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In this paper a new test, the neural network test for neglected nonlinearity, is compared with the 
Keenan test, the Tsay test, the White dynamic information matrix test, the McLeod-Li test, the 
Ramsey RESET test, the Brock-Dechert-Scheinkman test, and the Bispectrum test. The neural 
network test is based on the approximating ability of neural network modeling techniques recently 
developed by cognitive scientists. This test is a Lagrange multiplier test that statistically determines 
whether adding ‘hidden units’ to the linear network would be advantageous. The performance of the 
tests is compared using a variety of nonlinear artificial series including bilinear, threshold autore- 
gressive, and nonlinear moving average models, and the tests are applied to actual economic time 
series. The relative performance of the neural network test is encouraging. Our results suggest that it 
can play a valuable role in evaluating model adequacy. The neural network test has proper size and 
good power, and many of the economic series tested exhibit potential nonlinearities. 

1. Introduction 

Specification and estimation of linear time series models are well-established 
procedures, based on ARTMA univariate models or VAR or VARMAX multi- 
variate models. However, economic theory frequently suggests nonlinear 
relationships between variables, and many economists appear to believe that the 
economic system is nonlinear. It is thus interesting to test whether or not a single 
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economic series or group of series appears to be generated by a linear model 
against the alternative that they are nonlinearly related. There are many tests 
presently available to do this. This paper considers a ‘neural network’ test 
recently proposed by White (1989b), and compares its performance with several 
alternative tests using a Monte Carlo study. 

It is important to be precise about the meaning of the word ‘linearity’. 
Throughout, we focus on a property best described as ‘linearity in conditional 
mean’. Let {Z,} be a stochastic process, and partition Z, as Z, = (yt, Xl)‘, where 
(for simplicity) y, is a scalar and X, is a k x 1 vector. X, may (but need not 
necessarily) contain a constant and lagged values of y,. The process {y,} is linear 

in mean conditional on X, if 

P[E(y,IX,) = X;fI*] = 1 for some f3* E [Wk. 

Thus, a process exhibiting autoregressive conditional heteroskedasticity 
(ARCH) [Engle (1982)] may nevertheless exhibit linearity of this sort because 
ARCH does not refer to the conditional mean. Our focus is appropriate 
whenever we are concerned with the adequacy of linear models for forecasting. 

The alternative of interest is that y, is not linear in mean conditional on X,, so 
that 

P[E(y,IX,) = X;tI] < 1 for all 0 E [Wk. 

When the alternative is true, a linear model is said to suffer from ‘neglected 
nonlinearity’. 

Most of the tests treated here have as a first step the extraction of linear 
structure by the use of an estimated filter. Typically, an AR(p) model is fitted to 
the series and the test then applied to the estimated residuals. To automate this 
procedure a particular value of p is used in the simulations, usually p = 1 or 2, 
but when dealing with actual data we shall choose p using the SIC criterion 
leading to consistent choice of p [Hannan (1980)]. 

Several tests involve regressing linear model residuals on specific functions of 
X,, chosen to capture essential features of possible nonlinearities; the null 
hypothesis is rejected if these functions of X, are significantly correlated with the 
residual. When the null is rejected, the implied alternative model may provide 
forecasts superior to those from the linear model. These forecasts need not be 
optimal, merely better. Tests not based on models that imply such forecasts are 
the McLeod-Li test (based on the autocorrelation of the squared residuals), the 
BrockkDechert-Scheinkman test (BDS) (arising from consideration of chaotic 
processes), and the Bispectrum test. As not all tests are based on alternative 
forecasting models, we have not considered the relative forecasting abilities of 
the linear and implied alternative models, although this should be informative 
and may be considered in further work. 
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2. The neural network test 

Cognitive scientists have recently introduced a class of ‘neural network’ 
models inspired by certain features of the way in which information is processed 
in the brain. An accessible treatment is given by Rumelhart, Hinton, and 
Williams (1986). A leading model is the ‘single hidden layer feedforward net- 
work’, depicted in fig. 1. In this network, input units (‘sensors’) send signals Xi, 
i= l,... ,k, along links (‘connections’) that attenuate or amplify the original 
signals by a factor ‘/ji (‘weights’ or ‘connection strengths’). The intermediate 
or ‘hidden’ processing unit j ‘sees’ signals xiyji, i = 1, . . ,k, and processes 
these in some characteristic, typically simple way. Commonly, the hidden 
units sum the arriving signals [yielding 3yj, where I = (1, x1, . . . ,xk)‘, 
yj s (yjo, l’jl, . . . ,>‘jk)‘] and then produce an output ‘activation’ rc/(Z’yj), 
where the ‘activation function’ $ is a given nonlinear mapping from tR to Iw. 
Often, $ is a cumulative distribution function (c.d.f.), such as the logistic, 
\l/(i.) = (1 + em”)-‘, i. E R. Hidden unit signals $(5Z’yj), j = 1, . . . ,q, then pass to 
the output, which sums what it sees to produce an output 

ftx, 6, = PO + i pjll/(a'Yj), 4 E N, (2.1) 
j=l 

where /I,, . . . ,flq are hidden to output weights and 6 = (PO, . . . ,fly, r;, . . . ,&)‘. 
For convenience and without loss of generality, we suppose that the output unit 
performs no further transformations. 

