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This paper is concerned with modeling the conditional heteroscedasticity 
of the prediction error of foreign exchange rates. As spot and forward rates 
are cointegrated we use a system of error correction models for mean 
prediction. To predict the variance we use a bivariate generalized auto- 
regressive conditional heteroscedasticity (GARCH) model as a function of 
the spread. Using daily series for seven currencies, we find that unmodeled 
conditional heteroscedasticity by GARCH can generally be explained by 
the squared spread. This indicates that as the spread is bigger the exchange 
rates are more volatile. (JEL F31, C32). 

The characterizations of exchange rate movements have important implications 
for many issues in international finance and macroeconomics. It is therefore 
important to carefully model any temporal variations in the volatility process as 
well as in the process of change in the exchange rate series. A standard way to 
specify volatility is autoregressive conditional heteroscedasticity (ARCH) due to 
Engle (1982) and generalized ARCH (GARCH) of Bollerslev (1986). In this paper, 
we consider an extension of the GARCH model for the error correction models 
(ECM) of cointegrated series. Cointegration links long-run components of a group 
of integrated series. It can be used to discuss some types of equilibrium and to 
introduce those equilibria into time series models. The dynamic models for the 
short-run behavior of cointegrated series are called error correction models. 

An ECM may be considered as a prediction equation of the cointegrated series 
as it is a conditional expectation of the first difference of the series given an 
information set. Engle and Yoo (1987) show that the error correction term, which 
is the short-run deviation from a long-run cointegrated relationship, has important 
predictive power for conditional mean of the cointegrated series. If the error 
correction term is an important variable in the conditional mean, so may it be 
in the conditional variance. This may imply that if the series deviate further from 
each other they are harder to predict. If disequilibrium (measured by error 
correction term) is responsible for uncertainty (measured by conditional variance), 
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conditional heteroscedasticity may be modeled with a function of several lagged 
error correction terms. Examining the behavior of the variances over time as a 
function of short-run deviations is reasonable when one expects increased volatility 
due to shocks to the system which propagate on both the first and the second 
moments. We thus use a system of ECMs for the conditional mean, and an 
extended bivariate GARCH model with error correction term for the conditional 
variance. The main virtue of the model lies in its capability of pointing to a 
particular feature ofcointegrated series, which is the potential relationship between 
disequilibrium and uncertainty. The model seems appropriate for testing for 
causality in variance through the error correction term. 

Using this model we investigate the predictive power of the spread between 
daily spot and forward exchange rates for seven currencies in predicting 
volatility of the exchange rate changes. We find that unmodeled conditional 
heteroscedasticity by the GARCH(l, 1) model can be explained by a function of 
the spread. The conditional variance of the prediction error is positively related 
with the squared spread. This indicates that as the spread is bigger the exchange 
rates are more volatile and harder to predict. The short-run error from the 
cointegrating long-run relationship is therefore a useful variable in modeling 
conditional variance as well as conditional mean. This may be exploited to obtain 
more precise time varying confidence intervals for point forecasts of exchange 
rate changes. 

I. The model 

Much empirical research on the risk premium in forward foreign exchange relies 
on intertemporal asset pricing models such as that of Lucas (1978). An important 
relationship in an international environment that can be derived from there is 
the conditional pricing relation for a forward premium: &Q,+&z,+~ =O, where 
E, is the conditional expectation given an information available at time t, 

Q t+k=(U’(Ct+k)/U’(Ct))(Pt/P,+k) is th e marginal rate of substitution between 
dates t and t + k, U’(C,) is the marginal utility of real per capita consumption C,, 
P, is a price index in the domestic economy at time t, z~+~=(S/+~-F/,~) is the 
forward premium, Sj is the spot exchange rate between the domestic currency 
j at time t, F:,k is the forward exchange rate which is the domestic currency price 
of a unit of currency j established at t for payment at t + k. Then we have 

&Q, + k&Z, + k + p,(Q, + k, 2, + k) a,@r + k) C’,h + k) = 0, where PC is the conditional 
correlation and or is the conditional standard deviation. The premium on forward 
foreign exchange is seen to be related to the conditional second moments.’ 

