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’I 2 Linear Furanocoumarins

M. M. Diawara and J. T. Trumble
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12.1  INTRODUCTION

The linear furanocoumaring are plant metabolites that have been used since ancient times fo
treat skin disorders such as psoriasis, conditions of skin depigmentation (such as leprosy,
vitiligio, and leukoderma), mycosis fungoides, polymorphous dermatitis, and eczema.l#3456
Use of furanocoumarin-containing plants for medicinal purposes dates as far back as 2000 B.C.*
The legume Psorelea coryfolia and the umbelliferous plant Ammi majus, for example, have
been used since ancient times in North African civilizations, in the Hindu culture, and by the
Chinese.!*” The increased use of the linear furanocoumarins in medicine has occasionally
been linked, however, to higher incidence of skin cancer.’2%# and other disorders such as
sister chromatid exchanges, gene mutation, and chromosomal aberrations in humans. %%
Because these biosynthetic compounds are active against herbivores (including humans) and
distributed among both wild and domesticated plant species,™!! they have garnered substantial
scientific attention and thus have been the subject of a great deal of research in the last several
decades. To date, the linear furanocoumarins have been characterized and identified in at
least 15 plant families: Amaranthaceae, Compositae, Cyperaceae, Dipsacaceae, Fabaceae,
Goodeniaceae, Guttiferae, Leguminosae, Moraceae, Pittosporaceae, Rosaceae, Rutaceae,
Samydaceae, Solanaceae, and Umbelliferae (Apiaceae).®1112

From an evolutionary standpoint, the driving force(s) leading to the production of fura-
nocoumarins has generated considerable speculation. In Apiaceae, the presence of furano-
coumarins is suspected to have evolved in response to several physical and biological stress
factors. Beier and Oertli,'? Zanger! and Berenbaum,'* and Zobel and Brown,'* found that
furanocoumarins were induced by UV light, suggesting that these chemicals may provide
protection against mutagenic UV radiation, Zobel and associates'® recently reported that a
significant portion of these compounds can be exuded on the plant surface, where they may
act as “sunscreens” (UV blockers).

§-8492-8531-2/97/30.00+3.50
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The furanocoumarins have been reported to be active against a wide variety of organisms.
Inhibition of bacterial, fungal, as well ag viral infections have been associated with increased
concentrations of linear furanocoumarins in plants,!/71819.20.21.2223 Recent stadies also suggest
the potential allelopathic role of furanocoumarins against nearby plants through retardation
of germination and growth.'$?* The furanocoumaring have also been shown to provide the
chemical basis for feeding deterrency in Apium graveolens (celety) cultivars selected for, or
found to have, resistance to insects'®*-%27 or, in other cases, they prevented feeding adaptation
by specialist herbivores.?® Tn addition, furanocoumaring have proven to be toxic to a broad
spectrum of insects, suggesting that they may have evolved, at least in parts, in response to
herbivory.8*3 The allocation of a high proportion (>60%),> of the available complement of
iinear furanocoumarins to the outer leaves of celery (as opposed to the interior leaves, petioles,
or roots), appears to support all of the previously mentioned rationales for the development
and/or maintenance of these compounds (e.g., UV radiation, fungi, bacteria, herbivory), at
least in celery.

Due to the diverse array of documented biological activities (from medicinal to agricul-
tural to ecological} of the linear furanocoumarins, reporting in detail on all of the available
literature is not feasible. Therefore, this chapter has been organized into a selection of what
we believe are key topic areas including the biosynthesis of linear furanocoumarins, their
toxicity to a wide range of organisms, the factors affecting production and toxicity, metabolic
detoxification, and the outlook for research on linear furanocoumarins.

12,2 BIOSYNTHESIS OF LINEAR FURANOCOUMARINS

Like many of the more than 800 coumarin (1) derivatives that have been identified and
characterized primarily from green plants,® the linear furanocoumarins are structurally derived
from shikimic and chorismic acids via phenylalanine (2).5'! Their biosynthesis “begins with
the transformation, catalyzed by phenylalanine ammonia lyase, of phenylalanine to frans-
cinnamic acid (3).% Trans-cinnamic acid is first ortho-hydroxyiated to 2-hydroxycinnamic acid.
Umbelliferone (or 7-hydroxycoumarin} (4), which is considered to be the mother compound
of all linear furanccoumarins,®* is derived when cinnamic acid is hydroxylated at the 4
position to p-coumnaric acid (5} and then at the 2 position.