As discussed by White (1989a, 1990) functions defined by (2.1) belong to 
a family of flexible functional forms indexed by II/ and q. Hornik, Stinchcombe, 

output 

hidden 

input 
Xl X2 X3 X4 

Fig. 1. Single hidden layer feedforward network 
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and White (1989, 1990) and Stinchcombe and White (1989) ~ among others - 
have shown that for wide classes of nonlinear functions $, functions of the form 
(2.1) can provide arbitrarily accurate approximations to arbitrary functions in 
a variety of normed function spaces (e.g., continuous functions on a compact set 
with the uniform norm, functions in L, space, and functions in Sobolev spaces 
with Sobolev norm), provided that q is sufficiently large. Thus, functions of the 
form (2.1) are capable of approximating an arbitrary nonlinear mapping. Con- 
siderable practical experience shows that when the mapping is fairly smooth, 
tractable values for q can provide quite good approximations. For example, 
Lapedes and Farber (1987) well approximated the deterministic chaos of the 
logistic map using five hidden units, while Gallant and White (1992) well 
approximated the Mackey-Glass chaos with five hidden units. 

Similar approximation-theoretic issues arise in the context of projection 
pursuit [Friedman and Stuetzle (1981), Diaconis and Shahshahani (1984), 
Huber (1985), Jones (199 I)]. In fact, (2.1) can be viewed as a restricted projection 
pursuit function in which the functions $ are given a priori. In standard 
projection pursuit, ti may differ for each term (replace $ with ll/j) and one must 
estimate the $j. 

The neural network test for neglected nonlinearity uses a single hidden layer 
network augmented by connections from input to output. Network output o is 

then 

0 = I’d + i Bj*(.C’yj). 

j=l 

When the null hypothesis of linearity is true, i.e., 

H,: P[E(y,IX,) = *;(I*] = 1 for some d*, 

then optimal network weights pj, say /If, are zero, j = 1, . . . ,q, yielding an 
‘affine network’. The neural network test for neglected nonlinearity tests the 
hypothesis /$ = 0, j = 1, . . . ,q, for particular choice of q and “Jj. The test will 
have power whenever CT=, Bj~(a’yj) is capable of extracting structure from 
e: = y, - z;Q*. [Under the alternative, B* is the parameter vector of the 
optimal linear least squares approximation to E(y, 1 X,).] Recent theoretical 
work of Stinchcombe and White (1991) suggests that when $ is the logistic c.d.f., 
the terms $(a’~~) are generically (in yj) able to extract such structure. 

Implementing the test as a Lagrange multiplier test leads to testing 

Hb: E(YY,e:)= 0 vs Hi: E(Y,e:) #O, 

where Y, = ($(_?;T,), . . ,$(Y?;f,))‘, and r = (F,, . . . ,r,) is chosen a priori, 
independently of the random sequence {X,), for given qg N. We call Y, the 
‘phantom hidden unit activations’. As in Bierens (1987) and Bierens and Hartog 
(1988), we shall choose r at random. An analysis for f chosen to maximize 



departures of E( Y,e:) from zero (with 4 = 1, say) can be carried out along the 
lines of Bierens (1990), but is beyond the scope of the present work. 

In c_onstructing the test, we replace e: with estimated residuals &t = y, - x’;& 
with 0 obtained by least squares. This leads to a statistic of the form 

where f@n is a consistent estimator of W* = var(n-1’2 I:= 1 Y,ef). Standard 
d 

asymptotic arguments lead to the conclusion M, - x’(q) as n --f cc under Ho. 

Two practical difficulties may be noted: 1) Elements of Y, tend to be collinear 
with X, and with themselves. 2) Computation of I@n can be tedious. These can be 
remedied by 1) conducting the test using q* < q principal components of Yt not 
collinear with X,, denoted u/f, and 2) using an equivalent test statistic that 
avoids explicit computation of f@,,, 

d 

nR2-X2(q*), 

where R2 is the uncentered squared multiple correlation from a standard linear 
regression of &t on YF, Z7,. 

3. Alternative tests 

In every case an AR(p) model is first fitted to the data and nonlinearity tested 
for the residuals. In fact any linear model could first be used. 

3.1. The Keenun, Tsuy, und RamseJl RESET tests 

Let y, be series of interest and let X, = (yt 1, . . ,y, _p)’ be used to explain y,. 
(An obvious generalization allows X, to include other explanatory variables.) In 
performing the tests, p and any other contents of X, have to be determined by 
the user. 

The first step of these tests is linear regression of y, on Tr, producing an 
estimate 8, a forecast ,l = 8: 8, and estimated residuals e^, = y, - J?7;8. 

Keenan (1985) introduced a test based on the correlation of i& withff The 
Keenan test essentially asks if the squared forecast has any additional forecast- 
ing ability, and so tests directly for departures from linearity in mean. 

The test of Tsay (1986) has a similar form to the Keenan test, but tests the 
possibility of improving forecasts by including p(p + 1)/2 cross-product terms of 
the components of X,, of the form ~,_~y,_~, k 2 j, j, k = 1, . . . ,p. The test is 
again directly designed to test for departures from linearity in mean. 
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The RESET test proposed by Ramsey (1969) generalizes the Keenan test in 
a different way. Using the polynomials in fr we can postulate an alternative 
model of the form 

y, = x’;0 + azf: + ... + akf: + v, for some k 2 2. 

The null hypothesis is H,: a2 = ... = ak = 0. Denoting & = (e,, . . J,,) 
and 3 = (\;r, . . . ,3,)‘, the test statistic is RESET = [(&Ye - O’v*)/(k - l)]/ 
[G’C/(n - k)], which is approximately F(k - 1, n - k) when Ho is true. 