Although asset pricing theories relates first moments to second moments, most 
empirical studies (e.g. Giovannini and Jorion, 1989; Kaminsky and Peruga, 1990; 
McCurdy and Morgan, 1991; Attanasio, 1991) have focused on a specification 
in which first moments are explained by second moments, especially using 
GARCH in mean (GARCH-M) model of Engle et al. (1987). Exceptions are 
Cumby and Obstfeld (1984) and Hodrick (1989), who consider the converse. While 
the GARCH-M specification is useful to explain excess return in terms of 
conditional second moments, examining the converse is also interesting due to 
the reason discussed before especially when the system is cointegrated. The 
purpose of the paper is to examine this converse specification using a multivariate 
GARCH specification in vector error correction models. Error correction terms 
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often turn out to be the most important terms for conditional means, especially 
in the long horizons. Since most finance theory links conditional means to 
conditional second moments, it is naturally interesting to see if the most important 
variables for conditional means do in fact affect conditional variances. This allows 
us to examine the potential relationship between disequilibrium and uncertainty 
in the cointegrated system. 

Now we turn to our econometric model. Consider a 2 x 1 vector of cointegrated 
series X,. They may be considered to be generated by the following ECM 

(1) AX,=~+~Z,_~+I-~ AX,_l+...+I-pAXt_-p+~t, 

where A = 1 -B, B is the backshift operator, Z,E cr’X, is the magnitude of the 
short-run deviation at time t, and p, y, c1 are all 2 x 1 vectors of parameters and 
Is are 2 x 2 matrices of parameters. c1 is the cointegrating vector which determines 
the long-run equilibrium relationship and y is the parameter measuring the speed 
of error corrections. The error vector E, = (ei, ezt)’ is assumed to follow a bivariate 
conditional normal distribution with mean zero and conditional variance- 
covariance matrix H,rE(&) Ft__& where &_ 1 is the a-field generated by all 
information available at time t- 1. 

If the ECM (1) is correctly specified for the conditional mean E(AX, I Ft- I), 
then E(E, 1 Ft_ ,)=O with probability one by construction. The error E, is a 
martingale difference process but is not necessarily independent. The squared 
error may be predictable using the information set, and thus the conditional 
variance may be a function of the variables in the information set. H, can be 
written as a measurable function of the variables in gt _ 1. We may consider a 
function of AX,_, such as selective elements of AX,_, AX; --s for some s > 1. 
However, the short-run disequilibrium error z,_i may seem an especially 
interesting one. We consider the squared z,__ 1 in a bivariate GARCH( 1, 1) model 
suggested by Baba et al. (1991), 

(2) H,=C’C-~A’E,_~E~_~A+B’H~_~B+D’DZ:_,, 

where A, B, C and D are 2 x 2 matrices, C is an upper triangular matrix with cl, 
c:! in its diagonal and c3 off the diagonal, and D has the same form as C with 
corresponding elements dl, d2 and d3. The model will be referred to as ‘GARCH-X’. 
The estimates of di may quantify the extent that this model explains the 
relationship between disequilibrium and conditional volatility not explained by 
GARCH(l, 1). This parameterization guarantees H, to be positive definite and it 
allows the conditional covariances to change signs over time.2 In the empirical 
study in the next section we suppose that A and B are diagonal matrices with 
al, a2 and bi, b2 in the diagonals, respectively. 

II. Empirical results 

In the following analysis we use daily spot and 30-day forward exchange rate 
data from the New York Foreign Exchange Market. The data begin on March 
1,198O and end on January 28,1985, which constitute a total of 1245 observations. 
The data are those used in Baillie and Bollerslev (1989a, 1989b). They are opening 
bid prices for British Pound (BP), German Deutche mark (DM), Japanese Yen 
(JY), Canadian Dollar (CD), French Franc (FF), Italian Lira (IL) and the Swiss 
Franc (SF). Apart from the BP all the series are in terms of the number of US 
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Dollars for one unit of foreign currency. The notation s, and ft is used for the 
logarithms of the spot and forward series, respectively, so that X,=(s,f$. 

