Chapter 6

Economic Inequality

6.1. Introduction

So far we have studied countries in their entirety. Economic growth is about changes in aggregate or average incomes. This is a good measure of a country’s development, but it is far from being the only one. In this chapter, we begin to study a theme that recurs throughout the book: the analysis of the distribution of income, or wealth, among different groups in society. Economic growth that spreads its benefits equitably among the population is always welcome; growth that is distributed unequally needs to be evaluated not simply on the basis of overall change, but on the grounds of equity.

There are two reasons to be interested in the inequality of income and wealth distribution. First, there are philosophical and ethical grounds for aversion to inequality per se. There is no reason why individuals should be treated differently in terms of their access to lifetime economic resources. It is, of course, possible to argue that people make choices—good and bad decisions—over the course of their lifetime for which only they are responsible. They are poor because “they had it coming to them.” In some cases this may indeed be true, but in most cases the unequal treatment begins from day one. Parental wealth and parental access to resources can start two children off on an unequal footing, and for this fact there is little ethical defense. To hold descendants responsible for the sins of their ancestors is perhaps excessive. At the same time, we run into a separate ethical dilemma. To counteract the unequal treatment of individuals from the first day of their lives, we must deprive parents of the right to bequeath their wealth to their children. There may be no way to resolve this dilemma at a philosophical level.

Nevertheless, we can work toward a society with tolerable levels of inequality in everyday life. This goal reduces the dilemma in the preceding paragraph, because it reduces the scope for drastically unequal levels of accumulation (though of course it cannot entirely eliminate the problem). We cannot speak of development without a serious consideration of the problem of inequality.

1 I make this statement assuming that there is no fundamental difference, such as the presence of a handicap or ailment, in the need for two people to have access to economic resources.
6.2. What is economic inequality?

6.2.1. The context

At the level of philosophy, the notion of inequality can dissolve into an endless sequence of semantic issues. Ultimately, economic inequality is the fundamental disparity that permits one individual certain material choices, while denying another individual those very same choices. From this basic starting point begins a tree with many branches. John and José might both earn the same amount of money, but John may be physically handicapped while José is not. John is richer than James, but John lives in a country that denies him many freedoms, such as the right to vote or travel freely. Sayamall earned more than Shiva did until they were both forty; thereafter Shiva did. These simple examples suggest the obvious: economic inequality is a slippery concept and is intimately linked to concepts such as lifetime, personal capabilities, and political freedom.1

Nevertheless, this is no reason to throw up our hands and say that no meaningful comparisons are possible. Definitions in personal income and wealth at any point of time, narrow though they may be in relation to the broader issues of freedom and capabilities, mean something. This statement is even more true when studying economic disparities within a country, because some of the broader issues can be regarded (at least approximately so) as affecting everyone in the same way. It is in this spirit that we study income and wealth inequality: not because they stand for all differences, but because they represent an important component of those differences.

1 On these and related matters, read the insightful discussion in Sen (1985).

6.2.2. Economic inequality: Preliminary observations

With the preceding qualifications in mind, let us turn to economic inequality: disparities in wealth or income. In this special case, some caveats need to be mentioned, even though we may not take them fully into account in what follows.

(1) Depending on the particular context, we may be interested in the distribution of current expenditure or income, the distribution of wealth (or asset stocks), or even the distribution of lifetime income. You can see right away that our preoccupation with these possibilities leads us progressively from short-term to long-term considerations. Current income tells us about inequality at any one point of time, but such inequalities may be relatively harmless, both from an ethical point of view and from the point of view of their effects on the economic system, provided the inequality is temporary. To make this point clearly, consider the following example. Imagine two societies. In one, there are two levels of income: $0 per month and $3,000 per month. In the second society there are also two levels of income, but they are more dispersed: $1,000 per month and $14,000 per month. Let us suppose that the first society is completely mobile: people enter their working life at one of the two levels of income but stay there forever. In the second society, people exchange jobs every month, switching between the low-paid job and the high-paid job. These societies are obviously unrealistic caricatures, but they suffice to make the point. The first society shows up as more equal if income is measured at any one point in time, yet in terms of average yearly income, everyone earns the same in the second society.