As for the neural network tests, collinearity can be avoided by forming the 
principal components of (J: , . . . , ff), choosing the p* < (k - 1) largest (except 
the first principal component so as not to be collinear with z,), and then 
regressing y, on these and d,, giving the residual li,. The test statistic is 
RESET1 = [(c?‘$ - G’fi)/p*]/[ti’fi/(n - k)], which is F(p*, n - k) when Ho is true. 

A Lagrange multiplier version of the test is obtained by regressing i& on x”, 
andf:, . . . ,f: to get an RZ statistic. Under regularity conditions nR* is asymp- 
totically distributed as X*(k - 1) under the null. Again, forming the principal 
components of (f:, . . . ,ff), choosing the p* largest, and then regressing St on 
these and d,, also gives an RZ statistic. Under regularity conditions, the statistic 
RESET2 = nR* is distributed as x2(p*) for n large, under H,. For this test both 
k and p* have to be selected by the user. The RESET tests are sensitive primarily 
to departures from linearity in mean. 

3.2. The White dynamic information matrix test 

White (1987, 1992) proposed a specification test for dynamic (time series) 
models, based on the covariance of conditional score functions. For the normal 
linear model 

y, = 2;e + e,, e, - NW, c2 ), 

the log-likelihood is 

log,J(x,, 8,~) = constant - loga - (yt - Z;0)2/202. 

With u, = (yt - x”;@/a, the conditional score function is 

s,(X,, 0, a) = Vlogi(X,, 8, a) = (T-l@,, u,x:, u: - l)‘, 

where V is the gradient operator with respect to 8 and rs. Denoting 
SF = s,(X,, 0*, o*), correct specification implies E($) = 0 and E(s~s~~,) = 0, 
t=l,2 )...) t=l,... J. The dynamic information matrix test can be based on 
the indicator m, = S vet s,.s_ 1, where S is a nonstochastic selection matrix 
focusing attention on particular forms of possible misspecification. 
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Denoting $ = s,(X,, &8) and &, = S vet $,s*;_i, where 6 and 6 are the 
quasi-maximum likelihood estimators (QMLEs), the following versions of the 
test statistic can be formed: 1) WHITE1 = np; .f;’ ,& where ,i&, = ,-I I:=, rf&, 
.fn = ~lp,di; - (clc riz,$)[n-‘~$s*;]-‘(n-‘~$ti2:); 2) WHITE2 = nR2, 
where R2 is the (constant unadjusted) squared multiple correlation coefficient of 
the regression of the constant unity on the explanatory variables rit,, s^,; 3) 
WHITE3 = nR2 where R2 is the (constant unadjusted) squared multiple cor- 
relation coefficient from the regression of li, = (yt - r?;8)/8 on 2, and lt, with k; 
being defined from I?& = k;ti: . Under Ho, WHI TEI, WHI TE2, and WHI TE3 all 
have the x’(q) distribution asymptotically, where q is the dimension of m,. These 
tests will be sensitive to departures from linearity in mean to the extent that 
these departures induce autocorrelation in s F. Other misspecifications resulting 
in such autocorrelations will also be detected. 

3.3. The McLeod and Li test 

It was noted in Granger and Andersen (1978) that for a linear stationary 
process 

corr(y:, y:_,) = [corr(y,, Y,-~)]’ for all k, 

and so departures from this would indicate nonlinearity. McLeod and Li (1983) 
use the squared residuals from a linear model and apply a standard Box-Ljung 
Portmanteau test for serial correlation. This test is sensitive to departures from 
linearity in mean that result in apparent ARCH structure; ARCH itself will also 
be detected. 

3.4. The BDS test 

Whilst conducting research on tests for chaos, Brock, Dechert, and Scheink- 
man (1986) derived a test appropriate for detecting general stochastic nonlin- 
earity. For a series y,, define 

C,(E) = n-’ [number of pairs (i,j)such that 

SO that yi, . . . ,yi+m-l and yj, . . . ,Yj+,- 1 are two segments of the series of length 
m, such that all corresponding pairs of points differ from each other by size E. 
The test statistic is BDS = n’/’ [C,,,(E) - C, (E)~]. Under the null hypothesis that 
the series is independently and identically distributed, BDS is asymptotically 
normally distributed with zero mean and a known complicated 
variance. The test is interesting because it arises from very different 
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considerations than the others. For our implementation, y, is replaced by the 
linear model estimated residuals. The BDS test will be sensitive to departures 
from linearity in mean, but may also have power against series linear in mean 
with ARCH. 

3.5. The Bispectrum test 

Following earlier work by Subba Rao and Gabr (1980, 1984), a test based on 
the bispectrum was suggested by Hinich (1982) and Ashley, Patterson, and 
Hinich (1986). If {y, 3 is a zero mean stationary series, it can be expressed as 

_V, = CEO UiE,-i, where {e,} is purely random and the weights {ai} are fixed. 
Define the second- and third-order autocovariances by c(h) = E[y,+,,yf] and 
c(h, k) = E [yt+,,yfckyf], and write their corresponding Fourier transforms (the 
power spectrum and power bispectrum) as S(o) = &c(h)exp( - 2niwh) and 
B(o,, 02) = &,k~(h, k)exp [ - 2ni(01 h + w2 k)]. It can be shown that 

IB(w,, Q!I’ 
” for all (oi, wZ), -z- 

~(~1)~(~2)~(~1 + 02) 0,” 

where r~f = Es: and ,u~ = Es:. The square root of this is called the skewness of 
{ y, }. The fact that the skewness of such a time series is independent of (wi, 02) is 
used to test nonlinearity. The test statistic of Hinich (1982) is based on the 
interquartile range of the estimated ratio of the skewness over a set of frequency 
pairs, (oi, Q). This proved to be too expensive to use in the Monte Carlo 
simulation but was used in section 6. We thank the authors of this test for 
providing the software to perform the test. In our implementation y, is again 
replaced by the linear model estimated residual. The Bispectrum test is sensitive 
to departures from linearity in mean, but will also detect ARCH. 