Several workers have reviewed the biosynthesis of coumarins.®#1#2333 The specific biosyn-
thetic pathway varies among plant taxa.!13233343336373839 [n Rutaceae and Apiaceae, demethyl-
suberosin (6} is the coumarin widely reported to be the intermediate in the conversion of
umbelliferone to marmesin (7) via prenylation ?#34041 This reaction is reportedly catalyzed
by an enzyme referred to as dimethylallylpyrophosphate: umbelliferone dimethylallyl-trans-
ferase.*! Ebel® recently proposed that marmesin loses its hydroxypropy! group via oxidation
to yield psoralen (8); it is believed that this conversion is catalyzed by a P450 monooxygenase.
Psoralen is hydroxymethylated to 5-methoxypsoralen (bergapten) (9), 8-methoxypsoralen (xan-
thotoxin) (10), or 5,8-methoxypsoralen (isopimpinelliny (11} in the presence of site-specific
methylases.?3237.3840 Pgoralen, bergapten, xanthotoxin, and isopimpinellin are the four Hnear
furanocoumarins that have been widely characterized and identified in green planis. Except for
some reported fungal toxicity,™* isopimpinellin has generally not proved to have the photo-
sensitizing properties of the other three linear furanocoumaring;* consequently, this compound
has received less attention. In addition to the linear furanocoumarins, some plant species also
have angular furanocoumarins such as angelicin (12), but the linear furanocoumaring usually
constitute a higher proportion of their total furanocoumarins.®

Murray and colleagues!' reported that coumarin synthesis occurred primarily in younger
leaves of legumes. In contrast, the buds and seeds of Pastindea sativa {Apiaceae) had the
highest concentrations of these compounds.® Leaves of celery have been shown to have much
higher concentrations of foranocournaring than petioles 226273145 Similar results were found
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for other species of Apiacae and among Rutaceae; upper green leaves of Ruta graveolens
contained more furanocoumaring than lower green leaves and green leaves of the plant had
more furanocoumarins than yellow leaves, which also contained more than dry leaves.*® Lime
pulp was shown to have much less furanocoumarins than the peel.#” Coumarins are, however,
generally found in all plants parts.33' Asg for their biosynthesis, the composition?! 25314546 a3
well as the localization®* 8 of linear furanocoumaring within specific plant structures vary
among and within plant taxa. To date, it remains unclear whether the furanocoumarins are
translocated between different parts of the plant either during or after synthesis; this has been
previously discussed (see Diawara et al?!).

12.3 TOXICITY OF LINEAR FURANOCOUMARINS
12.3.1 Mechanism oF Toxicity

Like most other conmarins, the linear furanocoumaring are pho‘tﬂacsivated plant biosynthetic
compounds, $11.14204649.50.5152 The effective ultraviolet A (UVA) wavelength range for this
photoreactivity is between 320 and 400 nm; 132353343555 the addition of UVB radiation does
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not seem to significantly affect activity.’’ Following absorption of a photon, the furanocou-
marins form an excited triplet state which can react with molecules such as pyrimidine bases
or with ground state oxygen, resulting in the formation of singlet oxygen or toxic oxyradicals
such as superoxide anion radicals or hydroxyradicals.® All of these molecules can react with
DINA, RNA, proteins, and lipids. The furanocoumarins have been shown to bind to the pyri-
midine base of DNA.53% This binding can result in formation of monoadducts, where furano-
cournarins bind to a single pyrimidine base, and thus cause cytoplasmic mutations.” Recent
studies by Laquerbe and colleagues®® comparing data obtained from normal human lympho-
blasts, rodents, and yeast cells suggest that the mutagenic potential of the monoadducts vs.
diadducts (also called cross-links) may be species-specific. Diadducts, which cross-link com-
plementary strands of DNA and prevent their separation,’%! are formed when UV activated
monoadducts react with additional pyrimidine bases in opposing strands of DINA.5%® The
furanocoumarins have also been shown to inhibit enzymes by degrading protein constituents
due to production of singlet oxygens and photobinding.563 They can be photoactive with
proteins and lipids in both oxygen-dependent and oxygen-independent reactions.® The DNA
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binding ability of furanocoumarins and their reactivity with and ability to damage lipids,
proteins, RNA, as well as DNA, constitute the basis for their toxicity to a wide range of
organisms including mammals, insects and other arthropods, nematodes, viruses, and bacteria,
and even plants and fungi.

