegrating vector (1 -1 ) ' .  The control error z t should have a 
bounded variance, i.e. I(0) (Kloek, 1984). 

t The accumulated control error is Q~ = ~i=oZt_i  and it is assumed this series 
also has a target series Q*. If  zt is I(0), Qt is I(1). Q~ should also be cointegrated 
with Q* with cointegrating vector (1 -1 ) ' ,  and the the control error for Q~ 
defined as u, = Qt - Q* is I(0). We call z~ a proport ional  control error and u t an 
integral control error. Costs to the controller will arise from three sources, the 
size of z t, the size of u t and the amount  of adjustment in x t. 

Assuming an additively separable and quadratic cost functions, the quantity 
to be minimized is given below. To be consistent with multicointegration one 
has to add the condition that x* and Q* are cointegrated. It  is assumed that 
x* = Yt and Q* = k y  r Given Yt an agent chooses x~ and Qr to minimize the 
expected discounted present value of costs 

= E, + ,h u, +j + , h ( A x , + y ]  (3) 

subject to 

Q,+j - (Z+i-1 = - y,+j (4) 

2 Engle and Yoo (1991) relate multicointegration to I(2) cointegration. For more discussion, see 
Gregoir and Laroque (1993), Stock and Watson (1993), and Engsted et al. (1995). 
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where z t = x t  - Yt and u t = Qt - kYt .  Three elements in the cost function, zt ,  u t 

and A x t ,  are all I(0). Et  denotes the conditional expectation given an informa- 
tion set up to time t, 6 a discount factor that is less than one, and both 21, 22 are 
nonnegative. 

The stochastic Euler equation is derived by substituting the equation of 
motion (4) into (3) and minimizing with respect to Qt- The result is given by: 

E t a ( B ) Q t +  2 = E t c ( B ) y t +  2 for all t _> 0 (5) 

where 

h 

ks 2 2 (5 2 

Note that a(1) = 21/s c(1) = k)q/s  and thus c(1) = ka(1). The transver- 
sality condition for this problem is given by limj_~o~ E , Q , + j ~ J t / ~ Q t + j  = O. 

The first step in obtaining the reduced form solution involves finding the 
roots of a(B).  Let a ( B )  = (1 = # 1 B ) ( 1  - / 2 2 B ) ( 1  -/23B)(1 -- #4B). It can be 
shown that if# is a root (#s is a root. Let #2 and/22 be the two smallest roots 
in absolute value. These roots may be real or complex conjugates. In order to 
satisfy the transversality condition, the stable roots must be solved backward 
and the unstable roots, forward. The existence of a stationary solution requires 
that two of the roots have modulus less than one and that two have modulus 
greater than one. If this condition holds, 1/21[ < 1, [/22[ < 1,/23 = (/21s -1, and 
/24 = (/22s -1.  Then (5) can be written 

(1 -/21B)(1 -/22B)Qt = E t ~1]"/~2s ~-~~ 0 F(/21s i -  (/22s (6) 
/2"/1 - -  122 

We must now be specific about the data generation process for Yt series to 
make (6) empirically implementable. Let us assume, just for simplicity, that Yt is 
a random walk. Then (6) becomes substantially simpler: 

#2/22s 
(1 -/22B)(1 -/22B)Qt = (1 /21s -/22s c(1)y' + I(0) . (7) 

Since a(1) = (1 -/21)(1 - #2)(1 -/21s -/226)//22#2s and c(1) = ka(1), (7) 
becomes 

A Q t  = - (1  -/21)(1 -/22)u,_1 +/21/22zt_~ + (1 -/21)(1 - -  ~22)kAy,  + I (0 )  . 

(8) 
This is the stock adjustment model shown in equation (1), and is a proportional- 
integral-derivative (PID) feedback controller familiar to control engineers 
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( K w a k e r n a a k  a n d  Sivan,  1972; Phi l l ips ,  1954). E v e n  if #1 a n d  #2 a re  complex ,  

#1/a2 a n d  #1 + #2 are  real.  T h u s  the  coeff ic ients  in (8) a re  real. 

