WILEY
 WILEYBLACKWELL

Investigation of Production, Sales and Inventory Relationships Using Multicointegration and Non-Symmetric Error Correction Models
Author(s): C. W. J. Granger and T. H. Lee
Source: Journal of Applied Econometrics, Vol. 4, Supplement: Special Issue on Topics in Applied Econometrics (Dec., 1989), pp. S145-S159
Published by: Wiley
Stable URL: http://www.jstor.org/stable/2096597
Accessed: 10/06/2014 18:50

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @jstor.org.

Wiley and John Wiley \& Sons are collaborating with JSTOR to digitize, preserve and extend access to Journal of Applied Econometrics.

INVESTIGATION OF PRODUCTION, SALES AND INVENTORY RELATIONSHIPS USING MULTICOINTEGRATION AND NON-SYMMETRIC ERROR CORRECTION MODELS

C. W. J. GRANGER and T. H. LEE
Department of Economics, University of California, San Diego, La Jolla, CA 92093, U.S.A.

Abstract

SUMMARY The accumulated sum of a stationary series is called integrated. If a linear combination of some of the integrated series is stationary, it is said to be cointegrated. This paper presents empirical results on inventories to consider the possibility of a deeper form of cointegration called multicointegration, which is introduced in Granger and Lee (1989). A vector integrated series is multicointegrated if the accumulated sum of its stationary (cointegrated) linear combination is again cointegrated with itself. Inventory, which is the accumulated sum of production minus sales, is probably cointegrated with production and sales. The empirical results generally support the presence of multicointegration of production and sales in many U.S. industries and industrial aggregates. The results also favour the non-symmetric error correction model, providing evidence that the strength of attraction is different on both sides of the attractor. A modified (S, s) rule for inventory control is investigated in the context of a non-symmetric error correction model, and the results generally do not support the (S, s) rule. Sufficient evidence is found to conclude that multicointegration is a useful concept in the area of inventory determination.

1. INTRODUCTION

In an earlier paper the authors introduced a deeper form of cointegration, called multicointegration. An area where this concept may seem to be of relevance is that of inventory series, as inventory may be cointegrated with sales but change of inventory is itself defined by a cointegrating relationship between sales and production. In what follows, a series is said to be $I(0)$ if it is stationary and has spectrum that is finite at all frequencies and is positive at zero frequency.

If x_{t}, y_{t} are both $\mathrm{I}(1)$ then it is typically true that any linear combination $x_{t}+b y_{t}$ will also be $\mathrm{I}(1)$. However, for some pairs of $\mathrm{I}(1)$ series there does exist a linear combination

$$
z_{t}=x_{t}-A y_{t}
$$

that is $\mathrm{I}(0)$. When this occurs, x_{t}, y_{t} are said to be cointegrated. If x_{t}, y_{t} are cointegrated they may be considered to be generated by an error-correcting model of the form

$$
\begin{aligned}
& \Delta x_{t}=\rho_{1} z_{t-1}+\operatorname{lagged}\left(\Delta x_{t}, \Delta y_{t}\right)+\varepsilon_{x t} \\
& \Delta y_{t}=\rho_{2} z_{t-1}+\operatorname{lagged}\left(\Delta x_{t}, \Delta y_{t}\right)+\varepsilon_{y t},
\end{aligned}
$$

where at least one of ρ_{1}, ρ_{2} is non-zero and $\varepsilon_{x t}, \varepsilon_{y t}$ are jointly white noise.
It is generally true that for any vector X_{t} of $N \mathrm{I}(1)$ series, there will be at most r vectors α
such that $\alpha^{\prime} X_{t}$ is $\mathrm{I}(0)$, with $r \leqslant N-1$. However, it is also true that any pair of $\mathrm{I}(1)$ series may be cointegrated and this does allow the possibility of a deeper form of cointegration. Suppose that x_{t}, y_{t} are both $\mathrm{I}(1)$, have no trend and are cointegrated, so that $z_{t}=x_{t}-A y_{t}$ is $\mathrm{I}(0)$. It follows that

$$
Q_{t}=\sum_{j=0}^{t} z_{t-j}
$$

will be $\mathrm{I}(1)$ and x_{t}, y_{t} will be said to be multicointegrated if Q_{t} and x_{t} are cointegrated. Q_{t} and y_{t} will also be cointegrated. It follows that

$$
\omega_{t}=x_{t}-D Q_{t} \sim I(0) .
$$

It should be noted that

$$
\omega_{t}=\left(1-D \Delta^{-1}, A D \Delta^{-1}\right) X_{t},
$$

where $X_{t}=\left(x_{t}, y_{t}\right)^{\prime}$. Thus multicointegration allows two cointegrations at different levels between just two series.

The Cramer representation of the vector $I(0)$ series is

$$
\begin{equation*}
\Delta X_{t}=C(B) \varepsilon_{t} . \tag{1.1}
\end{equation*}
$$

It was shown in Granger (1983) and Engle and Granger (1987) that for the components of X_{t} to be cointegrated it is necessary and sufficient that the determinant of $C(B)$ has a root $(1-B)$. It was shown in Granger and Lee (1989) the requirement for X_{t} to be multicointegrated is that the determinant of $C(B)$ has a root $(1-B)^{2}$. If

$$
\operatorname{det} C(B)=(1-B)^{2} d(B)
$$

and if $A(B)$ is the adjunct matrix of $C(B)$, (1.1) may then be written

$$
\begin{equation*}
A(B) \Delta X_{t}=(1-B)^{2} d(B) \varepsilon_{t} . \tag{1.2}
\end{equation*}
$$

Using the notation

$$
\begin{aligned}
A(B) & =A(1)+\Delta A^{*}(B) \\
A^{*}(B) & =A^{*}(1)+\Delta A^{* *}(B)
\end{aligned}
$$

and

$$
\begin{aligned}
& A(B)=A(1) B+\Delta \tilde{A}(B) \\
& \tilde{A}(B)=\tilde{A}(1) B+\Delta \tilde{A}(B)
\end{aligned}
$$

where

$$
\begin{aligned}
& \tilde{A}(B)=A(1)+A^{*}(B) \\
& \bar{A}(B)=A(1)+A^{*}(1)+A^{* *}(B)
\end{aligned}
$$

it was proved in Granger and Lee (1989) that

$$
\tilde{A}(B) \Delta X_{t}=-\gamma z_{t-1}+d(B) \Delta \varepsilon_{t}
$$

and

$$
\begin{equation*}
\bar{A}(B) \Delta X_{t}=-\gamma_{1} \omega_{t-1}-\gamma_{2} z_{t-1}+d(B) \varepsilon_{t} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma & =\binom{A_{11}(1)}{A_{21}(1)} \\
\gamma_{1} & =-D^{-1} \gamma \\
\gamma_{2} & =\gamma-A^{-1}\binom{A_{12}^{*}(1)}{A_{22}^{*}(1)} .
\end{aligned}
$$

(1.3) is the error-correction model for a pair of multicointegrated series, in which changes of X_{t} are related to the pair of lagged cointegration errors, $z_{t}=x_{t}-A y_{t}$ and $\omega_{t}=x_{t}-D Q_{t}$. For multicointegration, ΔX_{t} is generated by (1.3), with the necessary condition that at least one component of each of γ_{1} and γ_{2} is non-zero. It should be noted that the integral correction term ω_{t-1} in (1.3) allows the system to be more robust to disturbances because it has a buffer Q_{t}, and leads to potentially improved forecasts of component of ΔX_{t}.

The next section investigates an application where x_{t} is production, y_{t} sales, z_{t} change of inventories, and Q_{t} is level of inventory in various US industries and industrial groupings. Section 3 examines non-symmetric error correction models. In section 4 a modified (S, s) inventory control rule is discussed using non-symmetric error correction model. The empirical results were generally supportive of the presence of multicointegration and the non-symmetric error correction, but not compatible with the (S, s) inventory control rule.