Despite the vast volume of literature on toxicity of furanocoumarins, the actual mecha-
nism(s) of their action at the molecular level is not well understood; for instance, it is unclear
how pigment deposition in photodermatitis (see toxicity to mammals) is affected by cross-.
linking of DNA. However, it is known that activity of tyrosinase in pigment cells is stimulated
by the compound trimethylpsoralen.® Xanthotoxin and other furanocoumaring inhibit both
mammalian® %57 and sect cytochrome P450s,5 which are among the most important
insect enzymes involved in metabolism of allelochemicals.”™ During a recent study designed to
test cournarin, benzofuran, and 16 furanocoumarins for inhibitory effects on the insect Manduca
sexta midgut cytochrome P450-catalyzed O-demethylation of p-nitroanisole, Neal and Wu®
found that “all of the inhibitory furanocoumarins tested were mechanism-based irreversible
inhibitors” and proposed that “the furanocoumarin is oxidized by cytochrome P450 at the double
bond of the furan ring forming an unstable epoxide that can react with cytochrome P450.”

12.3.2  Toxicrry 10 Mammals

The most commonly reported manifestation of linear furanocoumarin toxicity to higher animals
is phytophotodermatitis, an epidermal reaction symptomized by bullous eruptions, pigmenta-
tion, erythema, and poiential vesicle formation 32317472 These manifestations may be seen
simmply at the point of contact with high-furanocoumarin content material or over the entire
body of an individual, depending on whether there was dermal contact only or an oral ingestion,
respectively. Thus, furanocoumarins can reach the skin by direct contact or by blood-borne
transfer to the skin following ingestion. Most humans show little reaction, or at least symptoms
are not visible in the absence of UVA light exposure; thus the terms “photosensitization” and
“photoactivation” are sometimes used to describe the reaction in the medical literature.

Scientific interest in phytophotodermatitis started in Europe in the 17th century. According
to Brown,* a major step toward understanding the role of furanocoumarins in the causation
of dermatitis in humans was a study reported in 1938 which demonstrated that synthetic pure
bergapten and xanthotoxin induced the effects of furanocoumarin-containing plants when
directly applied to the skin; this was later confirmed by several workers in Italy and the U.S.

Crop plants that have been reportedly associated with human health hazards as a result
of high contents of linear furanocoumarins belong to four plant families: Apiaceae {(anise,
caraway, carrot, celery, chervil, dill, fennel, lovage, parsiey, and parsnip), Moraceae {figs),
Rutaceae (grapefruit, lemon, lime, and orange), and Solanaceae (potato).!L1284541T3747576 (f
these, celery has been among the most extensively studied because of the occasionally high
concentrations of linear furanocoumaring in the plant and risks of phytophotodermatitis
associated with harvesting, handling, or ingestion. 5757677787 These hazards apparently are
even more serious when plants are infected with disease-causing pathogens. 1”20

The chemicals responsible for crop plant-induced phytophotodermatitis have been known
since the mid-1970s to be the linear furanocoumarins psoralen, 5-methoxypsoralen (bergapten),
and 8-methoxypsoraien (xanthotoxin).'>'877 The threshold level for toxicity to humans was
determined to be 18 ug g! fresh weight for development of acute dermatitis,” and 7-9 pg g
for repeated or chronic exposures.” This may vary for different body regions.®

The furanocoumarins have been shown to be both mutagenic and carcino-
genic HI5LESLALBIIAES68II8 [ yipny bioassays with bacterial and mammalian cells demon-
strated that these chemicals are lethal and carcinogenic.®* Beier* recently reported the death
of a 45-year-old woman due to complications from severe burns that the patient received in a
tanning salon while under psoralen medication. The World Health Organization recognizes these
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psoralens as causal agents of skin cancer in humans.®® Further, these compounds can interact
with other medications: furanocoumarins have been demonstrated to induce hypothermic
activity and anticonvulsive activity in combination with several drugs when injected into
rats.® These compounds have also been shown to deter feeding by grazing animals.®!