4. The simulation design 

Two blocks of univariate series were generated from models chosen to 
represent a variety of stable nonlinear situations. Throughout E, _ N(0, i ) is 
a white noise series. 

4.1. Block1 

(ii Autoregressive (AR) 

Y, = 0.6~ 1 + E,, 

a representative linear model. 
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(ii) Bilinear (BL) 

Y, = 0.7Y,-1 Et-2 + Et, 

a bilinear model having the same covariance properties as a white noise; see 
Granger and Andersen (1978). 

(iii) Threshold autoregressive (TAR) 

Yr = 0.9y,-, + E, for ly,-,I I 1, 

= - 0.3y,_, + E, for Jy,_, 1 > 1, 

an example considered by Tong (1983). 

(iv) Sign autoregressive (SGN) 

yr = w(y,- 1 ) + et, 

where sgn(x) = 1 if x > 0, = 0 if x = 0, = - 1 if x < 0. This is a particular 
form of nonlinear autoregression (NLAR). 

(v) Nonlinear autoregressive (NAR) 

yr = @.71Y,- 1 IMY,- 1 I + 2) + Et3 

another NLAR model, closely related to a class of models known as rational 
NLAR. 

The models of the second block have been used in previous papers on 
nonlinear testing, particularly by Keenan (1985), Tsay (1986), Ashley, Patterson 
and Hinich (1986) and Chan and Tong (1986), and so are included to allow 
comparison with these studies. 

4.2. Block2 

(1) MA(2) (Modell) 

y, = E, - 0.4&,_, + 0.3&*_2. 

(2) Heteroskedastic MA (2) (Model2) 

y, = E, - 0.4&,_ 1 + 0.3&,_2 + 0.5&,&,_2, 

where the forecastable part of y, is linear and the final product term introduces 
heteroskedasticity. 
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(3) Nonlinear MA (ModeM) 

y, = E, - 0.3E,_1 +0.2&,-z + 0.4&,-1&,-2 - 0.25Ef-2, 

where the final two terms give a nonlinear MA model that is typically noninver- 
tible. 

(4) AR(2) (Model4) 

Yr = 0.4Y,- 1 - 0.3y,-, + Et, 

a stationary linear AR model. 

(5) Bilinear AR (ModelS) 

Y, = 0.4Y,- 1 -0.3y,_~+osy*_~E,_~ +.a,, 

a model containing both linear and bilinear terms. 

(6) Bilinear ARMA fModel6) 

Y, = 0.4Y,- 1 -0.3y,_~+O.5y,-r&,_, +0.8Et-1 +E,. 

It is seen that three linear models are included for purposes of comparison. 
Data were generated with sample sizes 50, 100, and 200. 1000 replications were 
used to obtain estimates of power. In a few sample cases the plot of y, against 
y,_r was constructed. It was generally true that there was no obvious nonlin- 
earity visible, except possibly for the SGN autoregressive series. 

All of the tests can be generalized in fairly obvious ways to consider nonlinear 
relationships between pairs of series. As part of an initial exploration of this 
situation, two nonlinearly related pairs of series were also generated. 

4.3. Bivariate models 

SQ 

y, = x: + 5, 

EXP 

Yf = ev(x,) + Et, 
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where x, = 0.6x,_ 1 + e,, F, and e, are independent, E, _ N(0, $1) and e, + N(0, 1) 
white noises. Three different values for the variance of E, were used, 
v = 1,25,400. Plots of yr against x, with v = 1 clearly showed a nonlinear 
relationship, btit this was no longer clear when v = 400. 

For all the simulations except for TSAY2, the information set is X, = yt_ 1 for 
Block 1, X, = (y, 1, y, _ 2)’ for Block2, and X, = x, for the bivariate models. For 
the TSAYZ test, X, = (y,_ 1, y,_ 2, y,_ 3, Y,_~, y- 5)’ for Block1 and Block2 and 
X, = (x, , x, _ 1 , x, _ 2, xt _ 3, x, _4)’ for bivariate models. 

In performing neural network tests the logistic c.d.f. +(j.) = 
[l + exp( - ,?)I-’ is used. The input to hidden unit weights rji were randomly 
generated from the uniform distribution on [ - 2,2]. The variables y,, X, have 
been resealed onto [0, 11. We choose q = 10 for NEURAL1 and q = 20 for 
NEURAL2. We use q* = 2 largest principal components (excluding the first 
principal component) for the Block1 and bivariate models and q* = 3 for the 
Block2 models. 

For the White dynamic information matrix tests, appropriate choice of S gives 

where X, = y,_ 1 for Blockl, X, = (y,_ 1, Y!_~)’ for Block2, and X, = x, for the 
bivariate models, so that q = 4 for the Block1 and bivariate models and q = 8 
for the Block2 models. 

We choose 20 degrees of freedom for the McLeod and Li tests, and k = 5, 
p* = 1 in RESET1 and RESET2 for every model. 