2. TESTS OF MULTICOINTEGRATION FOR INVENTORY DATA

If p_{t} is a production series and s_{t} a sales series for an industry, both are likely to be $\mathrm{I}(1)$ with a growing economy but $z_{t}=p_{t}-s_{t}$, which is the change in inventory, may be $\mathrm{I}(0)$. Thus, sales and production for an industry are very likely to be cointegrated. The level of inventory I_{t}, being the initial inventory level plus the sum of the changes in inventory, will be $\mathrm{I}(1)$ as $\Delta I_{t}=z_{t}$ is $\mathrm{I}(0)$. If the target level of inventory, I_{t}^{*}, is a fixed proportion λ of sales, then $I_{t}-\lambda s_{t}=u_{t}$ is the control error and this again should be expected to be $\mathrm{I}(0)$. Thus, in this situation, p_{t}, s_{t} will be multicointegrated. The alternative (S, s) rule for inventory control will be discussed at the end of the paper.

To consider the possibility of multicointegration monthly sales and inventory level series were used from the Citibank data base for 27 US industries and industrial aggregates. The data were for the period January 1967 to April 1987, in 1982 constant dollars and seasonally adjusted. The sample size is 244 observations. The change in inventory was estimated directly from the inventory levels and production estimated as sales plus the change in inventory. Thus, $z_{t}=p_{t}-s_{t}$ was not estimated from a cointegrating regression but was available directly from the data. The data are described further in the appendix, and the numbers used for the various industrial groupings are also defined there. Each industry and aggregate was analysed separately, although the series are not independent as disaggregated data are used to form the more aggregate series.

For each pair of sales $\left(s_{t}\right)$ and inventory level $\left(I_{t}\right)$ series, the following steps in the analysis were conducted:
(i) Form the production series

$$
p_{t}=s_{t}+\Delta I_{t} .
$$

Denote $z_{t}=\Delta I_{t}$.
(ii) Test if the series p_{t}, s_{t} and I_{t} are $\mathrm{I}(1)$ using the estimated autocorrelations of each series plus the augmented Dickey-Fuller (ADF) test, using 12 lags. Thus for a series z_{t}, this test forms the regressions

$$
\Delta x_{t}=\rho x_{t-1}+\sum_{j=1}^{12} \gamma_{j} \Delta x_{t-j}+\text { residual }
$$

and uses as the test statistic the usual t-value for the coefficient ρ. The null hypothesis is that $x_{t} \sim I(1)$, so that $\rho=0$. The alternative is that x_{t} is $\mathrm{I}(0)$ so that ρ is significantly non-zero and negative. The t-statistic does not have its usual distribution and tables of significance are found in Fuller (1976, page 373). For the sample size used here $-t$ has to be greater than $2 \cdot 88$ for H_{0} to be rejected at the 95 per cent level of confidence.
(iii) Test if z_{t} is $\mathrm{I}(0)$ using the same procedure.
(iv) Form the regressions

$$
\begin{align*}
& I_{t}=a_{1}+b_{1} p_{t}+u_{1 t} \tag{2.1}\\
& I_{t}=a_{2}+b_{2} S_{t}+u_{2 t}
\end{align*}
$$

and test if the u 's are $\mathrm{I}(0)$. One method is to use the Durbin-Watson (d) statistics from these regressions. Any value of d greater than 0.08 suggests rejecting the null hypothesis that u is $\mathrm{I}(1)$ at the 95 per cent level. A rather better test, according to Engle and Granger (1987), is to use the augmented Dickey-Fuller test as before. However, as some parameters have been estimated in forming the u 's the critical values for the test are changed. According to Engle and Yoo (1987) a value of $-t$ greater than 3.25 suggests rejection of the null hypothesis that the series is $\mathrm{I}(1)$ at the 95 per cent level. The autocorrelations of the u 's are also of interest.

In the complete analysis, the regressions

$$
\begin{align*}
p_{t} & =c_{1}+d_{1} I_{t}+w_{1 t} \tag{2.2}\\
s_{t} & =c_{2}+d_{2} I_{t}+w_{2 t},
\end{align*}
$$

were also formed, but all the results are not reported here as the outcomes were virtually identical.
(v) The following pair of error correction models were estimated:

$$
\begin{align*}
\Delta p_{t} & =\alpha+\beta_{1} z_{t-1}+\beta_{2} u_{2, t-1}+\gamma_{1} \Delta p_{t-1}+\gamma_{2} \Delta s_{t-1}+\text { residual } \tag{2.3}\\
\Delta s_{t} & =\alpha^{\prime}+\beta_{1}^{\prime} z_{t-1}+\beta_{2}^{\prime} u_{2, t-1}+\gamma_{1}^{\prime} \Delta p_{t-1}+\gamma_{2}^{\prime} \Delta s_{t-1}+\text { residual. }
\end{align*}
$$

Just single lags for $\Delta p_{t}, \Delta s_{t}$ were used for ease of computing and reporting of the results, although in some cases further lags may also have been significant. A significant value for the t-statistic on β_{2} or β_{2}^{\prime} would indicate evidence in favour of multicointegration. In the complete analysis, these error correction models were also estimated with $u_{2 t}$ replaced by $u_{1 t}, w_{1 t}$, and $w_{2 t}$. Again, the results were very similar and are not reported.

To illustrate the steps of the analysis, values are presented for series 1 , which is the most aggregated and is entitled 'Manufacturing and Trade'.

Step (ii) Unit Root Tests

Sample autocorrelations

	r_{1}	r_{5}	r_{10}	r_{12}	ADF
p_{t}	0.983	0.912	0.821	0.787	-0.55
s_{t}	0.983	0.915	0.826	0.794	-0.41
I_{t}	0.988	0.937	0.869	0.842	-1.01
$r_{k}=\operatorname{corr}\left(x_{t}, x_{t}-k\right)$					

These values are all consistent with p_{t}, s_{t} and I_{t} being $\mathrm{I}(1)$.

Step (iii) and (iv) Multicointegration Tests

	r_{1}	r_{5}	r_{10}	r_{12}	ADF
z_{l}	0.432	0.230	0.069	-0.050	-4.28
u_{11}	0.950	0.725	0.418	0.296	-3.16
u_{21}	0.938	0.717	0.423	0.308	-3.02

Regression results are

$$
\begin{aligned}
I_{t} & =14 \cdot 19+1 \cdot 52 p_{t}+u_{1 t} \\
\bar{R}^{2} & =0 \cdot 93 \quad \text { DW }=0 \cdot 10 \\
I_{t} & =13 \cdot 01+1 \cdot 53 s_{t}+u_{2 t} \\
\bar{R}^{2} & =0 \cdot 94 \quad \text { DW }=0 \cdot 11,
\end{aligned}
$$

(t-values are not shown as the u 's are far from the white noises).
The evidence is clear that z_{t} is $\mathrm{I}(0)$ and suggestive that the u 's are also $\mathrm{I}(0)$.

Step (v) Error Correction Models

$$
\begin{aligned}
& \Delta p_{t}=1 \cdot 83-0 \cdot 75 z_{t-1}-0 \cdot 05 u_{2, t-1}+0 \cdot 19 \Delta p_{t-1}-0 \cdot 37 \Delta s_{t-1}+\text { residual } \\
& (5 \cdot 06)(3 \cdot 94) \quad(3 \cdot 15) \quad(1 \cdot 20) \quad(2 \cdot 15) \\
& \bar{R}^{2}=0.06 \quad \text { DW }=1.98 \\
& \Delta s_{t}=1 \cdot 00-0 \cdot 04 z_{t-1}-0 \cdot 01 u_{2, t-1}-0 \cdot 42 \Delta s_{t-1}+0 \cdot 24 \Delta p_{t-1}+\text { residual } \\
& \text { (2.82) (0.20) (0.72) (2.51) (1.53) } \\
& \bar{R}^{2}=0.03 \quad \mathrm{DW}=2 \cdot 01
\end{aligned}
$$

(moduli of t-values are shown).
Taking these results uncritically, the equation for Δp_{t} suggests multicointegration, as both z_{t-1} and $u_{2, t-1}$ have significant coefficients. Neither of these terms comes in significantly for Δs_{t}, the only significant term being Δs_{t-1}. Both \bar{R}^{2} values are low.

