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Multicointegration

C. W. J. GRANGER and TAE-HWY LEE

Abstract

This paper introduces a deeper level of cointegration, which might be expected
to occur in economics. It can arise from special optimal control situations and
can improve short- and long-run forecasts. It seems to be particularly appro-
priate for considerations of inventory.

1. Introduction
If Q, is a stationary series with finite variance, then its accumulated sum
' 4
Y= 2 Q:—_;'
j=0

is called integrated of order one, denoted y, ~ I(1). It is assumed that
Q, has a spectrum f(w) with the property that 0 < f(w) < =, and Q, is
called integrated of order zero, denoted Q, ~ I(0). The change of an
1(0) series will be denoted I(—1), so that if Q,~ I(0), then
AQ,~ I(—1). An I(—1) series will have spectrum having a zero at zero
frequency and, of course, its accumulation will be 7(0). A series may be
nonstationary and still be /(0), but discussion of such possibilities is not
necessary in this paper. A stationary series will have no trend, will
frequently cross its mean value, will have short memory, and will be
relatively unsmooth. An (1) series will (generally) have an increasing
variance, will contain dominant long-swing components (from its infinite
spectrum at zero frequencies) and so be smooth, will have long memory
(the optimum forecast of y,., will involve y, nontrivally for all 4), and
will not regularly cross any particular level. Thus 7(0) and I(1) series
have quite different appearances and, generally, the regression of one
on the other will result in an (asymptotically) zero regression coefficient.
It is an interesting empirical fact that many macroeconomic series
appear to be /(1), although possibly with a trend.
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If x,, y, are both I(1) then it is typically true that any linear
combination x, + by, will also be I(1). However, for some pairs of /(1)
series there does exist a linear combination

L =X, — Ay, (1.1)

that is 7(0). When this occurs, x,, y, are said to be cointegrated. This
will only occur when the two series have a decomposition of the form

x, = AW, + xy,

ye = W, + yurs

-

where x,,, y,, are both /(0) and W, is I(1). Thus the I(1) property of
X,, v, comes from the single /(1) common factor W,. Further, if x, y,
are cointegrated they may be considered to be generated by an
error-correcting model of the form

Ax, = pyz,_; + lagged(Ax,, Ay,) + &,
Ay, = pyz,-, + lagged(Ax,, Ay,) + &,

where at least one of p,.p, nonzero, z, is from (1.1), and &, &, are
jointly white noise. '

These properties of cointegrated series, their generalizations to I(d)
processes, and testing questions are discussed in Granger 1983, 1986 and
Engle and Granger 1987.

It is generally true that for any vector X, of NI(1) series, there will be
at most r vectors « such that a'X, is I(0), with r =< N — 1. However, it
is also true that any pair of /(1) series may be cointegrated, and this
does allow the possibility of a deeper form of cointegration occurring,
which can be illustrated in the following bivariate case. Suppose that
x,, v, are both I(1), have no trend, and are cointegrated, so that
z, = x, — Ay, is 1(0). It follows that

!
S, = Z Ti—j
J=U

will be /(1) and x,. y, will be said to be multicointegrated if S, and x, are
also cointegrated. It follows that S, and y, will also be cointegrated. As
S, is a function of x,,y, and their lags, multicointegration allows two
cointegrations at different levels, between just two series. A possible
example might be x, =income. y, = total consumption, z,=x, —y,
being savings, §, being wealth, and wealth and consumption being
cointegrated. The example investigated in this paper has x, = sales,
y, = production, for some industry, z, =y, — x, = change in inventory
(apart from a constant, being the initial inventory), and inventory and
production being cointegrated.
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Section III relates them to some optimization and control situations;
Section IV discusses an empirical example. and finally Section V is a
conclusion. Only the bivariate case is considered; the extension to
higher-order vectors is straightforward. The models considered here are
special cases of the general dynamic cointegration process considered by
Yoo (1987) and by Johansen (1988). In this paper a simple case that is
most likely to be of relevance in economics is considered in some detail.