Thus our notions of cross-sectional inequality at any one point in time must be tempered by a consideration of mobility. Whether each job category is "sticky" or "fluid" has implications for the true distribution of income. Often we are unable to make these observations as carefully as we would like, because of the lack of data, but that does not mean that we should be unaware of them.

(2) It may also be of interest to know (and we will get into this later in the book) not only how much people earn, but how it is earned. This is the distinction between functional and personal income distribution. Functional distribution tells us about the returns to different factors of production, such as labor (of different skills), capital, equipment of various kinds, land, and so on. As you can imagine, this is only half the story. The next step is to describe how these different factors of production are owned by the individuals in society.

Figure 6.1 illustrates this process. Reading from left to right, the first set of arrows describes how income is generated from the production process. It is generated in varied forms: Production involves labor, for which wages
are paid. It involves the use of land or capital equipment, for which rents are paid. It generates profits, which are paid out as well. Production also involves payments for various nonlabor inputs of production. These other inputs are in turn produced, so that in the ultimate analysis, all incomes that are generated can be classified under payments to labor of different skills, rents, and profits. The distribution of income under these various categories is the functional distribution of income.

The second set of arrows tells us how different categories of income are funneled to households. The direction and magnitude of these flows depend on who owns which factors of production (and how much of these factors), households with only labor to offer (household 3 in the diagram, for instance) receive only wage income. In contrast, households that own shares in business, possess land to rent, and labor to supply (such as household 2) receive payments from all three sources. By combining the functional distribution of income with the distribution of factor ownership, we arrive at the personal distribution of income—a description of income flows to individuals or households, not factors of production.

You might well ask: why should we care about this two-step process? Isn’t a direct knowledge of the personal distribution good enough for our analysis? The answer is that it isn’t, and there are at least two good reasons for this. First, the understanding of income sources may well influence how we judge the outcome. Money that is received from charity or the welfare state may be viewed differently from the same amount received as income for work. Amartya Sen, in a closely related context, refers to this as the problem of "recognizability" or self-esteem (see Sen [1975]):

"Employment can be a factor in self-esteem and indeed in esteem by others. . . . If a person is forced by unemployment to take a job he thinks is not appropriate for him, or is not commensurate with his training, he may continue to feel unhappy and indeed may not even regard himself as employed."

Although there may not be much that we can do about this (so far as a theory of measurement goes), we should keep it in the back of our minds while we proceed to a final judgment about inequality.

Second, and possibly more important, functional distribution tells us much about the relationship between inequality and other features of development, such as growth. Our understanding of how economic inequalities are created in a society necessitates that we understand both how factors are paid and how factors are owned.

The preceding discussion lays down a road map for our study of inequality. We look at economic inequalities from two angles. In this chapter, we put all sources of income into a black box and concentrate on the evaluation of income (or wealth or lifetime income) distributions. This part of the story is normative. All of us might like to see (other things being the same) an egalitarian society, but "egalitarian" is only a word; what does it mean when we are confronted with several alternative income distributions, which we must evaluate? How do we rank or order these distributions? This part of the chapter discusses how we measure inequality, or equivalently, how we rank alternative distributions with respect to how much inequality they embody.

With measurement issues out of the way, we proceed in Chapter 7 to a study of the economics of income distributions: how inequality evolves in society, the effects that it has on other features of economic development, such as output, employment and growth rates, and how these other features feed back in turn on income and wealth distributions. This part of the story is positive. Whether or not we like the notion of egalitarianism per se, inequality affects other features of development.

6.3. Measuring economic inequality

6.3.1. Introduction

If there is a great deal of disparity in the incomes of people in a society, the signs of such economic inequality are often quite visible. We probably
Chapter 6: Economic Inequality

know a society is very unequal when we see it. If two people are supposed to share a cake and one person has all of it, that's unequal. If they split 50–50, that's equal. We can even evaluate intermediate divisions (such as 30–70 and 40–60) with a fair amount of precision.

All that goes away, however, once we have more than two individuals and we try to rank intermediate divisions of the cake. Is it obvious how to compare a 20–30–50 division among three people with a 22–22–56 division? In such cases, and in even more complicated ones as well, it might be useful to try and "measure" inequality. This means that we develop or examine inequality indices that permit the ranking of income or wealth distributions in two different situations (countries, regions, points of time, and so on).