Overall, there are several indications that multicointegration is present, the significant

Table I. Augmented Dickey-Fuller statistics

	\boldsymbol{p}_{t}	s_{t}	I_{t}	z_{t}	$w_{1 t}$	$u_{1 t}$	$w_{2 t}$	$u_{2 t}$
1	-0.55	-0.41	-1.01	-4.28	-3.44	-3.16	-3.32	-3.02
2	-1.36	-1.23	-1.60	-3.95	-3.15	-2.88	-3.06	-2.88
3	-2.03	-1.76	-1.39	-4.21	-3.54	-2.82	-3.25	-2.76
4	-1.68	-1.81	-0.53	-3.30	-2.19	-1.11	-2.35	-1.24
5	-2.27	-1.86	-1.67	-3.73	-2.55	-1.88	-2.10	-1.80
6	-1.53	-1.13	-2.06	-3.82	-2.28	-2.17	-1.55	-1.78
7	-0.07	0.18	-0.04	-3.26	-3.64	-3.59	-3.45	-3.48
8	-2.35	-2.17	-0.17	-3.61	-3.06	-1.56	-2.82	-1.51
9	-1.23	-1.05	-2.29	-3.90	-2.48	-2.46	-2.33	-2.43
10	-1.07	-0.95	-2.14	-4.29	-2.32	-2.40	-2.21	-2.34
11	0.06	-0.06	-1.64	-4.87	-0.17	-1.15	-0.41	-1.30
12	-1.28	-1.16	-2.25	-4.40	-3.11	-3.01	-3.01	-2.97
13	0.10	0.21	-0.44	-4.57	-2.74	-2.64	-2.81	-2.76
14	-1.68	-1.48	-1.77	-4.40	-3.83	-3.59	-3.56	-3.47
15	-1.87	-1.91	-1.55	-4.81	-2.81	-2.38	-2.86	-2.45
16	-1.84	-1.68	-2.46	-3.86	-2.62	-2.43	-2.48	-2.37
17	-0.75	-0.45	-2.17	-4.56	-0.39	-1.38	-0.05	-1.35
18	-0.02	0.11	-0.62	-4.20	-3.06	-3.09	-3.06	-3.12
19	-0.53	-0.48	-1.00	-4.38	-2.78	-2.67	-2.77	-2.73
20	0.57	0.73	0.33	-4.48	-2.48	-2.52	-2.44	-2.50
21	-0.02	0.05	0.67	-5.27	-2.31	-2.25	-2.67	-2.66
22	0.35	0.55	-0.21	-4.02	-2.52	-2.64	-2.28	-2.44
23	-0.47	-0.37	-0.47	-3.50	-4.37	-4.39	-4.18	-4.22
24	-0.11	-0.03	-0.50	-3.92	-2.31	-2.54	-2.21	-2.56
25	-0.64	-0.48	-0.78	-4.66	-2.70	-2.97	-2.39	-2.80
26	-0.87	-1.02	0.31	-3.50	-2.34	-2.05	-2.07	-1.77
27	-1.33	-1.34	1.60	-4.96	-3.10	-2.51	-2.95	-2.34

coefficients in the error correction model, the Durbin-Watson statistic in the regressions that determine the u 's, the fairly rapidly declining autocorrelations, and the almost significant ADF statistics for the u 's.

Applying these steps of the analysis to all 27 industries and aggregates provides the following results:
(a) All the sales, production and inventory series appears to be $\mathrm{I}(1)$, as seen from the ADF statistics in Table I.
(b) All z_{t} series (change in inventories) are $\mathrm{I}(0)$, implying that the sales and production of any industry are cointegrated, which is hardly surprising. The value of the ADF statistics are shown in Table I.
(c) The ADF statistics in Table I and the Durbin-Watson statistics in Table II show some evidence of multicointegration. Although only 10 ADF statistics for $w_{1 t}$ are less than $-3 \cdot 0$ it is also true that only two are greater than $-2 \cdot 0$, and all are clearly negative; 44 out of the 54 Durbin-Watson statistics are 0.10 or greater and all but one are 0.8 or more.

Table II also shows the coefficients b 's and d 's in equations (2.1) and (2.2). As z_{t} is so clearly $\mathrm{I}(0) b_{1}, d_{1}$ are very similar to b_{2}, d_{2}, respectively. d_{1} 's range from 0.18 to 1.35 with an average of 0.65 .
(d) The error correction models (2.3) using $z_{t-1}, u_{2, t-1}$ and single lags of $\Delta p_{t}, \Delta s_{t}$ were estimated for each series. The coefficients, plus $|t|$ values, for the z_{t-1} and the $u_{2, t-1}$ series are shown in Table III.

Table II. Regression results of (2.1) and (2.2)

	b_{1}	d_{1}	\bar{R}^{2}	DW	b_{2}	d_{2}	\bar{R}^{2}	DW
1	$1 \cdot 52$	$0 \cdot 62$	$0 \cdot 93$	$0 \cdot 10$	$1 \cdot 53$	$0 \cdot 62$	$0 \cdot 94$	0.12
2	$1 \cdot 65$	$0 \cdot 46$	0.75	$0 \cdot 08$	$1 \cdot 68$	$0 \cdot 46$	$0 \cdot 77$	$0 \cdot 09$
3	1.93	$0 \cdot 30$	$0 \cdot 57$	$0 \cdot 09$	$2 \cdot 04$	$0 \cdot 30$	$0 \cdot 62$	0.10
4	$0 \cdot 62$	$0 \cdot 19$	$0 \cdot 11$	$0 \cdot 08$	$0 \cdot 64$	0.18	0.11	$0 \cdot 02$
5	$1 \cdot 10$	$0 \cdot 18$	$0 \cdot 19$	$0 \cdot 17$	$1 \cdot 22$	0.18	$0 \cdot 22$	$0 \cdot 13$
6	$2 \cdot 51$	$0 \cdot 28$	$0 \cdot 70$	$0 \cdot 08$	$2 \cdot 57$	0. 28	$0 \cdot 73$	$0 \cdot 08$
7	$2 \cdot 32$	$0 \cdot 40$	0.93	$0 \cdot 25$	$2 \cdot 37$	$0 \cdot 40$	0.95	$0 \cdot 29$
8	$0 \cdot 87$	$0 \cdot 26$	$0 \cdot 22$	$0 \cdot 21$	$0 \cdot 92$	$0 \cdot 24$	$0 \cdot 22$	0.19
9	1.91	$0 \cdot 38$	$0 \cdot 73$	0.12	1.94	$0 \cdot 39$	$0 \cdot 75$	$0 \cdot 09$
10	$1 \cdot 10$	$0 \cdot 81$	$0 \cdot 89$	$0 \cdot 11$	1.09	$0 \cdot 81$	$0 \cdot 89$	0.12
11	$0 \cdot 73$	$1 \cdot 10$	$0 \cdot 80$	0.14	$0 \cdot 73$	$1 \cdot 10$	$0 \cdot 79$	0.19
12	$1 \cdot 18$	$0 \cdot 73$	$0 \cdot 86$	0.12	$1 \cdot 18$	$0 \cdot 73$	$0 \cdot 87$	0.12
13	$1 \cdot 27$	$0 \cdot 64$	0.81	$0 \cdot 13$	$1 \cdot 29$	$0 \cdot 63$	$0 \cdot 82$	0.13
14	$1 \cdot 25$	$0 \cdot 69$	$0 \cdot 86$	$0 \cdot 18$	$1 \cdot 25$	$0 \cdot 69$	$0 \cdot 87$	0.17
15	$0 \cdot 76$	$0 \cdot 68$	$0 \cdot 51$	$0 \cdot 09$	$0 \cdot 76$	$0 \cdot 68$	$0 \cdot 52$	$0 \cdot 15$
16	$1 \cdot 24$	$0 \cdot 56$	$0 \cdot 69$	$0 \cdot 11$	$1 \cdot 26$	$0 \cdot 56$	$0 \cdot 71$	$0 \cdot 08$
17	$0 \cdot 81$	$0 \cdot 68$	$0 \cdot 55$	$0 \cdot 14$	$0 \cdot 81$	$0 \cdot 69$	$0 \cdot 55$	0.13
18	$1 \cdot 27$	$0 \cdot 76$	$0 \cdot 97$	$0 \cdot 20$	$1 \cdot 27$	$0 \cdot 76$	$0 \cdot 97$	$0 \cdot 21$
19	$1 \cdot 86$	$0 \cdot 49$	0.91	$0 \cdot 11$	$1 \cdot 88$	$0 \cdot 49$	$0 \cdot 92$	0.10
20	$0 \cdot 72$	$1 \cdot 34$	$0 \cdot 97$	$0 \cdot 30$	$0 \cdot 72$	$1 \cdot 34$	0.97	$0 \cdot 32$
21	$0 \cdot 73$	$1 \cdot 27$	$0 \cdot 93$	$0 \cdot 28$	$0 \cdot 73$	$1 \cdot 27$	$0 \cdot 92$	$0 \cdot 31$
22	$0 \cdot 71$	$1 \cdot 35$	0.95	$0 \cdot 27$	$0 \cdot 71$	$1 \cdot 34$	0.95	$0 \cdot 31$
23	1.52	$0 \cdot 64$	0.97	$0 \cdot 32$	1.54	$0 \cdot 63$	0.97	$0 \cdot 54$
24	$1 \cdot 73$	$0 \cdot 52$	$0 \cdot 90$	$0 \cdot 35$	$1 \cdot 76$	$0 \cdot 52$	0.91	$0 \cdot 48$
25	$1 \cdot 43$	$0 \cdot 56$	$0 \cdot 81$	$0 \cdot 31$	$1 \cdot 45$	0.55	0.80	$0 \cdot 58$
26	$1 \cdot 21$	$0 \cdot 78$	$0 \cdot 94$	$0 \cdot 11$	1.22	$0 \cdot 77$	0.94	0.11
27	$1 \cdot 04$	$0 \cdot 89$	$0 \cdot 92$	$0 \cdot 21$	$1 \cdot 05$	0.88	$0 \cdot 92$	$0 \cdot 25$