T h e  re l a t ive  size o f  the  in t eg ra l  c o r r e c t i o n  f ac to r  (1 - #1)(1 - #2) a n d  the  

p r o p o r t i o n a l  c o r r e c t i o n  f ac to r  #1 #2 m a y  be  expres sed  in t e rms  of  the  r a t io  o f  the  

p e n a l t y  coeff ic ients  21/22 in the  cos t  f u n c t i o n  (3). S ince  a ( 1 ) =  21/6222 a n d  

a(1) = (1 - #1)(1 - #2)(1 - #15)(1 - #25)/#1#262,  

~ 1 / ~ 2  = (1  - ~ 1 ) ( 1  - . 2 ) ( 1  - ~ 1 6 ) ( 1  - ~ 2 6 ) / ~ 1 # 2  �9 

I f  the  r a t io  41/42 is l a rge  the  re la t ive  i m p o r t a n c e  o f  an  in teg ra l  e r r o r  c o r r e c t i o n  

b e c o m e s  large.  

3 Examples of the Stock Adjustment 

3.1 Inven tory  Ad jus tment  in the U S  Reta i l  Trade 

T h e  first e m p i r i c a l  e x a m p l e  m a k e s  use o f  m o n t h l y  series o f  i n v e n t o r y  (Qt = 

C i t ibase  c o d e  I V R R Q )  a n d  sales (Yt = R T Q )  f r o m  1967:01 to  1994 :12  (336 

o b s e r v a t i o n s )  for  the  U.S.  re ta i l  t rade ,  o b t a i n e d  f r o m  Ci t ibase .  T h e  series a re  in 

1987 c o n s t a n t  do l l a r s  a n d  sea sona l ly  a d j u s t e d  at  the  source.  T h e  un i t  r o o t  

h y p o t h e s i s  c a n n o t  be  re jec ted  for  b o t h  Qt a n d  Yt series. Tes t i ng  m u l t i c o i n t e g r a -  

t ion  invo lves  an  O L S  reg res s ion  Qt = gt + byt + ut, a n d  the  un i t  r o o t  test  for  the  

r e s idua l  ut. F r o m  the  test  s ta t is t ics  r e p o r t e d  in T a b l e s  1 a n d  2 the  i n v e n t o r y  a n d  

TaMe l. Tests for unit roots in z t and u t 

ADF1 PP1 ADF2 PP2 

Example 1 (inventory): 
z, - 12.89(0)** -- 12.65"* - 14.03(0)** - 14.25"* 
u s - 5.31 (0)** -- 5.02** - 5.31 (0)** - 5.01"* 

Example 2 (housing): 
z t -4.14(1)** - 5.81"* - 4.13(1)** - 5.80** 
ut -6.81(1)** -11.96"* --6.80(1)** --11.94"* 

Example 3 (consumption): 
z t - 0.56(3) -- 0.65 - 2.91 (3) - 4.57* * 
u, - 1.81(1) --2.01 -- 1.81(1) --2.01 

ADFI and PPi denote the augmented Dickey-Fuller statistic and the Phillips-Perron statistic, respec- 
tively. The statistics with i = 1 are computed without a constant and a trend term, and those with 
i = 2 are with a constant but without a trend term. ** and * denote the significance at 1% and 5% 
levels, respectively. The critical values are taken from Fuller (1976) for z t and from Engle and Yoo 
(1987) for u t. The number in ( ) after the ADF statistics are number of lag-augmentation chosen 
using the SIC. The Phillips-Perron statistics are calculated with six non-zero autocovariances. The 
results are similar for the other values of the lag truncation in autocovariances. 
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Table 2. The Johansen tests for cointegration between Qt and y, 
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Trace statistic Maximum eigenvalue statistic 

Example 1 (inventory): 46.55** 45.60** 
Example 2 (housing): 46.11"* 34.34** 
Example 3 (consumption): 4.48 4.24 

The Johansen (1991) statistics are reported. ** denotes the significance at 1~ level. 

sales series are cointegrated at 1~o level. Suppose that agents minimize the cost 
expressed in (3), with z~ being the cost rising from the gap between delivery and 
sales, u t being due to inventory holding or stock-out, and with A x  t for delivery 
cost. Then the estimated optimal stock adjustment is 

AQt = 399.41 - 0.07ut_ 1 + 0.23zt_ 1 - 0.66Ayt_ 1 + r e s i d u a l .  
(5.78) (--  5.52) (3.89) ( -  0.98) 

White's t-values are in brackets. The adjusted coefficient of determination (~2) 
of the regression is 0.17. No significant residual autocorrelations are found. For  
example, L M  1 = 0.85 and L M  6 = 0.25, where L M  i denotes the p-value of a 
Lagrange multiplier test for residual autocorrelation of order i. If the coefficient 
estimate for u~_~ is small, it is very significant. Both the integral and propor-  
tional error corrections are very significant. 