Like other DNA-damaging agents, the furanocoumarins hypersensitize several rare hered-
itary and tumor-prone disorders in humans, including Fanconi anemia (see Bredberg et al.%2
and references therein). It is also well established that they can cause conjunctival hyperemia
and decreased lacrimation'® and increase plasma melatonin levels by inhibiting metabolism
of this compound (see Garde et al.®* and Rosselli et al% and references therein ). Thus,
potential effects of these plant compounds on mammals are not only diverse, but occasionally
debilitating or even lethal.

12.3.3  Toxicrry 10 Insects, Puants, FUNGI, BACTERIA, AND ViRUSES

Berenbaum?® recently reviewed the toxicity of the furanocoumarins to insects, plants, fungi,
bacteria, and viruses; the reader is referred to her article for details on earlier studies. In
reference to furanocoumarin toxicity to plants, Berenbaum did suggest the involvement of
furanocoumarins in regulation of seed germination because of their localization in seed coats
in many species, and their absence from the endosperm. More recent reports have confirmed
that the furanocoumarins can exert allelopathic effects against nearby plants through retardation
of germination and growth.'8% Kupidlowska and co-workers® suggested that this allelopathy
may be due to the furanocoumarins’ ability to retard mitosis, to decrease oxygen uptake by
meristematic cells, and to cause structural and physiological alterations in the mitochondrial
matrix, as observed in Allium cepa. New advances in activity of furanocourarins against fungi,
bacteria, and viruses that attack plants include reports on their toxicity to several species of
fungus, 222 to the yeast Saccharomyces cerevisiae,69" and the green alga Chlamydomonas
reinhardtii

Studies on furanocoumarin-containing plants and their relationships to herbivores have
provided excellent model systems of plant-insect interactions. A prospective case of coevolu-
tion based on these interactions has been described.® Since Berenbaum’s® report on toxicity
of furanocoumarins to arthopods, other studies have confirmed that these chemicals canse loss
of fitness through delayed developmental times or growth reductions, %10 and in some cases
have demonstrated activity as feeding deterrents 3

Some recent studies suggest that some chemical precursors of linear furanocoumarins may
be more toxic to fungi than the linear furanocoumarins. Afek et al.?® observed that marmesin,
an immediate precursor to the linear furanocoumarins, played a more important role than
psoralen, bergapten, xanthotoxin, and isopimpinellin in celery resistance to pathogenic agents
during storage. H this pattern is repeated for other plant pathogens, it would provide substantial
evidence regarding the driving forces responsible for the evolution of the linear furanocou-
marins. Also, such a pattern would suggest that the linear furanocoumarins provide addisional
advantages that outweigh those of the precursors such as stability, storability, lack of auto-
toxicity, etc.

One such possible advantage of linear furanocoumarins over the precursors is an increased
activity against herbivores. In tests with the coumarin derivatives ostruthin and osthol, no
effects on insect survival or growth were found.® However, there is ample evidence that the
linear furanocoumarins can effectively limit insect herbivory. Although psoralen has been
reported to be the most photodynamically active compound among furanocoumarins accord-
ing to earlier studies,">41%2193 3 growing number of recent studies®6662.89 gupoest that xan-
thotoxin is more toxic.

s



i inear Furanocoumaring 181

12.4 FACTORS AFFECTING LINEAR FURANOCOUMARIN
PRODUCTION AND TOXICITY

Uliraviolet A radiation is certainly a major factor determining the toxicity of linear furano-
coutnaring to most organisms 51114294030 Iy addition to UV light, a number of other factors
can increase the toxic effects of furanocoumarins. Exposure to fungal, bacterial, and viral
agents has been associated with increased plant furanocoumarin-content, and consequently
increased human and animal health hazards. Infection of celery with the disease-causing
pathogens such as Sclerotinia sclerotiorum or Fusarium oxysporum resulted in induction of
anew furanocoumarin and/or an increased production of existing ones compared with healthy
plants. 3172022 Thig initially led scientists to suggest that only diseased celery contained linear
furanocoumarins (perhaps produced by the pathogen, rather than the plant}, but it has now been
established that healthy celery contains furanccoumaring and can cause photodermatitis, 737678
Higher production of linear furanocoumaring in plants infected with pathogenic agents com-
pared with healthy ones has also been documented in parsnip,’® parsley,'™ citrus, and fig
leaves.™ Because of the increased concentrations of linear furanocoumarins in plants follow-
ing exposure to pathogens, these compounds have also been referred to as phytoalexins.'%
Increased production of furanocoumarins in plants as a response to environmental stress has
been confirmed at the molecular level (see Berenbaum?® and references therein).