2. Properties of Multicointegrated Process

Suppose that x,, y, are /(1) and cointegrated. with
z, = x, — Ay, ~ 1(0).
The standard common factor representation is
x, = AW, + x,,, =W, + yiu,
where W, is I(1) and x,,, y;, are both [(0). It follows that
! t
S, = E 2-j= 2 (x]..'—,i = Ay1i-j);
j=0 j=0
and to be cointegrated with x, it is necessary that this variable has AW,
as a component. This will occur if the full decompositions are

x, = AW, + a;AW, + x5, y, = W, + &, AW, + y,,,
where x;,, y,, are both /(—1), giving
S, = CW, + 06x; — Ady,,,
where C=a; — Aa, #0, 6=A"", and éx,, — Ady,, is I1(0), being the
accumulation of /(—1) variables. It follows that
pr=x, — DS, ~ I(0),

where D = A/C. It should be noted that, using = A~",

pi=x—Déz, = (1 — Dé6 ADOX,,

where X, = (x, y,)".
The Cramer representation of the vector /(0) series is

AX, = C(B)e,. @.1)

It was shown in Granger (1983) and Engle and Granger (1988) that for
the components of X, to be cointegrated it is necessary and sufficient
that the determinant of C(B) has a root (1 — B). It is shown in
Appendix A that the requirement for X, to be multicointegrated is that
the determinant of C(B) has a root (1 — B). If
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det C(B) = (1 — B)*d(B),

and if A(B) is the adjunct matrix of C(B), then (2.1) may then be
written

A(B)AX, = (1 — B)* d(B)s,. (2:2)

Using the notation
A(B) = A(1) + AA%(B), A*(B) = A*(1) + AA**(B),
then after some algebra outlined in Appendix B, (2.2) can be written
A(B)AX, = —y\Pi-1 — Y221 + d(B)&,, (2.3)

where

pr=0— D6 ADO)X,, O=A™,
z; =a'X, a =(l -—A),

Anfl))

ya' = A(l), y= (A (1)
2

A’lkl{l))

=-D'y, y=7- A"
i S e, 4 AB(1)

A(B) = A(1) + A*(1) + A**(B).

Equation (2.3) is the error correction model for a pair of multicointeg-
rated series, in which changes of X, are related to the pair of lagged
cointegration errors z, =x, — Ay, and p, = x, — DS§,. For multicointeg-
rator, AX, is generated by (2.3). with the necessary condition that at
least one component of each of y; and y, is nonzero. Equation (2.3) is
the generalized error correction model for multicointegrated series. It
should be noted that the extra term in the error correction representa-
tion does lead to potentially improved forecasts of component of AX,.
An example of a generating process that produces a pair of multi-

cointegrated series is

[A+AQ - A4) — A*(1 - A) )

AX"[ 1-A -—A+A{1+AJ]E"

In this case a’ = (1 — A), D = A, and the error correction models are
Ax; = =P + & Ay, = =dp,y + Az + €21,

where A= AL

So far. the series have been assumed to be without trends in mean.
To generalize this case, the common factor W, can be assumed to be the
sum of a trend m(t). plus an /(1) component without drift. Thus,
multicointegration does allow trends, but of a very limited form.
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3. Generation from Optimum Control

As an example of how multicointegration can arise from an optimum
control situation, involving both proportional and integral control,
consider the following situation: y, is a series that one is attempting to
control (e.g. inflation); y} , is the target series for y,, determined at
time ¢ — 1 by the controller; e, = y, — y}_, is the control error, being the
extent to which the target is missed, perhaps due to imperfect control; c,
is the control series, whose value is set at time ¢ by the controller.
Assume that y, and ¢, are related by the ‘plant equation’

Yi=C X+ £ (3.1)

where x, is some unspecified set of predetermined variables (possibly
including expectations made at time fr— 1 of some contemporaneous
variables).