For the Δp_{t} equations, 23 out of 27 coefficients on z_{t-1} have significant $|t|$ values and everyone of these coefficients is negative, indicating a clear and consistent negative effect of z_{t-1} values on the next changes in production. The average value of these coefficients is -0.676 and the range is $-0 \cdot 10$ to $-1 \cdot 45$. For the $u_{2, t-1}$ coefficients, eight have significant $|t|$ values but only six of the coefficients are not negative. The range is 0.12 to -0.05 , with an average $-0 \cdot 007$.

For the Δs_{t} equations there is no consistency of signs of the coefficients of either z_{t-1} or of $u_{2, t-1}$. Twelve of the former have significant $|t|$ values and six of the latter.

Overall, it seems that the error corrections are stronger for Δp_{t} than for Δs_{t}, which may be expected as production is a controllable variable, and the control mechanism may well react to the value of the previous z_{t}. The sales series may be thought of as being largely exogenously determined, unless sales are reduced due to very low inventory levels which are unable to meet a high, unexpected demand. However, the occasional observed relationship between Δs_{t} and the error correction terms may be due to temporal aggregation, which is well known to induce a weak feedback relationship from a true single causal one (e.g. Weiss, 1984). Presumably, actual production values are determined at a shorter interval than a month.

Multicointegration is found for several industries, using at least one of the criteria available, particularly for the most aggregate series 1 (manufacturing and trade), 2 (manufacturing), 3 (durable goods manufacturing), 18 (merchant wholesalers), and 23 (retail trade). It is rather surprising to find evidence of multicointegration mostly at the aggregate levels rather than at

Table III. Error correction model (2.3)

	Δp_{t}				Δs_{t}			
	z_{t-1}		$u_{2, t-1}$		z_{t-1}		$u_{2, t-1}$	
	Coeff.	$\|t\|$	Coeff.	$\|t\|$	Coeff.	$\|t\|$	Coeff.	$\|t\|$
1	-0.75	$3 \cdot 94$	-0.05	$3 \cdot 15$	-0.04	$0 \cdot 20$	-0.01	$0 \cdot 72$
2	-0.96	$5 \cdot 56$	-0.04	$3 \cdot 73$	-0.47	$2 \cdot 76$	-0.02	$1 \cdot 81$
3	-0.78	$4 \cdot 63$	-0.03	$3 \cdot 11$	-0.21	$1 \cdot 31$	-0.01	$0 \cdot 90$
4	-0.17	1.22	-0.00	$0 \cdot 20$	$0 \cdot 28$	1.79	$0 \cdot 00$	$0 \cdot 41$
5	-0.71	$5 \cdot 05$	-0.02	1.62	-0.08	$0 \cdot 64$	-0.00	0.19
6	-0.10	0.99	-0.01	1.03	$0 \cdot 13$	$1 \cdot 40$	$0 \cdot 00$	$0 \cdot 29$
7	-0.20	1.39	-0.01	$0 \cdot 52$	$0 \cdot 29$	$2 \cdot 30$	0.03	$1 \cdot 72$
8	-0.12	$6 \cdot 07$	-0.00	$0 \cdot 08$	-0.02	$0 \cdot 09$	0.01	$0 \cdot 69$
9	-0.67	$4 \cdot 68$	-0.03	2.48	-0.08	$0 \cdot 63$	-0.01	$0 \cdot 58$
10	-0.93	5.99	-0.03	1.72	-0.32	2. 19	-0.00	$0 \cdot 05$
11	-0.45	2.84	$0 \cdot 00$	$0 \cdot 05$	0.37	2.71	0.03	$1 \cdot 34$
12	-1.17	$7 \cdot 29$	-0.04	$2 \cdot 41$	-0.55	$3 \cdot 69$	-0.01	$0 \cdot 47$
13	-1.45	$9 \cdot 61$	-0.04	$2 \cdot 44$	-0.48	$3 \cdot 50$	-0.00	$0 \cdot 20$
14	-1.01	$6 \cdot 58$	-0.02	$0 \cdot 96$	-0.33	$2 \cdot 40$	$0 \cdot 02$	$1 \cdot 15$
15	-0.90	$4 \cdot 93$	-0.00	$0 \cdot 02$	-0.13	0.76	0.03	$1 \cdot 24$
16	-1.00	$5 \cdot 53$	-0.03	1.79	-0.04	$0 \cdot 30$	-0.00	$0 \cdot 10$
17	-0.83	$5 \cdot 16$	-0.02	$1 \cdot 02$	-0.06	0.45	0.01	$0 \cdot 35$
18	-0.55	$2 \cdot 73$	-0.01	$0 \cdot 19$	$0 \cdot 30$	1.71	0.03	$1 \cdot 47$
19	-1.05	$6 \cdot 55$	-0.04	2.84	-0.07	$0 \cdot 56$	-0.00	$0 \cdot 22$
20	-0.78	$3 \cdot 38$	$0 \cdot 12$	2.19	$0 \cdot 21$	$1 \cdot 10$	-0.15	$3 \cdot 23$
21	-0.99	$4 \cdot 94$	$0 \cdot 09$	1.78	$0 \cdot 04$	$0 \cdot 23$	$0 \cdot 13$	$3 \cdot 03$
22	-0.47	$2 \cdot 00$	$0 \cdot 07$	$1 \cdot 30$	$0 \cdot 51$	$2 \cdot 59$	$0 \cdot 11$	$2 \cdot 51$
23	$-0 \cdot 22$	$2 \cdot 00$	-0.03	1.25	$0 \cdot 48$	$4 \cdot 26$	0.06	$2 \cdot 29$
24	-0.42	$3 \cdot 61$	-0.03	1.48	$0 \cdot 51$	$4 \cdot 83$	0.05	$2 \cdot 63$
25	-0.14	$1 \cdot 27$	-0.01	$0 \cdot 65$	$0 \cdot 55$	$4 \cdot 56$	0.07	$2 \cdot 64$
26	-0.78	$6 \cdot 18$	$0 \cdot 00$	$0 \cdot 21$	$0 \cdot 15$	$1 \cdot 61$	$0 \cdot 01$	$1 \cdot 12$
27	$-0 \cdot 65$	$3 \cdot 09$	$0 \cdot 03$	$1 \cdot 02$	$0 \cdot 57$	3.15	$0 \cdot 05$	$1 \cdot 77$

the less aggregated ones, as generally cointegration at an aggregate level implies it at disaggregated levels (see Gonzalo (1989) for discussion).

Certain industrial groupings display problems with this analysis, particularly 4 (primary metals manufacturing), 5 (fabricated metals manufacturing) and 8 (transportation equipment manufacturing) which have low \bar{R}^{2} values when p_{t} is used to explain I_{t}, and 4 and 6 which have insignificant $|t|$ values for z_{t-1} in both error correction models. The plots of p_{t}, s_{t} and I_{t} for the primary metal series show a short period, starting in late 1974, in which sales and production decline substantially, but slightly out of phase, so that the inventory level expands rapidly in the same period, explaining the low \bar{R}^{2} value between production and inventory. If data just for the subperiod 1978:1 to 1987:4 are used in the regression, \bar{R}^{2} increases to $0 \cdot 59$ with a Durbin-Watson statistic of $0 \cdot 13$, which is nearer with the figures obtained with the other series. Detailed investigation of all the strange series has not been attempted.