Baillie and Bollerslev (1989a) present the results that the unit root hypothesis 
cannot be rejected for all the series. They also report the results of the cointegration 
tests of Phillips (1987) between s, + 22 and ft, which are found strongly cointegrated. 
However, if X, =(s t+22 ft)‘, the ECM (1) includes variables not available at time 
t. As we are interested in prediction using the conditional expectations given 
information at time t, we instead use X, =(st ft)’ so that the right-hand side of 
equation (1) should not include the variables unknown at time t. s, and ft are 
found strongly cointegrated in all currencies at less than one per cent level. We 
use z, =ft -s,, which is found stationary. To save space the estimated statistics 
are not reported. 

The lag lengths (p) in ECM (l), chosen by the use of the Schwarz information 
criterion (SIC), are 4 (BP), 4 (DM), 5 (JY), 5 (CD), 0 (FF), 0 (IL) and 4 (SF). 

In Table 1, the asymptotic probability values for various specification tests for 
the ECM (1) estimated by least squares assuming conditional homoscedasticity 
are presented. These tests are: (a) the Ljung-Box test and the McLeod-Li (1983) 
test for up to the twentieth order serial correlation in the residuals and in the 
squared residuals; (b) Wooldridge’s (1990) robust regression based LM test for 
autocorrelations (AR);(c) the LM test for ARCH; (d) White’s (1989) neural network 
test for neglected non-linearity in conditional mean; and (e) the LM test for 
GARCH-X. Using the lag lengths (p) in ECM (1) chosen by the SIC, the residuals 
are not serially correlated, while the McLeod-Li statistics and the LM test 
statistics for ARCH are very significant. 

We estimate the model with formulations of the conditional mean E(AX, I%- ,) 
as in (1) and the conditional variance H,_=E(& ( &__ 1) as in (2). Let 8 be the 
vector of all the parameters in the conditional mean and conditional variance. 
The parameter estimates are obtained by maximizing the quasi (normal) log- 
likelihood function over 8 using scoring methods with only first numerical 
derivatives being used (ci la Bollerslev and Wooldridge, 1992). At the maximizing 
value of 8 (the QMLE), the asymptotic robust standard errors are obtained (d la 

White, 1982; White and Domowitz, 1984; Weiss, 1986; Bollerslev and Wooldridge, 
1992). In Table 2 the estimated parameters of the conditional variances are 
reported for five currencies. To save space the results for the conditional means 
are not reported. The asymptotic robust standard errors are in parentheses. BP 
and JY are not included as we cannot find a step of increasing likelihood from 
many different initial values of 8. The estimates of D are generally significant. 

Nelson (1990) and Bougerol and Picard (1992) establish conditions for the 
stationarity and ergodicity of the (integrated) GARCH(l, 1) process. Bollerslev 
and Wooldridge (1992) provide regularity conditions under which the QMLE 
will be consistent and asymptotically normal, some of which are verified by 
Lumsdaine (1991). She also proves that the QMLE is consistent and asymptotically 
normal without assuming a finite fourth moment of errors (which is assumed in 
Weiss, 1986). Lee and Hansen (1992) show that these may hold when the 
GARCH(l, 1) process is integrated or even when it is mildly explosive provided 
that the conditional fourth moment of standardized error is bounded (which is a 
fairly weak condition). 

Based on the asymptotic normality of the QMLE we test the GARCH-X using 
Lagrange multiplier (LM) test, Wald tests, and likelihood ratio (LR) tests.3 Our 
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TABLE 2. Quasi-maximum likelihood estimates of GARCH-X parameters. 

DM CD FF IL SF 

Cl 0.003 (3e-4) 5e-4 (5e-5) 0.003 (4e-4) 

c2 9e-5 (6e-5) 4e-5 (le-5) < le-5 (0.7 15) 
c3 0.003 (3e-4) 5e-4 (5e-5) 0.003 (4e-4) 

a, 0.627 (0.075) 0.441 (0.016) 0.516 (0.039) 
a2 0.607 (0.072) 0.447 (0.017) 0.547 (0.044) 

b, 0.758 (0.013) 0.870 (0.004) 0.782 (0.017) 
bz 0.760 (0.011) 0.870 (0.005) 0.767 (0.019) 

dl 0.444 (0.077) 0.312 (0.039) 0.206 (0.096) 
d2 0.030 (0.009) 0.023 (0.005) 0.107 (0.036) 
d3 0.450 (0.069) 0.301 (0.040) 0.136 (0.099) 