5. Results of the simulation 

Critical values for the various tests were constructed using both the asymp- 
totic theory and by simulation using a linear model. For Block1 the AR(l) 
(Model (i)) was used and for Block2 the AR(2) (Mode14) was used, for sample 
sizes 50, 100, and 200, and with 6000 replications. The bivariate models used the 
AR( 1) values. lo%, 5%, 2.5%, and 1% critical values were constructed for each 
test, but to conserve space only 5% values are reported. 

Tables 1 and 2 show the 5% critical values simulated for sample sizes 50, 100, 
and 200, and the asymptotic values. 

Table 3 illustrates the stability of the 5% critical values using 6000 simula- 
tions. 5% critical values were obtained from each of the AR(l) models 
x, = 4x,-l + E,, with 4 taking the values - 0.9, - 0.6, - 0.3, 0.0, 0.3,0.6, and 
0.9, for sample size y1 = 100. Again, with this sample size, 1000 replications of the 
AR(l) model with 4 = 0.6 were constructed, and the tests applied with the 
critical values obtained from the previous simulation. The ‘power’ or percent 
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Table 1 

Critical values (5%) for Block1 models.’ 

Test n = 50 n=lOO n=200 

NEURAL1 5.52 5.58 
(5.99) 

(Z, 
(5.99) 

NEURAL2 5.52 5.45 5.65 
(5.99) (5.99) (5.99) 

KEENAN (:::) 3.28 3.61 
(3.94) (3.84) 

TSAY 1 3.16 3.32 3.69 
(4.05) (3.94) (3.84) 

TSAYZ 2.50 2.02 1.88 
(2.03) (1.80) (1.67) 

WHITE1 9.95 9.15 8.92 
(9.49) (9.49) (9.49) 

WHITE2 11.84 10.82 10.02 
(9.49) (9.49) (9.49) 

WHITE3 9.01 9.24 9.34 
(9.49) (9.49) (9.49) 

MCLEOD 31.14 31.42 31.67 
(31.41) (31.41) (31.41) 

RESET1 3.01 3.19 3.59 
(4.06) (3.94) (3.84) 

RESET2 3.05 3.11 3.39 
(3.84) (3.84) (3.84) 

“The first number in each cell is the simulated critical value from AR(l), y, = 0.6y,_, + E,, with 
6000 replications, and the second number in parentheses is the asymptotic critical value. 

rejection in each case is shown in table 3. Thus the figure 4.2 at the top left means 
that data from an AR(l) with C#J = 0.6 led to rejection of the linearity null 
hypothesis on 4.2% of occasions by the NEURAL1 test using the critical value 
obtained from the AR(l) model with 4 = - 0.9. With 1000 replications, the 
95% confidence intervals of these powers (sizes) around the hoped for value of 
5%, is 3.6 to 6.4%. The final column shows the rejection percentage of He using 
the asymptotic 5% critical values. Virtually all of the neural network test results 
lie in the 95% confidence interval for size, as do all of the values in the column 
when 4 = 0.6. However, some tests do not perform satisfactorily, particularly 
the KEENAN, TSAYl, TSAY2, and WHITE1 tests, suggesting either that the 
critical values are not stable across simulation models or that the asymptotic 
theory is not appropriate with a sample size of 100. Because of its complexity, 
the BDS test was not calculated in this particular exercise. 
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Table 2 

Critical values (5%) for Block 2 models. 
-- 

Test n = 50 n=lOO n=200 

NEURAL1 7.72 7.41 7.98 
(7.8 1) (7.81) (7.81) 

NEURAL2 7.74 1.52 7.85 
(7.81) (7.81) (7.81) 

KEENAN 3.70 3.84 4.00 
(4.06) (3.94) (3.84) 

TSAY 1 2.84 2.63 2.69 
(2.82) (2.70) (2.60) 

TSAYZ 2.23 1.86 1.74 
(2.03) (1.80) (1.67) 

WHITE1 23.45 18.58 16.90 
(15.51) (15.51) (15.51) 

WHITE2 19.36 17.42 16.74 
(15.51) (15.51) (15.51) 

WHITE3 14.98 14.86 15.49 
(15.51) (15.51) (15.51) 

MCLEOD 31.41 31.29 31.19 
(31.41) (31.41) (31.41) 

RESET1 3.49 3.71 3.92 
(4.06) (3.94) (3.84) 

RESET2 3.57 3.71 3.82 
(3.84) (3.84) (3.84) 

“The first number in each cell is the simulated critical value from Model4, y, = 0.4y,_, 
- 0.3yl_, + E,. with 60&l replications, and the second number in parentheses is the asymptotic 

critical value. 

Table 3 
Size of tests and similarity. 

Test - 0.9 - 0.6 - 0.3 0.0 0.3 0.6 0.9 Asymp. 

NEURAL1 4.2 4.2 4.0 4.9 4.8 
NEURAL2 4.2 4.1 4.1 4.8 4.7 

z.2 40 
3:5 

4.2 
4.0 

KEENAN 3.0 
::: 

40 
;: ;: 4.0 

5:1 3.1 
TSAY 1 3.0 
TSAY2 8.0 7.4 716 916 718 :: 

::; 3.2 
10.1 

WHITE1 2.5 3.0 4:1 
>: 

3.6 

WHITE2 4.5 WHITE3 4.0 ::A :; 4’2 

5.3 2: 54 

4’4 5’1 3’6 
MCLEOD 4.4 4.4 414 414 414 

21 
414 

3:9 ::;t 
4.4 

RESET1 3.7 3.7 3.7 3.7 4.1 5.0 
:9’ 