An alternative way to judge the relevance of multicointegration is to compare the forecasting ability of error correction models using, or not using, the $u_{2, t-1}$ terms. Thus, the first error correction model (EC 1) explained Δp_{t} by $z_{t-1}, \Delta p_{t-1}$ and Δs_{t-1} whereas the second model (EC2) used these variable, plus $u_{2, t-1}$. Similarly, two error correction models were estimated for Δs_{t}. All these models were estimated, having saved 48 terms for post-sample evaluations.

Using the mean squared one-step forecast error as criterion, EC2 outperformed EC1 for 18 out of 27 series (67 per cent) with Δp_{t} as the dependent variable. Using $\Delta s_{t}, \mathrm{EC} 2$ beat EC1 on 14 out of 25 occasions (56 per cent), with two ties. The results again give some support to multicointegration being present, but the evidence is certainly not overwhelming.

3. NON-SYMMETRIC ERROR CORRECTION MODELS

The error corrections in the models considered above are symmetric so that the extent of the effect of $\left|z_{t-1}\right|$ is the same regardless of the sign of z_{t-1}. However, when choosing the level of production, or its change, it may well matter whether z_{t-1} (previous production - previous sales) was positive or negative or whether $u_{2, t-1}$ (interpreted as inventory level minus its target level of λ times previous sales) was positive or negative.

To investigate these possibilities there further sets of error correction models were conducted, using the notation $w=w^{+}+w^{-}, w^{+}=\max (w, 0)$ and $w^{-}=\min (w, 0)$:
(A) Δp_{t} regressed on $z_{t-1}, u_{2, t-1}^{+}, u_{2, t-1}^{-}, \Delta s_{t-1}$
(B) Δp_{t} regressed on $z_{t-1}^{+}, z_{t-1}^{-}, u_{2, t-1}, \Delta p_{t-1}, \Delta s_{t-1}$
(C) Δp_{t} regressed on $z_{t-1}^{+}, z_{t-1}^{-}, u_{2, t-1}^{+}, u_{2, t-1}^{-}, \Delta p_{t-1}, \Delta s_{t-1}$
and similar equations for Δs_{t}.
As an illustration, the results for series 1 , the aggregate manufacturing and trade were:

Error correction model (A)

$$
\begin{aligned}
& \Delta p_{t}=3.16-0.91 z_{t-1}-0.12 u_{2, t-1}^{+}+0.03 u_{2, t-1}^{-}+0.24 \Delta p_{t-1}-0.42 \Delta s_{t-1}+\text { residual } \\
& \begin{array}{c}
(5.89)(4.71) \quad(4.59) \quad(1.02) \quad(1.51) \quad(2.46) \\
\bar{R}^{2}=0.10 \quad \mathrm{DW}=1.94
\end{array} \\
& \Delta s_{t}=1.97-0.15 z_{t-1}-0.06 u_{2, t-1}^{+}+0.05 u_{2, t-2}^{-}+0.27 \Delta p_{t-1}-0.46 \Delta s_{t-1}+\text { residual. } \\
& \begin{array}{c}
(3.73)(0.80) \quad(2.36) \quad(1.67) \quad(1.75) \quad(2.73) \\
\bar{R}^{2}=0.05 \quad \mathrm{DW}=1.98
\end{array}
\end{aligned}
$$

Error correction model (B)

$$
\begin{gathered}
\Delta p_{t}=1.89-0.78 z_{t-1}^{+}-0.70 z_{t-1}^{-}-0.05 u_{2, t-1}+0.19 \Delta p_{t-1}-0.37 \Delta s_{t-1}+\text { residual } \\
(3.72)(3.12) \quad(1.84) \quad(3.08) \quad(1.21) \quad(2.15) \\
\bar{R}^{2}=0.06 \quad \mathrm{DW}=1.97 \\
\Delta s_{t}=1.04-0.06 z_{t-1}^{+}+0.003 z_{t-1}^{-}-0.01 u_{2, t-1}+0.24 \Delta p_{t-1}-0.42 \Delta s_{t-1}+\text { residual. } \\
(2.10)(0.24) \quad(0.01) \quad(0.69) \quad(1.53) \quad(2.50) \\
\bar{R}^{2}=0.03 \quad \text { DW }=2.01
\end{gathered}
$$

Error correction model (C)

$$
\begin{aligned}
& \Delta p_{t}=2 \cdot 97-0 \cdot 79 z_{t-1}^{+}-1 \cdot 17 z_{t-1}^{-}-0 \cdot 12 u_{2, t-1}^{+}+0 \cdot 03 u_{2, t-1}^{-}+0 \cdot 23 \Delta p_{t-1}-0 \cdot 41 \Delta s_{t-1}+\text { residual } \\
& (5 \cdot 02)(3 \cdot 27) \quad(2 \cdot 93) \quad(4 \cdot 60) \quad(1 \cdot 12) \quad(1 \cdot 48) \quad(2 \cdot 44) \\
& \bar{R}^{2}=0 \cdot 10 \quad \text { DW }=1 \cdot 96 \\
& \Delta s_{t}=1 \cdot 84-0 \cdot 07 z_{t-1}^{+}-0 \cdot 34 z_{t-1}^{-}-0 \cdot 12 u_{2, t-1}^{+}+0 \cdot 03 u_{2, t-1}^{-}+0 \cdot 27 \Delta p_{t-1}-0 \cdot 45 \Delta s_{t-1}+\text { residual. } \\
& (3 \cdot 15)(0.30) \quad(0.86) \quad(2 \cdot 41) \quad(1.72) \quad(1.73) \quad(2.71) \\
& \bar{R}^{2}=0.05 \quad \mathrm{DW}=1.99
\end{aligned}
$$

One may expect that if production is greater than sales (z_{t-1} is positive) then next production will be reduced, so that z_{t-1}^{+}comes in the error correction models for Δp_{t} with a negative coefficient. If production is smaller than sales then next production will be raised, so that z_{t-1}^{-}
comes in also with a negative coefficient as $z_{t-1}^{-}<0$. Similarly, interpreting λs_{t} as a target inventory level, one would expect $u_{2, t-1}^{+}$and $u_{2, t-1}^{-1}$ to have negative coefficients. There is also seen to be an induction that $u_{2, t-1}^{+}$has a more significant coefficient in (A), (C) than does $u_{2, t-1}$ in (B).
Tables IV, V and VI summarize the results for these three error correction models, showing the coefficients and $|t|$ values for $z_{t-1}, z_{t-1}^{+}, z_{t-1}^{-}$and $u_{2, t-1}, u_{2, t-1}^{+}, u_{2, t-1}^{-}$.

The percentages of significant $(|t|>1.96)$ coefficients in these tables are:

	Δp_{t}						Δs_{t}					
	z_{t-1}	z_{t-1}^{+}	z_{t-1}^{-}	$u_{2, t-1}$	$u_{2, t-1}^{+}$	$u_{2, t-1}^{-}$	z_{t-1}	z_{t-1}^{+}	z_{t-1}^{-}	$u_{2, t-1}$	$u_{2, t-1}^{+}$	$u_{2, t-1}^{-}$
A	89	-	-	-	63	15	44	-	-	-	19	30
B	-	78	59	30	-	-	-	22	26	22	-	-
C	-	78	63	-	59	15	-	22	26	-	15	30

It is seen that for Δp_{t} many more $u_{2, t-1}^{+}$terms are significant than $u_{2, t-1}$ and that few $\bar{u}_{2, t-1}^{-}$
Table IV. Error correction model (A)