The accumulated control error is

)
Sr = 2 er—;’*
j=0

and it is assumed this series also has a target series S7 ;. Costs to the
controller will arise from three sources: the size of ¢, (i.e. y, — yi_,), the
size of the control error for §, (i.e. §, — §7_;), and the amount of change
in c,, the cost of changing the control series. Assuming quadratic costs,
the quantity to be minimized is thus

J =Bl =T+ 480 — 8 T Alc,i=¢ )] B2

the expectation being made at time t conditional on quantities known at
time ¢. It is naturally assumed that both A,, 4, are =0.

Using S,., = y,.; — ¥F+ S, and substituting from (3.1) with ¢ replaced
by r + 1 gives

J=0Q+ Ao+ (c,+x,— y5) + Alc, + x, — y¥+ S, — §%)°
+ Ale, — )
Differentiating with respect to ¢, and equating to zero gives
¢, = 0[(1 + A)yF— (1 + A)x, — A4S, + Ly + A,87],
where 8 = (1 + A, + A,) ', substituting for ¢,_, from (3.1) gives
¢ =0[(1+ A)yT— (1 +A)x, — A(S, — ST) + Ay, — Ax_y — Ae)

Finally, replacing r by # — 1 substituting into the plant equation (3.1)
gives
Ay, = =01 + ) (yi-1 — yio1) — OA4(S,— — ST1)

(3.3)
+ O0,Ax,_; + d(B)e,,
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where d(B) = 1 — 64, B, and it should be noted that 0 < 64, < 1.

If it is assumed that the two target series y; and ST are both I(1),
(3.3) is consistent with y,, S, being cointegrated with y7, S7. respect-
ively. For (3.3) to be consistent with multicointegration one has to add
the condition that y* and S} are cointegrated. It is thus seen that
multicointegration can arise from a special control situation. See also
Granger, 1988.

For the inventory example, y7 would be expected sales, y; actual
production, ¢, planned production, x, =0, e, change in inventory. S,
level of inventory, S¥ planned level to inventory, which is linearly
related to planned production or expected sales.

4. Empirical Example: Inventories

The question considered in this section is the form of the relationships
between sales, production, and inventory. For a company there is an
obvious identity

production — sales = change in inventory, (4.1)

and if sales is /(1) and the change in inventory is /(0) then production
and sales will be cointegrated with a known cointegrating vector (e=1);
For multicointegration, inventory and sales (and hence production) will
also need to be cointegrated. For this particular situation, standard tests
for cointegration can be used between inventories and sales as the
cointegrating vector at the first level is known. If, using the notation of
Section 11, both A and D are estimated, new test critical levels for D,
the second level, may need to be found. Fortunately, this question can
be left for later study. A further advantage of this example is that the
first level of cointegration, identity (4.1). will aggregate perfectly from
an individual company to an industry and to gross macro variables. The
second level of cointegration will not necessarily aggregate unless the D
values are (virtually) identical across companies. Aggregation questions
are considered by Gonzalo (1989).

The general process of testing for multicointegration and its modeling
is based on the methods discussed in Engle and Granger 1987. For a
pair of series x,, y, the steps are

. test that both x,, y, are I(1).
run a least-squares regression

—

rd

x, = a + by, + residual (z,,)

to estimate a. b,
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.
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X, = ¢ + dS;, + residual (w,,),

where S“ = E;=IIZIJ-I* and
5. test if that residual (w,) is [(0).

The test used in (1) is the augmented Dickey—Fuller (ADF) test in
which an OLS regression

Ax, = fx,_; + lags of Ax, (4.2)

is run and the r-statistic of 8 used as the test statistic. The null is B=0,
which corresponds to x,~ I(1). The r-statistic does not have the
t-distribution, so that critical values provided by Dickey and Fuller
(1979) have to be used. In step (3) the same test statistic is used with X
in (4.2) replaced by z,, but as b is estimated somewhat different critical
values have to be used. as provided by Engle and Granger (1987).
Presumably as b and d are both estimated, the critical values of the
ADEF test will require further modification. However, for our empirical
example, step (2) is unnecessary, and thus regular ADF test can be used
in steps (1) and (3) and the Engle-Granger modified test used in step
(5). It may be noted that b and d are estimated with extra efficiency, as
proved by Stock (1987). when the series involved are cointegrated. The
error correction model takes the form

Ax, = pyzy, + pyw,,—; + lagged(Ax,, Ay,) + white noise residual,

which is estimated by OLS and the significance of p,, p, can be tested
using standard r-tests. It has become standard practice to repeat all the
steps, reversing x,, y, in (2), to give z,, for use in (3) and similarly in
steps (4) and (5), giving as new residual w,,. The error correction model
for Ay,, then uses z,,, w,, in its construction.