3.5 
RESET2 3.9 3.7 3.6 3.6 3.7 5.2 519 3.6 

“(I) Each column shows the power (%) for AR(l) y, = 0.6yl_, + s,. using the 5% critical values 
simulated with y, = rjy,_, + E,, 4 = - 0.9, - 0.6, - 0.3,0.0,0.3,0.6,0.9. The last column shows the 
power for the AR(l) usmg 5% asymptotic critical values. (2) 95% confidence interval of the observed 
size is (3.6.6.4). since if the true size is s the observed size follows the (asymptotic) normal distribution 
with mean s and variance ~(1 - s)/lOOO. (3) Sample size = 100, replications = 1ooO. 
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Table 4 shows the power of the tests using the Block1 models plus the 
bivariate models with v = 1 and with sample size n = 200. The first number is 
the power using the 5% critical value from the simulation of the AR(l) model 
with C#J = 0.6 and below it, in parentheses, is the power using the 5% theoretical 
critical value. A great deal of variation in the power of the tests is observed. Most 
tests have reasonable power for the bilinear model, but the White dynamic 
information matrix test and McLeod-Li test are particularly successful. For the 
threshold autoregressive data, only the neural network test has any success and 
similarly for the SGN autoregressive model, where the neural network test is 
very powerful, the RESET test has some power, and the other tests have very 

Table 4 

Power for Block1 and bivariate models. 

Test AR BL TAR SGN NAR SQ EXP 

NEURAL1 
(Z, 

NEURAL2 5.4 

(4.4) 

KEENAN 4.1 

(4.2) 

TSAY 1 4.1 

(4.3) 

TSAYZ 
(Z, 

WHITE1 5.2 

(3.2) 

WHITE2 
(GB, 

WHITE3 5.5 

(5.2) 

MCLEOD 
(Z, 

RESET1 5.0 

(3.9) 

RESET2 5.2 

(3.4) 

BDS (6.1) 

58.0 19.8 
(55.6) (77.2) 

57.1 80.7 
(55.5) (78.3) 

39.3 
(38.1) (Z, 

39.3 
(38.2) (Z, 

41.7 
(55.5) (Z, 

97.5 4.1 
(96.8) (3.0) 

95.9 
(96.8) (Z, 

99.5 
(99.4) (Z, 

90.2 
(90.3) (:I, 

38.5 
(36.0) (::t, 

40.2 7.0 
(36.2) (5.3) 

(98.8) (14.5) 

98.9 
(98.6) 

99.3 
(98.7) 

15.0 
(13.8) 

15.0 
(13.9) 

(& 

1.7 

(5.9) 

12.8 
(14.3) 

12.1 
(11.7) 

33, 

32.3 
(30.3) 

32.7 
(29.5) 

(12.6) 

20.4 
(18.3) 

19.9 
(17.9) 

23.8 
(21.8) 

23.8 
(21.8) 

:::, 

4.5 

(3.2) 

(Z, 

(:::, 

(Z, 

23.5 
(21.3) 

26.2 
(22.1) 

(5.9) 

100.0 
(100.0) 

100.0 
(100.0) 

100.0 
(100.0) 

100.0 
(100.0) 

66.9 
(72.8) 

15.5 
(71.5) 

67.0 
(70.5) 

19.5 
(78.9) 

23.0 
(23.2) 

96.0 
(95.9) 

95.4 
(95.2) 

(70.6) 

100.0 
(100.0) 

100.0 
(100.0) 

100.0 
(100.0) 

100.0 
(100.0) 

36.2 
(42.8) 

71.1 
(66.4) 

62.7 
(66.2) 

(Z) 

15.0 
(15.0) 

61.2 
(58.7) 

59.5 
(56.0) 

(49.6) 

’ Power using 5% critical value simulated with AR(l) model is shown (except for BDS test), and 
power using 5% asymptotic critical value is shown in parentheses. Sample size = 200, replica- 
tions = 1000. The results for BDS test in Liu (1990) with embedding dimension m = 2 and E = (0.8)6 
are reported here. The series were divided by the range of the data before applying the BDS tests. 
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Table 6 

Power vs. sample size for Block1 and bivariate models. 

AR BL TAR SGN NAR SQ EXP 

NEURAL1 

32.2 49.0 
54.3 84.1 
79.8 98.9 

TSAY 1 

9.6 17.8 
7.5 16.1 
4.2 15.0 

WHITE3 

4.8 6.0 
4.0 a.8 
4.2 12.1 

RESET2 

10.6 21.5 
8.6 26.5 
7.0 32.7 

n = 50 4.8 27.7 
n=lOO 5.6 43.0 
n=200 5.2 58.0 

9.0 
13.8 
20.4 

100.0 
100.0 
100.0 

98.7 
loo.0 
100.0 

n = 50 4.6 25.3 
n=lOO 5.1 33.0 
n=200 4.7 39.3 

12.2 loo.0 99.3 
16.8 100.0 100.0 
23.8 100.0 loo.0 

n = 50 
n=lOO 
n=200 

5.0 
4.1 
5.5 

al.0 
98.0 
99.5 

4.3 20.1 17.8 
5.2 47.1 32.6 
5.5 79.5 60.0 

II = 50 4.6 24.9 
n=lOO 5.2 33.9 
n=200 5.2 40.2 

12.5 69.6 47.1 
la.2 84.9 57.0 
26.2 95.4 59.5 

’ Power using 5% simulated critical values is shown. Replications = loo0, sample size n = 50,100,200. 

Table 7 

Power vs. sample size for Block2 models. 