	Δp_{t}						Δs_{t}					
	z_{t-1}		$u_{2, t-1}^{+}$		$u_{2, t-1}$		z_{t-1}		$u_{2, t-1}^{+}$		$u_{2, t-1}^{-}$	
	Coeff.	$\|t\|$										
1	-0.91	$4 \cdot 71$	$-0 \cdot 12$	$4 \cdot 59$	$0 \cdot 03$	$1 \cdot 02$	$-0 \cdot 15$	$0 \cdot 80$	-0.06	2.36	$0 \cdot 05$	$1 \cdot 67$
2	-1.06	$5 \cdot 90$	-0.07	$4 \cdot 39$	$0 \cdot 01$	$0 \cdot 42$	-0.51	$2 \cdot 98$	-0.04	$2 \cdot 59$	$0 \cdot 02$	$0 \cdot 73$
3	-0.79	4.71	-0.05	$3 \cdot 15$	-0.01	$0 \cdot 29$	-0.22	$1 \cdot 37$	-0.02	$1 \cdot 47$	$0 \cdot 01$	$0 \cdot 55$
4	-0.23	1.58	-0.05	$2 \cdot 09$	$0 \cdot 05$	1.98	$0 \cdot 24$	$1 \cdot 53$	-0.03	$1 \cdot 15$	$0 \cdot 05$	$1 \cdot 50$
5	-0.72	5•12	-0.04	$1 \cdot 74$	$0 \cdot 01$	$0 \cdot 34$	-0.08	$0 \cdot 67$	-0.01	$0 \cdot 62$	$0 \cdot 01$	$0 \cdot 45$
6	-0.24	$2 \cdot 24$	-0.05	3.52	$0 \cdot 04$	$2 \cdot 58$	$0 \cdot 04$	$0 \cdot 44$	-0.02	$1 \cdot 89$	$0 \cdot 03$	$2 \cdot 17$
7	-0.21	$1 \cdot 49$	-0.06	$2 \cdot 14$	$0 \cdot 06$	1.74	$0 \cdot 28$	$2 \cdot 22$	-0.03	$1 \cdot 20$	$0 \cdot 10$	$3 \cdot 32$
8	$-1 \cdot 14$	$6 \cdot 16$	$0 \cdot 04$	$1 \cdot 21$	-0.04	$1 \cdot 29$	-0.03	$0 \cdot 17$	$0 \cdot 04$	$1 \cdot 35$	-0.02	$0 \cdot 71$
9	$-0 \cdot 78$	$5 \cdot 23$	-0.07	3.36	$0 \cdot 01$	$0 \cdot 72$	-0.13	$1 \cdot 00$	-0.02	1.44	$0 \cdot 01$	$0 \cdot 83$
10	-0.94	$6 \cdot 11$	-0.09	$2 \cdot 73$	$0 \cdot 04$	$1 \cdot 03$	-0.32	$2 \cdot 23$	-0.03	$0 \cdot 87$	$0 \cdot 03$	$0 \cdot 87$
11	-0.45	$2 \cdot 81$	$0 \cdot 01$	$0 \cdot 19$	-0.01	$0 \cdot 14$	$0 \cdot 36$	$2 \cdot 69$	0.03	0. 54	$0 \cdot 05$	$0 \cdot 84$
12	-1.23	$7 \cdot 76$	$-0 \cdot 12$	$4 \cdot 05$	$0 \cdot 07$	$1 \cdot 81$	-0.60	$4 \cdot 00$	-0.06	$2 \cdot 30$	$0 \cdot 07$	$2 \cdot 01$
13	-1.45	$9 \cdot 60$	-0.06	$2 \cdot 03$	-0.02	$0 \cdot 55$	-0.48	$3 \cdot 49$	-0.00	$0 \cdot 01$	-0.01	0. 20
14	-1.04	$6 \cdot 73$	-0.08	$1 \cdot 88$	$0 \cdot 03$	$0 \cdot 80$	-0.33	$2 \cdot 43$	$0 \cdot 01$	$0 \cdot 16$	$0 \cdot 03$	$1 \cdot 04$
15	-0.92	$5 \cdot 01$	-0.04	$1 \cdot 10$	$0 \cdot 07$	$1 \cdot 20$	$-0 \cdot 14$	$0 \cdot 84$	-0.01	$0 \cdot 27$	$0 \cdot 08$	1.61
16	-1.04	5.72	-0.08	$2 \cdot 59$	$0 \cdot 04$	$1 \cdot 15$	-0.06	0.41	-0.03	$1 \cdot 11$	$0 \cdot 03$	$1 \cdot 07$
17	-0.82	$5 \cdot 13$	-0.02	$0 \cdot 56$	-0.02	$0 \cdot 42$	-0.06	$0 \cdot 45$	0.01	$0 \cdot 17$	$0 \cdot 01$	$0 \cdot 07$
18	-0.61	$3 \cdot 05$	$-0 \cdot 10$	$2 \cdot 20$	$0 \cdot 09$	1.98	$0 \cdot 27$	$1 \cdot 52$	-0.02	$0 \cdot 40$	$0 \cdot 08$	$2 \cdot 13$
19	-1.15	$7 \cdot 14$	-0.08	$4 \cdot 23$	$0 \cdot 02$	$1 \cdot 02$	$-0 \cdot 12$	$0 \cdot 92$	-0.03	$1 \cdot 61$	$0 \cdot 03$	$1 \cdot 50$
20	-0.78	$3 \cdot 36$	$0 \cdot 24$	$2 \cdot 38$	$0 \cdot 00$	$0 \cdot 03$	$0 \cdot 22$	$1 \cdot 11$	$0 \cdot 21$	$2 \cdot 45$	$0 \cdot 09$	1.08
21	-0.99	$4 \cdot 94$	$0 \cdot 13$	$1 \cdot 50$	$0 \cdot 04$	$0 \cdot 40$	$0 \cdot 04$	$0 \cdot 23$	$0 \cdot 11$	1.57	$0 \cdot 14$	$1 \cdot 71$
22	-0.49	$2 \cdot 09$	$-0 \cdot 04$	$0 \cdot 41$	$0 \cdot 16$	1.77	$0 \cdot 50$	$2 \cdot 50$	0.03	$0 \cdot 37$	0.18	$2 \cdot 31$
23	-0.22	1.98	-0.09	$2 \cdot 25$	$0 \cdot 04$	0.88	$0 \cdot 48$	$4 \cdot 38$	-0.03	$0 \cdot 82$	$0 \cdot 17$	$3 \cdot 73$
23	-0.22	1.98	-0.09	$2 \cdot 25$	$0 \cdot 04$	0.88	$0 \cdot 48$	$4 \cdot 38$	-0.03	$0 \cdot 82$	$0 \cdot 17$	$3 \cdot 73$
24	-0.46	$3 \cdot 91$	-0.09	$2 \cdot 32$	$0 \cdot 03$	$0 \cdot 70$	$0 \cdot 45$	$4 \cdot 20$	-0.04	$1 \cdot 28$	$0 \cdot 15$	$4 \cdot 23$
25	-0.18	$1 \cdot 68$	$-0 \cdot 12$	$3 \cdot 31$	$0 \cdot 11$	$2 \cdot 75$	$0 \cdot 49$	$4 \cdot 24$	-0.08	$2 \cdot 11$	$0 \cdot 25$	$5 \cdot 44$
26	-0.78	$6 \cdot 17$	$0 \cdot 00$	$0 \cdot 01$	$0 \cdot 01$	$0 \cdot 21$	$0 \cdot 15$	$1 \cdot 60$	$0 \cdot 01$	$0 \cdot 28$	$0 \cdot 02$	0.85
27	-0.66	$3 \cdot 09$	$0 \cdot 04$	$0 \cdot 65$	$0 \cdot 02$	$0 \cdot 41$	$0 \cdot 58$	$3 \cdot 15$	$0 \cdot 04$	$0 \cdot 83$	$0 \cdot 05$	$1 \cdot 01$

Table V. Error correction model (B)