3.2 S tock  Ad jus tmen t  in U S  Hous in9  Construct ion  

The second empirical example is the relationship between housing starts (or 
completions) and housing stocks under construction. The data obtained from 
Citibase are: new privately owned housing units started (x t = HSFR) and new 
privately owned housing units completed (Yt = HCP). The sample is monthly 
from 1968:01 to 1994:12 with 324 observations and seasonally adjusted. As 
approximately 2 ~  of new housing starts is found never completed (due to 
bankrupt,  demolition, recording errors, conversion, and etc.), we let z~ = 
0 -98x t -  Yt and the new housing units under construction at time t be 
Qt = ~}=o z t - j .  The results in Tables 1 and 2 indicate that Qt and y~ are co- 
integrated at 1~  level. Assuming that builders minimize the cost function in (3), 
with z t being the cost due to the uncompleted starts, u t due to holding inade- 
quate housing stocks under construction, and with Ax~ being the cost to adjust 
housing starts, the estimated optimal stock adjustment is 

A Qt = 0.46 - 0.05ut_ 1 + 0.63zt_ 1 + O.05Ayt_ 1 + 0.25zt_ z + O.04Ayt_ 2 + residual . 
(0.07)(-4.20) (9.51) (0.42) (4.13) (0.47) 

For  the regression, we obtain K2 = 0.71, L M  1 = 0.72, and L M  6 = 0.44. Both 
the integral and proportional error corrections are very significant. 
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3.3 Wealth Effects in US Consumption Function 

T.-H. Lee 

It may be expected that consumption and cumulated savings (which may be 
called wealth) are cointegrated. To check this possibility we use data from 
Citibase for disposable personal income (GMYD), total personal outlays 
(GMOUT), and real (in 1987 dollars) per capita disposable personal income 
(GMYDPQ). The series are seasonally adjusted and monthly from 1959:01 to 
1994:12 with 432 observations. From these series real per capita disposable 
income (xt), real per capita personal outlays (Y0, real per capita personal savings 
(zt - xt - y~), and cumulated savings (Q,) are computed. The test statistics in 
Tables 1 and 2 show that Q, and y, are not cointegrated. With zt being the cost 
rising from inadequate flow of savings, ut being the extent to which expenditure 
and wealth depart each other, and with Axt being the cost to make more money 
(e.g., giving up leisure), a consumer who minimizes the cost in (3) has the 
following optimal program to adjust her wealth 

AQt = 54.56 - 0 . 0 0 0 5 u t _  1 + 0 . 6 2 z t _  1 - O.05dyt_ 1 + 0 . 1 4 z t _  2 - O.03Ayt_ 2 
(3.21) (-1.53) (5.19) (-0.36) (1.21) (-0.27) 

+ 0.16zt_ 3 + 0.27Ayt_ 3 + residual , 
(2.99) (1.81) 

where j~2 : 0.79, LM1 = 0.65, and LM6 = 0.21. As Qt and Yt are not cointegrated 
the integral error correction to maintain the wealth-consumption (stock-flow) 
relationship is weak. The stock (wealth) adjustment is mainly from the propor- 
tional error correction zt to maintain the cointegrated relationship between 
income and consumption (flow-flow). 

4 C o n c l u d i n g  R e m a r k s  

We have related the stock adjustment model to error correction models of 
multicointegrated series and to a particular linear-quadratic cost function. The 
similar problem for a simpler case of cointegration may be found in Nickell 
(1985). If a set of time series are multicointegrated, the stock adjustment process 
reflects both the integral and proportional error correction mechanisms. If 
an objective of econometric modeling is to construct a parsimonious and 
data-coherent model consistent with a relevant economic theory (Hendry and 
Richard, 1982), then a correctly specified stock adjustment model may be such 
a model since it is an optimal control rule and it is data-based. 
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