To produce an example, series are taken from the U.S. Department
of Commerce. Bureau of Economic Analysis, as available on the
Citibank data tape. Monthly figures for the period 1967:1 to 1987:4 for
final sales in manufacturing and trade in constant (1982) dollars provide
the sales figures. The same tables provide figures for inventories in
constant dollars and the ‘production’ series is then generated by the
identity (4.1). The sample size is 244 observations.

The notation used in p, is production, s, sales, z, change in inventory
and /, inventory = > ,z,_;. Note that /, is the inventory level apart
from the initial level I,, which appears as a constant throughout the
sample period.

Using the manufacturing and trade data described above, the ADF
test for p,, 5, both indicated that they are /(1). with test statistics having
values —0.55 and —0.41, respectively. Twelve lags were used in the test,
and the 95 per cent critical value is approximately 2.88. For z,, the
change in inventory, the ADF test statistic takes the value —4.28, which
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allows rejection of the null of /(1) at least at a 99 per cent level. These
initial tests thus indicate that sales and production are cointegrated, z, IS
1(0), and I, will be I(1). To back up the ADF test, it might be noted
that the first six autocorrelations of the z, series are 0.432, 0.317, 0.452,
0.304, 0.230, and 0.232.

The regression relating production and the level of inventory gave

p, = 13.77 + 0.621, + wy,. R? = 0.93, DW= 0.10

w,, has an ADF test statistic of —3.44, suggesting that the null
hypothesis that wy, is I(1) can be rejected at the 5 per cent level. The
first six autocorrelations of w,, are 0.943. 0.894, 0.841, 0.776, 0.712, and
0.646. The corresponding error correction model is

:ﬁ.p, — l.gU = 0.8131_1 5 n.[}gh’“_! + O.ISApr_l

(5.07) (3.96) (3.00) (1.15)
—0.36As,_; + residual, R? = 0.06, DW = 197
(2.09)

(moduli of t-values are shown below).

Reversing p,. s, in this sequence gives a residual to step (4) wy, that is
also I(0) at the 5 per cent level. with an ADF statistic of —3.32 and
giving an error correction model

AS‘, = (}.99 — {]‘[}321—1 + 0‘02“']_;._]:_ (}.42&.5‘;_3
(2.79) (0.16) (0.63) (2.47)

+ 0.24Ap,_,+ residual, R? = 0.03, DW = 2.01.

(1.51)

It is seen that the error correction models indicate that the corrections
occur and are significant only in the production equation.

The results are generally supportive of multicointegration being pre-
sent between gross production and sales.

The same analysis has been conducted for production and sales of
each of 27 U.S. industries plus industrial groupings with generally
similar conclusions. These results will be presented elsewhere (Ganger
and Lee 1989).

5. Conclusion

This paper has introduced a deeper level of cointegration, which might
be expected to occur in economics. at least in theory. It can arise from
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special optimal control situations and, if present, can further improve
short- and long-run forecasts. It does seem to be particularly appropriate
for considerations of inventory, as illustrated by the empirical example.
The extent to which it is found in other economic series can only be
established by further empirical work.