	Δp_{t}						Δs_{t}					
	z_{t-1}^{+}		z_{t-1}^{-}		$u_{2, t-1}$		z_{t-1}^{+}		z_{t-1}^{-}		$u_{2, t-1}$	
	Coeff.	$\|t\|$										
1	-0.78	$3 \cdot 12$	-0.70	$1 \cdot 84$	-0.05	$3 \cdot 08$	-0.06	$0 \cdot 24$	$0 \cdot 00$	$0 \cdot 01$	-0.01	$0 \cdot 69$
2	-0.93	$3 \cdot 95$	-1.02	$2 \cdot 91$	-0.04	$3 \cdot 65$	-0.43	1.82	-0.57	1.63	-0.02	1.83
3	-0.82	$3 \cdot 55$	-0.69	$2 \cdot 17$	-0.03	2.99	-0.28	$1 \cdot 24$	$-0 \cdot 10$	0.33	-0.01	$0 \cdot 80$
4	-0.72	$3 \cdot 17$	$0 \cdot 39$	$1 \cdot 67$	-0.00	$0 \cdot 11$	-0.36	1.44	$0 \cdot 94$	$3 \cdot 69$	$0 \cdot 01$	$0 \cdot 51$
5	-0.58	2.72	-0.86	$3 \cdot 71$	-0.02	1.59	$0 \cdot 07$	$0 \cdot 38$	-0.24	$1 \cdot 23$	-0.00	$0 \cdot 16$
6	-0.24	1.54	$0 \cdot 09$	$0 \cdot 48$	-0.01	$0 \cdot 96$	-0.07	$0 \cdot 47$	$0 \cdot 40$	$2 \cdot 25$	$0 \cdot 00$	$0 \cdot 39$
7	-0.12	$0 \cdot 65$	-0.37	$1 \cdot 31$	-0.01	$0 \cdot 60$	$0 \cdot 40$	$2 \cdot 51$	$0 \cdot 04$	$0 \cdot 17$	$0 \cdot 02$	1.59
8	-1.39	$6 \cdot 19$	$-0 \cdot 62$	$2 \cdot 07$	-0.00	$0 \cdot 07$	-0.25	$1 \cdot 21$	$0 \cdot 41$	1.48	$0 \cdot 01$	$0 \cdot 70$
9	-0.89	$4 \cdot 41$	-0.33	$1 \cdot 23$	-0.02	$2 \cdot 17$	-0.20	$1 \cdot 19$	$0 \cdot 12$	$0 \cdot 54$	-0.00	$0 \cdot 38$
10	-0.93	$4 \cdot 14$	-0.91	$2 \cdot 96$	-0.03	$1 \cdot 68$	-0.31	$1 \cdot 46$	-0.33	$1 \cdot 15$	$-0 \cdot 00$	$0 \cdot 06$
11	-0.29	$1 \cdot 33$	-0.64	$2 \cdot 59$	$0 \cdot 00$	$0 \cdot 10$	$0 \cdot 39$	$2 \cdot 06$	$0 \cdot 34$	$1 \cdot 60$	$0 \cdot 04$	$1 \cdot 34$
12	-1.37	$6 \cdot 06$	-0.82	$2 \cdot 64$	-0.04	$2 \cdot 10$	-0.76	$3 \cdot 59$	-0.21	0.71	$-0 \cdot 00$	$0 \cdot 18$
13	-1.65	$8 \cdot 99$	-1.11	$4 \cdot 70$	-0.03	$2 \cdot 25$	-0.75	$4 \cdot 60$	$0 \cdot 00$	$0 \cdot 01$	$0 \cdot 00$	$0 \cdot 09$
14	-0.89	4•16	-1.22	$4 \cdot 25$	-0.02	$1 \cdot 07$	-0.29	1.54	-0.39	1.52	$0 \cdot 02$	$1 \cdot 01$
15	-0.87	$3 \cdot 56$	-0.95	$3 \cdot 08$	-0.00	$0 \cdot 04$	-0.02	$0 \cdot 08$	-0.31	$1 \cdot 05$	$0 \cdot 02$	$1 \cdot 15$
16	-1.02	$4 \cdot 37$	-0.98	$3 \cdot 67$	-0.03	1.74	$0 \cdot 08$	$0 \cdot 40$	-0.20	$0 \cdot 94$	-0.00	$0 \cdot 25$
17	-1.06	$4 \cdot 15$	-0.62	$2 \cdot 59$	-0.02	$0 \cdot 87$	-0.03	$0 \cdot 14$	-0.09	$0 \cdot 43$	$0 \cdot 01$	$0 \cdot 32$
18	-0.64	$2 \cdot 50$	-0.38	$0 \cdot 97$	-0.00	$0 \cdot 09$	$0 \cdot 16$	0.75	$0 \cdot 59$	1.77	$0 \cdot 04$	$1 \cdot 63$
19	-1.21	$5 \cdot 98$	-0.77	$2 \cdot 79$	-0.03	$2 \cdot 25$	-0.17	$0 \cdot 99$	$0 \cdot 09$	$0 \cdot 41$	$0 \cdot 00$	$0 \cdot 11$
20	-0.48	$1 \cdot 57$	-1.21	$3 \cdot 25$	$0 \cdot 12$	$2 \cdot 16$	$0 \cdot 45$	1.75	$-0 \cdot 13$	$0 \cdot 41$	$0 \cdot 15$	$3 \cdot 21$
21	-0.93	$3 \cdot 26$	-1.06	$3 \cdot 48$	$0 \cdot 09$	1.74	$0 \cdot 06$	$0 \cdot 27$	$0 \cdot 01$	$0 \cdot 04$	$0 \cdot 12$	$3 \cdot 00$
22	-0.36	$1 \cdot 21$	-0.66	1.70	$0 \cdot 07$	1.28	$0 \cdot 59$	$2 \cdot 37$	$0 \cdot 38$	$1 \cdot 16$	$0 \cdot 11$	$2 \cdot 49$
23	-0.54	$3 \cdot 36$	$0 \cdot 23$	$1 \cdot 14$	-0.03	$1 \cdot 09$	$0 \cdot 09$	$0 \cdot 58$	$1 \cdot 03$	5.20	$0 \cdot 06$	$2 \cdot 55$
24	-0.30	1.82	-0.53	$3 \cdot 32$	-0.03	$1 \cdot 30$	$0 \cdot 33$	$2 \cdot 21$	$0 \cdot 69$	$4 \cdot 69$	$0 \cdot 05$	$2 \cdot 35$
25	-0.52	$3 \cdot 13$	$0 \cdot 19$	1.24	-0.01	$0 \cdot 52$	$0 \cdot 05$	$0 \cdot 28$	$0 \cdot 97$	$5 \cdot 74$	$0 \cdot 07$	$2 \cdot 87$
26	-1.01	$6 \cdot 14$	-0.36	$1 \cdot 52$	$0 \cdot 00$	0.16	$0 \cdot 03$	0.28	$0 \cdot 37$	$2 \cdot 12$	$0 \cdot 01$	1.09
27	-0.89	$3 \cdot 34$	-0.30	$0 \cdot 93$	$0 \cdot 03$	$1 \cdot 17$	$0 \cdot 44$	1-94	$0 \cdot 77$	$2 \cdot 77$	$0 \cdot 05$	$1 \cdot 85$

terms are significant. Thus, there is much clearer evidence of multicointegration in the non-symmetric error correction models for Δp_{t} compared to symmetric models. No such clear change occurs for the Δs_{t} equations.
Some other generalizations are:
(a) For the Δp_{t} equations are coefficients on z_{t-1}, z_{t-1}^{+}and most of the coefficients on z_{t-1}^{-}are negative.
(b) In (A), (C) for Δp_{t}, all but six of the coefficients of $u_{2, t-1}^{+}$are negative. Only one positive coefficient is significant. In (A) for Δp_{t} only five of the coefficients on $u_{2, t-1}^{-}$are negative, with 6 in (C). None are significant.
(c) \bar{R}^{2} values for (A), (C) are generally higher than for (B).
(d) A similar forecasting exercise to that reported in the previous section, between (A) and the error correction model (2.3) using z_{t-1} and $u_{2, t-1}$, was conducted. Using Δp_{t} the non-symmetric error correction model outforecast the symmetric one 56 per cent of the time, for Δs_{t} it was better 69 per cent of the time.
Overall, the evidence is in favour of non-symmetric multicointegration, but this is property not found for each series. An optimizing process that is consistent with this finding is to choose
Table VI. Error correction model (C)

production at each instant of time to minimize

$$
\begin{aligned}
J= & E\left[\theta_{1}\left[\left(p_{t+1}-p_{t}^{*}\right)^{+}\right]^{2}+\theta_{2}\left[\left(p_{t+1}-p_{t}^{*}\right)^{-}\right]^{2}+\theta_{3}\left[\left(I_{t+1}-\lambda s_{t}\right)^{+}\right]^{2}\right. \\
& \left.+\theta_{4}\left[\left(I_{t+1}-\lambda s_{t}\right)^{-}\right]^{2}+\theta_{5}\left(p_{t+1}-p_{t}\right)^{2}\right],
\end{aligned}
$$

with all $\theta_{j} \geqslant 0$. The target for p_{t+1} is $p_{t}^{*}=s_{t}$ and the target for I_{t+1} is λs_{t}. The system is completed by a generating equation for s_{t}. The final term represents a cost of changing production. If $\theta_{1} \neq \theta_{2}$ then z^{+}and z^{-}will enter the error correction model separately. This can be interpreted as having $p_{t}=s_{t}$ as an attractor (equilibrium) in the phase space (p, s), with the strength of attraction different on both sides of the attractor (Granger, 1987). Similarly for the attractor $I_{t}=\lambda s_{t}$ if $\theta_{3} \neq \theta_{4}$.