The question naturally arises: what are the properties that a "desirable" inequality index should satisfy? It is difficult to have complete unanimity on the subject, and there is none. If, to avoid controversy, we lay down only very weak criteria, then many inequality indices can be suggested, each consistent with the criteria, but probably giving very different results when used in actual inequality comparisons. If, on the other hand, we impose stricter criteria, then we sharply reduce the number of admissible indices, but the criteria lose wide approval.

As we will see, this problem is endemic, which is all the more reason to have a clear idea of what criteria lie behind a particular measure. Remember that by "believing" what a measure of inequality reports, you are identifying your intuitive notions of inequality with that particular measure. If you are a policy maker or an advisor, this form of identification can be useful or dangerous, depending on how well you understand the underlying criteria of measurement.

6.3.2. Four criteria for inequality measurement

Suppose that society is composed of n individuals. We use the index i to stand for a generic individual, thus, i = 1, 2, ..., n. An income distribution is a description of how much income yi is received by each individual i: (y1, y2, ..., yn).

We are interested in comparing the relative "inequality" of two income distributions. To this end, we need to capture some of our intuitive notions about inequality in the form of applicable criteria.

(1) Anonymity principle. From an ethical point of view, it does not matter who is earning the income. A situation where Debraj earns x and Rajiv earns y should be viewed as identical (from the point of view of inequality) to one in which Debraj earns y and Rajiv earns x. Debraj may well be digested with this sort of change (if x happens to be larger than y), but it will be very difficult for him to persuade other people that the overall degree of inequality in his society has deteriorated because of this. Thus, permutations of incomes among people should not matter for inequality judgments: this is the principle of anonymity. Formally, this means that we can always arrange our income distribution so that

\[ y_1 \leq y_2 \leq \cdots \leq y_n \]

which is the equivalent of arranging individuals so that they are ranked from poorest to richest.

(2) Population principle. Cloning the entire population (and their incomes) should not alter inequality. More formally, if we compare an income distribution over n people and another population of 2n people with the same income pattern repeated twice, there should be no difference in inequality among the two income distributions. The population principle is a way of saying that population size does not matter; all that matters are the proportions of the population that earn different levels of income.

Criteria 1 and 2 permit us to view income distributions in a slightly different way. Typically, no data set is rich enough to tell us the incomes of every single individual in the country. Thus the data are often presented in the following way. There is a set of income classes, where each class typically is presented as a range of incomes; for example, "$180 per month or less," "$300–400," and so on.

Figure 6.2 illustrates this procedure using a hypothetical example. A popula-
tion of people earn an income somewhere between zero and $1,000 in this example. The raw data are shown in the left panel of the figure. (You will almost never see data expressed like this for an actual population.) The anonymity principle tells us that we can number people in order of increasing income and no useful information is lost. The population principle tells us that it does not matter how many people there are; we may normalize everything to percentages. The right-hand panel gives us a common way to put together this information. Income classes are on the horizontal axis and the percentage of the population that falls into each income class is on the vertical axis. Neither the names of people nor the actual numbers in each income class matter.

*Warning: Cloning only one segment of the population while keeping the remainder unaltered may well affect our notions of inequality. Suppose that there are two income classes, $100 and $200. The population principle says that all income distributions are equally unequal provided the same percentage of people earn $100. If the proportion of people earning the low income changes, then inequality will, in general, be affected.
Chapter 6: Economic Inequality

Figure 6.2. Income distribution arranged by income classes.