Model1 Model2 Model3 Model4 Model5 Model6 

NEURAL1 

49.3 
84.5 
98.1 

TSAY 1 

51.5 
85.6 
99.2 

WHITE3 

30.2 
58.3 
88.9 

RESET2 

34.5 
60.5 
86.7 

n = 50 5.7 10.7 
n=lOO 5.2 13.2 
n=200 5.0 17.2 

4.9 64.3 52.0 
5.5 86.2 73.1 
5.8 94.2 85.8 

n = 50 6.3 10.6 
n=lOO 4.6 12.4 
n=200 5.0 la.8 

4.4 74.7 56.8 
4.5 94.5 78.1 
6.0 98.8 89.8 

n = 50 6.3 13.0 
n=lOO 10.8 18.6 
n=200 21.7 28.8 

4.6 79.2 71.4 
5.8 99.6 95.6 
5.0 100.0 99.4 

6.1 36.0 35.4 
6.2 56.7 49.8 
4.1 77.3 62.9 

n = 50 5.9 6.9 
n=loo 3.3 11.5 
n=200 4.0 16.1 

‘Power using 5% simulated critical values is shown. Replications = loa0. sample size n = 50,100,200. 
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and the nonlinear moving average model (Model3), but little power against the 
heteroskedastic MA model (Mode12). 

Similar tables were constructed for sample sizes 50 and 100 but are not shown 
in full detail. Tables 6 and 7 show power against sample size for four of the tests, 
NEURALl, TSAYl, WHITE3, and RESET2. The results are generally as 
expected, with power increasing as sample size increases for most of the nonlin- 
ear models. 

From these results and others not shown some general comments can be made: 

0) 

(ii) 

(iii) 

(iv) 

;:I) 

NEURAL1 and NEURAL2 are virtually the same; thus the extra work for 
NEURAL2 is probably not worthwhile. 
TSAY 1 and TSAY2 both have nuisance parameter problems; TSAY 1 seems 
to be better. 
The WHITE tests all have nuisance parameter problems; WHITE3 is 
generally better. 
RESET1 and RESET2 are virtually identical, RESET2 being marginally 
better. 
The McLeod-Li test is generally weak compared to the alternatives. 
The TSAY 1 test is virtually always more powerful than the KEENAN test. 

(vii) The BDS test is good with bilinear data and has average power in other cases. 
(viii) No single test was uniformly superior to the others. 

Table 8 shows the power of four tests in the bivariate case y, = x: + s,, 
E, - N(0, cr’), where x, = 0.6x,_ i + e,, e, - N(0, 1). The three values of g chosen 
were 1, 5, and 20, corresponding to approximate signal-to-noise ratios: 

a 1 5 20 

var(x”)/var(e) 7.0 0.28 0.019 

Not all situations were simulated. The NEURAL1 and TSAYl tests are quite 
powerful in most situations, and have some power even with signal-to-noise 
ratios around 2% (corresponding to a = 20). 

Table 9 shows the same information for the bivariate model yt = exp(x,) + E,, 
E, - N(0, a’), where x, is as before and the same set of a values are used. The 
signal-to-noise ratios are 

a 1 5 20 

var(exp(x))/var(e) 2.16 0.086 0.005 
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Table 8 
Power vs. sample size and noise for bivariate model (SQ). 

o=l (r=S Cl = 20 

NEURAL1 
n = 50 100.0 
n=lOO 100.0 
n=200 100.0 100 30 

TSAY 1 

n = 50 100.0 
n=lOO 100.0 
n=200 100.0 100 42 

WHITE3 

n = 50 20.1 
n=lOO 47.1 
n=200 79.5 5 9 

RESET2 

n = 50 69.6 
n=lOO 84.9 
n=200 95.4 66 17 

’ Power using 5% simulated critical values is shown. 1000 replications for (T = 1,100 replications 
for o = 5, 20. Not all situations were simulated. Sample size n = 50,100,200. 

Table 9 
Power vs. sample size and noise for bivariate model (EXP).’ 

o=l a=5 u = 20 

n = 50 
n=lOO 
n=200 

n = 50 
n=lMl 
n=200 

n = 50 17.8 
n=lOO 32.6 
n=200 60.0 

n = 50 
n=lOO 
n=200 

98.7 
100.0 
100.0 

99.3 
loo.0 
100.0 

47.1 
57.0 
59.5 

NEURAL1 

99 25 

TSAY 1 

97 24 

WHITE3 

15 4 

RESET2 

24 10 

’ Power using 5% simulated critical values is shown. 1000 replications for u = 1, 100 replications 
for CT = 5, 20. Not all situations were stimulated. Sample size n = 50,100,200. 
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The results are similar to the previous case. It is encouraging that the NEURAL 
and TSAY tests have such good power in many cases. 

6. Tests on actual economic time series 

To illustrate the behavior of the various tests for actual economic time series, 
five economic series were analyzed. The series were first transformed to produce 
stationary sequences. If z, is the original series, y, = dz, or y, = d logz, is fitted 
by AR(p), where p is determined by the SIC criterion [Sawa (1978) Hannan 
(1980)]. Thus X, = (y,_ 1, . ,Y~-~)‘. For the moment, we assume the absence of 
ARCH effects. We discuss the consequences of ARCH below. 

Table 10 shows asymptotic p-values for the various tests; a low p-value 
suggests rejection of the null. As the neural network test involves randomly 
selecting the r parameters, it can be repeated several times with different draws. 
We obtain p-values for several draws of the neural network test, but these are 
not independent. Despite dependence, the Bonferroni inequality provides an 
upper bound on the p-value. Let PI, . . , P, be p-values corresponding to m test 

Table 10 

Tests on actual economic time series.” 