A variety of anthropogenic stresses also have the potential to induce furanocoumarin
production in plants. Experiments by Dercks and colleagues, ' showed significant increases
{more than 500%) in linear furanocoumarin production in celery as a result of a 4 h exposure
to acidic fogs. Beier and Certli'® and Beier and Nigg'? demonstrated that application of copper
sulfate served as a general elicitor in celery. Mechanical damage occurring during harvesting
and storage has also been shown to increase concentrations from about 2 ug g to 95 ug g%
Other factors such as temperature,'®? cold storage practices,” and growing conditions such
as light and nutrient regime,®* have all been implicated in increased furanocoummarin produc-
tion in plants. Purohit and colleaguesi® recently demonstrated that tissue culturing induced
higher production of xanthotoxin in Ammi majus than any other technique previously described.
Thus, human activities related to production, storage, and pollutant generation can substantiaily
increase the hazards associated with furanocoumarins.

In oral medicinal use, the potential carcinogenicity and toxicity of furanocoumarins to
humans can be influenced by the environmental factors related to the ingestion of the com-
pounds. When used in skin phototherapy, the eating habits of patients under psoralen treatment
have been shown to impact treatment efficacy. During a study designed to determine the impact
of food consurnption vs. fasting conditions on the pharmacokinetics of bergapten, Ehrsson
et al.b observed that administration of bergapten tablets with food greatly increased the bio-
availability of the medication. Dietary omega-3 and omega-6 fatty acid sources decreased
inflammatory responses and allowed relatively rapid repair of psoralen-induced cutaneous
toxicity, but these lipids did not affect psoralen-induced tumorigenesis,\®

12.5 METABOLIC DETOXIFICATION OF LINEAR
FURANOCOUMARINS

The ability of certain insect species to specialize on furanocoumarin-containing plants® sparked
a series of studies designed to document the metabolic detoxification mechanisms of these
compounds by arthropods. The chief metabolic detoxification pathway appears to be through
mixed function oxidases (MFOs), a series of enzymatic reactions which allow organisms to
break down complex molecules into srmaller ones that are more easily degraded or excreted /®
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In one early study, Brattsten et al.'' reported that plant secondary compounds increased MFEOs
in larvae of Spodoptera eridania. Both the xanthotoxin-tolerant Papilio polyxenes and the
xanthotoxin-susceptible Spodoptera frugiperda were found to metabolize this chemical by
oxidative cleavage of the furan ring, but the rate of the metabolism was much higher in P.
polyxenes.\1! Ingestion of xanthotoxin has also been shown to increase enzymatic activity in
larvae of Trichoplusia ni''? and Depressaria pastinacella.'"® Several studies!3UsH516 indj.
cate involvement of cytochrome P450 in excretion and metabolism of furanocoumarins. The
observation that the furanocourarins deter feeding by herbivores might be linked to the fact
that a siow feeding rate would allow herbivores to better metabolize toxic chemicals by either
detoxifying them in the midgut prior to absorption'®!!M1SU7 or by efficiently excreting
them "7

However, such metabolic detoxification of plant defensive compounds by herbivores
reportedly is not without costs. For example, nicotine can be detoxified by P450s in Spodoptera
eridania larvae, but concentrations of 0.05% dietary nicotine have proven to significantly
reduce relative growth rates and the efficiency of food conversion.!'® In a series of experiments
conducted with increasing concentrations of proteins, Berenbaum and Zangerl'" recently
evaluated the cost of cytochrome P450-mediated detoxification of xanthotoxin by Depressaria
pastinacella, an insect restricted to feeding on plants in two genera of Apiaceac. They noted
a progressive decline in growth rates with decreasing protein levels, but silk spinning and
detoxification rates were only affected with 0% protein in the artificial diet. Much higher
(almost threefold) metabolism of xanthotoxin was also induced when there was no protein
in the diet; this, however, resulted in nearly 80% reduction in growth rates. As reported by
the authors, these results suggest that “xanthotoxin detoxification capacity is maintained at
the expense of growth.”