0.005 
6e-4 

0.005 

0.409 
0.424 

0.635 
0.602 

0.076 
0.092 
0.076 

(2e-4) 0.001 (6e-4) 
(le-4) 6e-5 (8e-5) 
(2e-4) 0.001 (6e-4) 

(0.029) 0.483 (0.053) 
(0.028) 0.473 (0.052) 

(0.015) 0.880 (0.011) 
(0.025) 0.882 (0.012) 

(0.067) 0.195 (0.079) 
(0.016) 0.018 (0.005) 
(0.080) 0.202 (0.076) 

Nope: Asymptotic robust standard errors are in parentheses. For BP and JY we could not find a step of 

increasing likelihood using many different parameter values. 

LM test (Table 1) is based on a consequence of the null hypothesis. Let 
h,,rE(ei,eit ) Ft_-1). When hiit is estimated under the null hypothesis that the 
conditional variance is correctly specified, it should be that E(e$ - hiit ) Pj__ I) = 0, 
i= 1,2 with probability one if the null hypothesis is true. Consequently, (es-h,) 
is uncorrelated with any measurable function of the variables in Ft_i, We 
construct an LM test statistic for the null hypothesis that (ez - hii,) is uncorrelated 
with zf-i. From the standard asymptotic arguments the TR2 statistic has the 
x2(1) distribution asymptotically when the null hypothesis is true, where T is the 
number of observations and R2 is the uncentered squared multiple correlation 
from a standard linear regression of (efl-hii,) on z:-i). We consider the null 
hypotheses that hiit is ARCH(q), q =0, 1, 5, 10. The test with q =0 provides 
information on the correlation structure between ei: and zf-i. We also consider 
the null hypothesis that hiit is GARCH(l, 1). The test generally indicates that 
zf- 1 may improve the prediction of X, through the conditional second moments. 

The GARCH-X effect is also tested by Wald tests (Table 2) and by the LR 
tests (Table 3) for five currencies. Both tests suggest the presence of the GARCH-X 
effect for all five currencies. The model selection criteria (Table 3) also indicate 
that the model with GARCH(l, 1)-X has a better fit than the model with 
GARCH( 1, 1). 

These tests may have power in some other directions and other misspecification 
can possibly be detected. If the results indicate the presence of the GARCH-X 
effect, they might not provide definitive evidence of neglected GARCH-X effect. 
The possible presence of higher order GARCH effects or the potential effects of 
other neglected variables in the information set may lead to the observed results. 
Much of the model selection literature in which model choice is based on the 
SIC, the Akaike information criterion (AJC), or other criteria, is concerned with 
selecting parsimoniously undominated models usually in terms of likelihood and 
subject to a restriction of correct specification of a model in that the residual 
processes from the (first and higher) conditional moments be martingale difference 
sequences. If a model is correctly specified in conditional mean and conditional 
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TABLE 3. Log-likelihood, the LR statistics and model selection criteria. 
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Model Log-likelihood LR statistic AIC SIC 

BP 

DM 

JY 

CD 

FF 

IL 

SF 

Model 1 
Model 2 

Model 1 
Model 2 
Model 3 

Model 1 
Model 2 

Model 1 
Model 2 
Model 3 

Model 1 
Model 2 
Model 3 

Model 1 
Model 2 
Model 3 

Model 1 
Model 2 
Model 3 

11222.65 
11244.08 

11794.28 
12026.35 
12037.22 

10349.67 
10437.53 

13820.89 
14197.91 
14225.52 

10020.61 
11087.17 
11220.71 

10750.58 
10959.91 
11000.04 

11187.19 
11718.79 
11729.96 

42.85 

464.13 
21.74 

175.71 

754.03 
55.22 

2133.12 
267.09 

418.65 
80.27 

1063.21 
22.32 

- 22399.30 - 22281.38 
-22434.15 - 22295.73 

- 23542.56 - 23424.65 
- 23998:69 - 23860.27 
- 24014.43* - 23860.63* 

- 20645.34 - 20506.92 
-20813.05 -20654.12 

- 27587.79 - 27449.36 
- 28333.81 -28174.88 
- 28383.04* - 28208.72* 

- 20027.21 - 19991.33 
- 22152.33 - 22095.93 
-22413.42* -22341.64* 

-21487.16 -21451.27 
-21897.81 -21841.41 
- 21972.08* -21900.30* 

- 22328.38 - 22210.46 
- 23383.59 -23245.16 
- 23399.91* -23246.11* 

Note: * denotes the minimum of AIC or SIC. Model 1 is the ECM estimated by least squares assuming 