It should be noted that if z_{t} is $\mathrm{I}(0)$, so will be z_{t}^{+}and z_{t}^{-}. However for the attractor intepretation it is important that θ_{1} and θ_{2} are both non-zero, and similarly for θ_{3} and θ_{4}. If, for example, $\theta_{1}>0$ but $\theta_{2}=0$, attraction would only occur on one side of the line and cointegration would not occur. Thus, in the error correction models (A), (B) and (C) if there is multicointegration both non-symmetric coefficients should be significant, but in practice this rarely occurs. It may be that many of these coefficients are non-zero but small.

The question arises how the series can be actually generated, given non-symmetric multicointegration. Rather than use the variables p_{t}, s_{t} it is easier to use the equivalent pair s_{t} and $z_{t}\left(=p_{t}-s_{t}\right) . \Delta s_{t}$ is generated by an error correction model, such as (A) if relevant, with Δp_{t} replaced by $\Delta s_{t}+\Delta z_{t}$. A generating mechanism for z_{t} is found by subtracting error correction equations for Δp_{t} and Δs_{t}. This will usually be a non-linear ARMAX model, with Δs_{t} the exogenous variable. However, sometimes a simpler model may occur. An example are the (B) error correction models for series 1, given above. Subtracting gives

$$
\begin{aligned}
\Delta z_{t} & =\Delta p_{t}-\Delta s_{t} \\
& =0.85-0.72 z_{t-1}^{+}-0.703 z_{t-1}^{-}-0.04 u_{2, t-1}-0.05 \Delta p_{t-1}+0.05 \Delta s_{t-1}+\text { residual. }
\end{aligned}
$$

This can be approximately written as

$$
\Delta z_{t}=0.85-0.7\left(z_{t-1}^{+}+z_{t-1}^{-}\right)-0.05 \Delta\left(p_{t-1}-s_{t-1}\right)+\text { residual },
$$

assuming the term in $u_{2, t-1}$ is negligible, gives

$$
z_{t}=0 \cdot 85+0 \cdot 24 z_{t-1}+0 \cdot 05 z_{t-2}+\text { residual }
$$

which is a stationary $\operatorname{AR}(2)$ model for z_{t}. Such simplifications do not always occur.

4. (S, s) INVENTORY CONTROL RULE

It is believed that many companies, particularly in the trade sectors (18 to 27), use an (S, s) inventory control rule. In this rule, if ever the inventory level falls to or below a minimum critical level s, the firm changes production to increase the level to a value S. Such a rule may be optimum for a stationary sales series but is unlikely to hold when both sales and production are $I(1)$. If the inventory level series were bounded it would then appear to be $I(0)$ according to the Dickey-Fuller test as the series would have a bounded variance but this is not observed for the series we investigated. Further, if the (S, s) rule is used, the inventory/sales ratio will often lie in a very narrow band, so that production has to be changed very frequently to add to inventory. A more likely rule is one based on the inventory/sales ratio, i.e. have a pair of values (S^{\prime}, s^{\prime}), if inventory $\leqslant s^{\prime} \times$ sales, increase production until inventory $=S^{\prime} \times$ sales. Such a rule would allow sales, production and inventories all be I(1). Blinder (1981, page 462) used a simple example to show that the original (S, s) rules could aggregate into a stable
inventory/sales ratio in the stationary sales case. If different companies use an (S^{\prime}, s^{\prime}) rule with different S^{\prime}, s^{\prime} values, the aggregates may similarly appear to be multicointegrated.

An indirect test of the (S^{\prime}, s^{\prime}) rule can be derived from the non-symmetric error correction models considered in the previous section. Let $u_{t}=I_{t}-\lambda s_{t}$ and $q_{t}=I_{t}-s^{\prime} s_{t}$. If production were driven only by considerations of inventory then one has

$$
\begin{aligned}
& q_{t-1}>0 \rightarrow \Delta p_{t}=0 \\
& q_{t-1} \leqslant 0 \rightarrow \Delta p_{t}>0 .
\end{aligned}
$$

With $\lambda>0$, if $q_{t} \leqslant 0$, then $u_{t}<0$. Thus in the non-symmetric error correction models, if all companies in an industry were using the same (S^{\prime}, s^{\prime}) rule, and if there is no temporal aggregation, one should find u_{t-1}^{-}having a significant negative coefficient in the equation for Δp_{t}. However, this is not what is observed. In Table IV, for instance, $u_{2, t-1}^{-1}$ is significant in only 4 out of 27 industries, none of which are negative. Thus to this extent the evidence is not in favour of the (S^{\prime}, s^{\prime}) rule. The effects of cross-sectional and temporal aggregation on this rule need further study.

5. CONCLUSION

Sufficient evidence has been found for us to conclude that multicointegration is a useful concept in the area of inventory determination. A better test would be on data from a single corporation, but these are not currently available to us.

APPENDIX

Data are taken from the US Department of Commerce, Bureau of Economic Analysis, as available on the Citibank data base. Figures are monthly for the period 1967:1 to 1987:4 for final sales and level of inventory at the end of each month, in 1982 constant dollars and seasonally adjusted. The sample size is 244 observations. The numbers used for the industries and groupings are defined as follows:

1 Manufacturing and Trade $(2+18+23)$
2 Manufacturing ($3+10$)
3 Durable Goods Manufacturing ($4+5+6+7+8+9$)
4 Primary Metals
5 Fabricated Metals
6 Machinery, Except Electrical
7 Electrical Machinery
8 Total Transportation Equipment
9 Other Durable Goods Manufacturing
10 Non-durable Goods Manufacturing (11 + 12)
11 Food and Kindred products
12 Non-food $(13+14+15+16+17)$
13 Paper and Allied Products
14 Chemicals and Allied Products
15 Petroleum and Coal Products
16 Rubber and Plastic Products
17 Other Non-durable Goods Manufacturing
18 Merchant Wholesalers $(19+20)$

19 Durable Goods Wholesalers
20 Non-durable Goods Wholesalers $(21+22)$
21 Groceries and Farm Products Wholesalers
22 Other Non-durable Goods Wholesalers
23 Retail Trade $(24+26)$
24 Durable Goods Retailers ($25 \subset 24$)
25 Auto Dealers
26 Non-durable Goods Retailers ($27 \subset 26$)
27 Food Stores

ACKNOWLEDGEMENTS

We are grateful to Valerie Ramey for many useful conversations. The work was conducted with the help of NSF grant SES 87-04669.

REFERENCES

Blinder, A. S. (1981), 'Retail inventory behavior and business fluctuations', Brookings Papers on Economic Activity, 2, 443-520.
Dickey, D. A., and W. A. Fuller (1979), 'Distribution of estimates for autoregressive time series with unit root', Journal of the American Statistical Association, 427-431.
Engle, R. F., and C. W. J. Granger (1987), 'Cointegration and error correction: representation, estimation and testing', Econometrica, 55, 251-271.
\rightarrow Engle, R. F., and B. S. Yoo (1987), 'Forecasting and testing in cointegrated systems', Journal of Econometrics, 35, 143-159.
Fuller, W. A. (1976), Introduction to Statistical Time Series, John Wiley \& Sons, New York.
Gonzalo, J. (1989), 'Cointegration and aggregation', Discussion Paper 89-30, University of California, San Diego.
Granger, C. W. J. (1983), ‘Cointegrated variables and error correcting models’, Discussion Paper 83-13, University of California, San Diego.
Granger, C. W. J. (1987), 'Introduction to stochastic processes having equilibria as simple attractors: the Markov case', Discussion Paper 86-20, University of California, San Diego.
Granger, C. W. J., and T. H. Lee (1989), 'Multicointegration', forthcoming in G. F. Rhodes, Jr, and T. B. Fomby (editors), Advances in Econometrics: Cointegration, Spurious Regressions, and Unit Roots, JAI Press.
\rightarrow Weiss, A. A. (1984), 'Systematic sampling and temporal aggregation in time series models', Journal of Econometrics, 26, 271-281.