Using natural concentrations co-occurring in fruits of Pastinaca sativa, Berenbaum and
co-workers'!? observed a synergism between six different furanocournarins in their toxicity to
the insect Helicoverpa zea. This synergistic interaction was confirmed by subsequent studies
designed to test co-occurring natural concentrations of Pastinaca sativa furanocourmarins for
toxicity against the insect Papilio polyxenes. Rates of cytochrome P450-mediated metabolism
were significanfly reduced when equimolar concentrations of the linear furanocoumarins
xanthotoxin and bergapten and the angular furanocoumarin angelicin were combined.®
Conversely, using much higher artificial dietary concentrations of these chemicals based rather
on LC,, values, Diawara and colleagues® found that the combination of bergapten and
xanthotoxin produced an additive effect on Spodoptera exigua mortality, but combining
psoralen with either bergapten, xanthotoxin, or both resulted in significant antagonistic effects.

In mammals, the toxicity of furanocoumarins is primarily reduced through quick excretion
after ingestion® and metabolic breakdown into nonphototoxic compounds.'?! For instance, the
phototoxic 4,8-dimethylpsoralen is degraded into the nonphototoxic 4,8-dimethyl-5' carboxyp-
soralen in both humans and mice.'?! The skin photosensitizing property of furanocoumarins is
betieved to be due to psoralen ring system;3* therefore, the furanocoumarins lacking methyl
substituents also lack potency to photosensitize.® Ma and colleagues,' 16 racently observed that
the nature of substituents on the benzene ring determines the efficiency of metabolism of
furanocoumaring by larvae of Papilio polyxenes. Presence of nonmetabolizable angular fura-
nocoumarins alse proved to inhibit metabolism of linear furanocoumarins,’'® and this may
increase the latter’s toxicity.

Plant extracts have also been shown to detoxify linear furanocoumarins. Rizzi and
colleagues!'? reported in vitro antimutagenetic effect against xanthotoxin-induced photomu-
tagenesis to Salmonella typhimurium from unspecified compounds in extracts and chromato-
graphic fractions of the bark of the plant Uncaria tomentosa,
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12.6  OUTLOOK FOR LINEAR FURANOCOUMARIN
RESEARCH

The furanocoumarins will certainly continue to receive attention in skin therapy due to their
proven medicinal value. In addition to the use of furanocoumarins in the treatment of psoriasis,
xanthotoxin likely will continue to be a successful skin photochemotherapy agent for use
against several other skin disorders including T-cell lymphoma. Because psoralen derivatives
are used in 1) nucleic acid research, 2) in human immunodeficiency syndrome (AIDS) research
as possible treatments of this condition or its related complications {see Danheiser and Trova!®
and references therein) and 3) in cancer research, more studies can be expected in the near
future. In addition, new psoralen analogs'?*!1% and derivatives® %137 are being synthesized
and tested for potential use in skin phototherapy in an attempt t0 reduce the phototoxic side
effects associated with the use of psoralens. An increasing number of studies are reporting on
the repair of psoralen plus UV-induced DNA damage 12512

The concerns of potential human and animal health hazards associated with furanocou-
marins can be significantly reduced by continued research efforts to better understand the
mechanisms of their toxicity and localization of these compounds in specific plant parts and
structures. For instance, it has recently been observed that over 60% of the linear furanocou-
marins in celery occurs in leaves on cuter plant petioles.?! These highly localized concentrations
of furanocournarins are of considerable importance given a trend in marketing intact organ-
ically-grown celery (leaves not trimred) rather than the more common “topped” celery (outer
petioles and most leaves removed) marketed by most commescial producers.'% Consequently,
potential hazards to consumers could be greatly minimized by avoiding contact with these
plant parts. Finally, we expect more studies on photochemotherapy techniques, such as the
newly described method where xanthotoxin is administered in a “relaxing” bath, which may
be meore effective and have fewer side effects than standard ingestion therapy.'%

Currently, Httle is known about the biological activity of the immediate chemical precor-
sors of the furanocoumarins. Elucidation of the biological effects of the precursors seems
likely to provide insight into the evolution of these compounds. To date, much of the research
on toxicity of furanocoumarins has focused on testing of single compounds, particularly
8-methoxypsoralen (xanthotoxin). Continued efforts to study chemical combinations that
occur naturally in plants under natural conditions would also further our understanding of
their activity. Some of these studies will require investigation at the molecular level.
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