Appendix A. Proof of (1 — B)? root in det C(B)

The Cramer representation has
AX, = C(B)g,. (A.1)
and using the notation
C(B) = C(1) + ACH(B), C*(B) = C*(1) + AC**(B), (A.2)

and

= CI[(B} C E(B)
i _[CEI{B] CalB) | (A.3)

it is found that
det C(B) = Ey +E|A + O(A?),
where
Eq = Cy(1)Cxa(1) = Cpa(1)Cyy(1)
E, = [C()CH(1) + CuCHi(1) = Cu(1)CH(1) — Cu(1)CH()).
It should be noted that
Pi=x—- DS, =(1—- DA V)x, + DAA-y,,
Substitution from (A.2) and (A.3) gives
P = {=DA-'[Cy(1) = AC;(1)] — [Cyi(1) = DCH(1) + ADC?(1)]
+ O(A)}A-lgy,
+{=DA[Cxu(1) = ACxn(1)] + [Cpa(1) — DCH(1) + ADCH(1)]
+ O(A)}A-'gy,.

For p, to be I(0), terms in A~ and A~? must be zero, giving the conditions

Ci(1) = ACy(1), Cia(1) = ACx(1), (A.4)
which ensure that £, =0, and
Cu(l) = D[CHi(1) — ACH(1)], Cu(1) = D[CH(1) = ACH(1)], (A.5)

which ensure that E; =0, hence giving the result that det C(B) = O(A)? as
required. Conditions (A.4) are sufficient to ensure that z, ~ I(0) and conditions
(A.4) and (A.5) together are those required on C(B) to guarantee multi-
cointegration.
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Appendix B. The error correction model

If x,.y, are multicointegrated, denoting X,=(x, y)' as a 2x1 vector the
Cramer representation is
AX, = C(B)e,.
If A(B) is the adjunct matrix of C(B) this may then be written using the result
of Appendix A as
A(B)AX, = d(B)A%gy,

. A(B)X, = d(B)Ag,. (B.1)
Using the expansions
A(B) = A(1) + AA®(B), A*(B) = A*(1) + AA**(B).
we have
A(B) = A(1)B + AA(B), (B.2)
A(B) = A(1)B + AA(B), (B.3)
where
A(B) = A(1) + A*(B), A(B) = A(1) + A*(1) + A**(B).
Let
z,=x,— Ay, = (1 —-A)X, pi=xi— Dbz = (1= D& ADM)X,,
where =A"1,
Using (B.2). (B.1) can be written
A(B)AX, = —yz,-1 + d(B)Ag,, (B.4)

since A(1) = ya' (see Engle and Granger. 1987). Ifa'=(1- A)and

TAu()  Aw()
A[”_l:f’lzlill An(1) ]’

then
e [A”[”)‘
Az (1)
Dividing (B.4) by A gives
A(B)X, = —ydz,-1 + d(B)g,.
Substitution from (B.3) by A gives
A(B)AX, = —A(1)X,-, — 6z, + d(B)&,
—A() X,y = YD (x,y = pi-1) + d(B)E
—[A(1) + D'yi'| X, + D 'ypey + d(B)ess

Il

where i’ = (1 0). Let
A(1) + D-lyi' = yaa’, D'y = =y,

so that
A(B)A.
Since
~ e [T+
A(l) + D lyi T
then
:=!I -
or
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so that
A(B)AX, = —yipiy — vaz,1 + d(B)e,.

Since

g g = [ A+ DHAND) + AR -A4L(1) + AB()
A+ Dyl g D-Z)A;:(I) + A:‘.':(l) -AA;:(I) + Ai‘:(ﬂ '

then
-t o (410
or
ko i A-‘(:gg;). (B.6)

Finally, it suffices to show that the columns of A*(1) satisfy that (B.5) = (B.6).
Noting that A(B) is the adjunct matrix of C(B), i.e.

ao-[e8 6]
the relation (B.5) = (B.6) can be written
(1 + D71)Cyp(1) + CH(1) = C(1) = A~ CH(1),
(1 + D-H)Cy(1) + CH(1) = Cy(1) + A-1CH(1),

Cx(1) = DA'[CH(1) = ACH(1)),
Ca(1) = DATY[CTi(1) — ACH (D)),
which hold if x, and y, are multicointegrated, since then (A.4) and (A.5) hold.
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