Test (1) (2) (3) (4) (5) 

NEURAL 

Simple Bonferroni 1.387 0.003 0.118 
Hochberg Bonferroni 0.289 0.003 0.024 

KEENAN 0.533 0.000 0.727 
TSAY 0.532 0.000 0.726 
WHITE1 0.131 0.127 0.423 
WHITE2 0.116 0.134 0.423 
WHITE3 0.254 0.000 0.579 
MCLEOD 0.743 0.000 0.960 
RESET1 0.122 0.004 0.040 
RESET2 0.118 0.004 0.040 
BISPEC 0.001 0.000 0.000 
BDS 0.724 0.000 0.921 

0.288 0.001 0.024 
0.277 0.001 0.024 
0.289 0.243 0.024 
0.283 0.003 0.024 
0.283 0.053 0.024 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 

0.001 
0.00 1 
0.014 
0.015 
0.00 1 
0.000 
0.000 
0.000 
0.014 
0.000 

0.070 
0.975 
0.623 
0.749 
0.45 1 

0.349 
0.349 

0.888 
0.066 
0.059 
0.061 
0.012 
0.025 
0.682 
0.675 
0.403 
0.060 

“(1) US/Japan exchange rate, y, = dlogz,, AR(l), 1974:1-1990:7, monthly, 199 observations; 
(2) US three-month T-bill interest rate, y, = AZ,, AR(6); (3) US M2 money stock, yt = Alog;,, AR(l); 
(4) US personal income, yr = dlogz,, AR( 1); (5) US unemployment rate, y, = dz,, AR(4). Series (2), 
(3), (4). and (5) are monthly for 1959:1-1990:7 with 379 observations. Series (1) and (2) are not 
seasonally adjusted while the others are. BDS test: embedding dimension m = 2, E = (0.8)6. 
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statistics, and PC,,, . . ,P(,,,, the ordered p-values. The Bonferroni inequality leads 
to rejection of H, at the a level if P(r, I u/m, so a = mPcl, is 
the Bonferroni bound. A disadvantage of this simple procedure is that it is 
based only on the smallest p-value, and so may be too conservative. Holm 
(1979) Simes (1986), Hommel (1988, 1989), and Hochberg (1988) discuss im- 
proved Bonferroni procedures. Hochberg’s modification is used here, defined 
by the rule ‘reject Ho at the z level if there exists a j such that 
P~j, I a/(m - j + I), j = 1, . . . ,m’. The improved Bonferroni bound is 
Cc = minj, 1 .,(m -j + lJp(j). 

In table i0, m = 5 neural network tests are conducted for each series. Both 
simple and Hochberg Bonferroni bounds are reported. These results illustrate 
a cautionary feature of the neural network test, as quite different p-values are 
found for different draws. Thus, if one had relied on a single use of the test, quite 
different conclusions would be possible, just as would be true if one relied on 
single but different standard tests for nonlinearity. Use of Bonferroni procedures 
with multiple draws of the neural network test appears to provide useful 
insurance against using a single test that by chance looks in the wrong 
direction. 

Although the results illustrate application of several tests for neglected nonlin- 
earity to various economic time series, we must strongly emphasize that they do 
not by themselves provide definitive evidence of neglected nonlinearity in mean. 
The reason is that, unlike the situation found in our simulations, we cannot be 
sure that there are not other features of the series studied that lead to the 
observed results; in particular, the possible presence of ARCH effects cannot be 
ruled out. 

Generally, ARCH will have one of two effects: either it will cause the size of 
the test to be incorrect while still resulting in a test statistic bounded in 
probability under the null (as for the neural network, KEENAN, TSAY, 
WHITE, and RESET tests), or it will directly lead (asymptotically) to rejection 
despite linearity in mean (as with the McLeod and Li, BDS, and Bispectrum 
tests). Two remedies suggest themselves: one may either (1) remove the effect of 
ARCH, or (2) remove ARCH. The first is relevant to tests with adversely affected 
size. The effect of ARCH can be removed using a heteroskedasticity-consistent 
covariance matrix estimator in computing the various test statistics. The ap- 
proach of Wooldridge (1990) may prove especially useful. The second approach 
is possible whenever one is confidently able to specify the form of the ARCH 
effect. However, use of a misspecified ARCH model in the procedure will again 
adversely affect the size of the test. Furthermore, if the alternative is true, the 
fitted ARCH model can be expected to absorb some or perhaps even much of 
the neglected nonlinearity. Conceivably, this could have adverse impact on the 
power of the procedure. Consideration of either of these remedies raises issues 
that take us well beyond the scope of the present study; their investigation is left 
to other work. 



Thus, we can take the empirical results of this section as indicating that either 
neglected nonlinearity or ARCH may be present in series (l)-(5), but that further 
investigation is needed. The results of this paper are only a first step on the way 
to analyzing methods capable of unambiguous detection of neglected nonlin- 
earity in real-world settings. 

7. Conclusions 

As with any Monte Carlo study, results obtained can be considerably in- 
fluenced by the design of the experiment, in this case the choice of nonlinear 
models and choices made in constructing the test studied. Assuming that the 
models chosen are of general interest, we have found that several of the tests 
studied here have good power against a variety of alternatives, but no one of 
these tests dominates all others. The new neural network test considered in this 
paper appears to perform as well as or better than standard tests in certain 
contexts. Application of the tests studied here to actual economic time series 
suggests the possible presence of neglected nonlinearity, but further investiga- 
tion is needed to separate out possible effects of ARCH. 
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