the conditional homoscedasticity; Model 2 is the ECM with GARCH specification; and Model 3 

is the ECM with GARCH-X specification. Model 2 and Model 3 are estimated by maximizing the 

normal likelihood function (QMLE) using the method of scoring. The number of parameters in 

Model 1 is 4(p+ l)+ 3 where p is the number of lags in ECM (1). Model 2 has four more parameters 

than Model 1 and Model 3 has three more parameters than Model 2. For BP and JY we could 
not find a step ofincreasinglikelihood for Model 3 from many different initial values ofparameters. 

variance, then we may use the GARCH-X specification as a useful description 
of the salient aspects of the chosen phenomena. 

In order to test the validity of the model, a series of specification tests for the 
model standardized by hli2 were conducted (but not reported), where hiir is 
estimated by GARCH(l, 1)-X. The McLeod-Li tests and LM tests for ARCH 
become less significant, suggesting that some conditional heteroscedasticity is 
captured by the model. However, as is well recognized in Baillie and Bollerslev 
(1989b) and Hsieh (1989) among many others, daily exchange rate series show a 
considerable amount of leptokurtosis even after accounting for GARCH( 1, 1). All 
of the standardized residuals have mean close to zero and variance close to unity. 
The LM tests indicate no serial correlation in the standardized residuals. The 
skewness and the excess kurtosis of the standardized residuals become generally 
smaller in modulus. From the diagnostics, we think the model using bivariate 
GARCH(l, 1)-X in the system of the error correction models are reasonably well 
specified. 

We have seen that the conditional variances of prediction errors of the exchange 
rate changes are positively related to the short-run deviation from the long-run 
relationship. This means that when the spread is bigger, the exchange rates are 
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more volatile and uncertainty increases. If $_I has additional predictive power 
for the changing variances of the spot and forward exchange rate changes, this 
may be exploited to obtain more precise time varying confidence intervals for 
point forecasts of exchange rate changes. 

III. Concluding remarks 

In this paper we investigate a model which seems useful in examining how the 
short-run disequilibrium has an effect on uncertainty in predicting cointegrated 
series. Examining the behavior of the variances over time as a function of 
disequilibrium is reasonable when one expects increased volatility due to shocks 
to the system which propagate on first and second moments. The model is thus 
appropriate for testing for causality in variance as well as in mean through the 
error correction term. 

It seems that this specification would ensure a better fit and would be useful 
empirically in other possible examples in economics. We have conducted the 
same analysis using monthly short- and long-term interest rate series as well as 
monthly interest rate series of the commercial paper and the Treasury bill. The 
results indicate stront GARCH-X for those data. Hence the’model seems useful 
to study the relationship between the short-run deviation from a long-run 
relationship (disequilibrium) and uncertainty. 

Notes 

1. See Hansen and Hodrick (1983) or Mark (1985) for more details. They also derive more 
explicit relationship between the first and second conditional moments under additional 
assumptions on the joint distribution of Q and z and consumer preferences. 

2. In order to allow z:_ 1 to have negative coefficients in (2) we also used a symmetric matrix 
G instead of D’D. As the diagonal elements of G turn out to be positive for our data, we 
use D’D which guarantees If, to be positive definite. The off-diagonal element of D’D may 
be negative. 

3. It may be noted that our LM and LR tests are not robust to departures from normality 
or information equality while our Wald tests are. Robust LM tests are available in literature 
(Wooldridge, 1990; Bollerslev and Wooldridge, 1992), which we do not pursue here. LR 
tests do not follow an asymptotic chi-square distribution in the presence of ARCH (White, 
1984, p. 76). 
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