(3) Relative income principle. Just as population shares matter and the absolute values of the population itself do not, it is possible to argue that only relative incomes should matter and the absolute levels of these incomes should not. If one income distribution is obtained from another by scaling everybody’s income up or down by the same percentage, then inequality should be no different across the two distributions. For instance, an income distribution over two people of ($1,000, $2,000) has the same inequality as ($2,000, $4,000), and this continues to be true if dollars are replaced by cruzeiros or yen. This is the relative income principle: it is tantamount to the assertion that income levels, in and of themselves, have no meaning as far as inequality measurement is concerned. Currently, absolute incomes are important in our overall assessment of development, although the distinction between “absolute” and “relative” in the context of inequality measurement may not be that easy to draw.6

With the relative income principle in place, it is now possible to present data in a form that is even more stripped down. Both population and incomes can be expressed as shares of the total. The major advantage of this approach is that it enables us to compare income distributions for two countries that have different average income levels. Figure 6.3 shows how this is done with the very same hypothetical data that we used to generate Fig-

6 Is it so easy to buy the relative income principle as the population principle? Not really. What we are after, in some sense, is the inequality of “happiness” or utility, however that may be measured. As matters stand, one presumption that inequality can be quantities of all forms to make the assertion that the utilities of different individuals can be compared (via the analytical framework of interpersonal comparisons) is required to make greater the egalitarian judgments, see, for example, Sen (1970) and Stiglitz (1981). However, the relative income principle needs more than that. It asserts that utilities are proportional to incomes. This is a strong assumption. We make it nevertheless because Chapter 5 will partially make sense by studying the effects of absolute income shortfalls below some poverty line.

Figure 6.3. Income distribution by population and income shares.

6.3 Measuring Economic Inequality

The relation of the population to the income distribution is called the population distribution. It is a measure of the concentration of income in the population. The population distribution is a measure of the concentration of income in any particular income class. The population distribution is a measure of the concentration of income in any particular income class.
and assigns a value to it that can be thought of as the inequality of that distribution. A higher value of the measure signifies the presence of greater inequality. Thus an inequality index can be interpreted as a function of the form

\[ I = I(y_1, y_2, \ldots, y_n) \]

defined over all conceivable distributions of income \( y_1, y_2, \ldots, y_n \).

The requirement that the inequality measure satisfy the anonymity principle can be stated formally as follows: the function \( I \) is completely insensitive to all permutations of the income distribution \( y_1, y_2, \ldots, y_n \) among the individuals \( 1, 2, \ldots, n \). Similarly, the requirement of the population principle can be translated as saying that for every distribution \( y_1, y_2, \ldots, y_n \),

\[ I(y_1, y_2, \ldots, y_n) = I(y_1, y_2, \ldots, y_n) \]

so that closing all members of the population and incomes has no effect. Thus by taking the lowest common multiple of the populations of any combination of income distributions, we can always regard each distribution as effectively having the same population size. The relative income principle can be incorporated by requiring that for every positive number \( \lambda \),

\[ I(\lambda y_1, \lambda y_2, \ldots, \lambda y_n) = I(y_1, y_2, \ldots, y_n) \]

Finally, \( I \) satisfies the Dalton transfer principle if, for every income distribution \( y_1, y_2, \ldots, y_n \) and every transfer \( \delta > 0 \),

\[ I(y_1, \ldots, y_{i-1}, y_i + \delta, y_{i+1}, \ldots, y_n) < I(y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n-1}) \]

whenever \( y_i \leq y_j \).

6.3.3. The Lorenz curve

There is a useful way to see what the four criteria of the previous section give us. Picture often speak more than words, and in the context of inequality measurement, there is a nice diagrammatic way to depict the distribution of income in any society. The resulting graph is called the Lorenz curve, which is very often used in economic research and discussion; therefore, it is worthwhile to invest a little time in order to understand it.

Suppose \( y_1 \) is the income of a person in a population arranged in increasing order of income. Figure 6.4 shows a typical Lorenz curve. On the horizontal axis, we depict the cumulative percentages of the population arranged in increasing order of income. The resulting graph is the Lorenz curve. Figure 6.4 shows a typical Lorenz curve. On the horizontal axis, we depict the cumulative percentages of the population arranged in increasing order of income. The resulting graph is the Lorenz curve.

Figure 6.4: The Lorenz curve of an income distribution

the poorest half of the population, and so on. On the vertical axis, we measure the percentage of national income accruing to any particular fraction of the population thus arranged. The point \( A \), for example, corresponds to a value of 20% on the population axis and 10% on the income axis. The interpretation of this is that the poorest 20% of the population earns only 20% of the total income. Point \( B \), on the other hand, corresponds to 80% on the population axis and 70% on the income axis. This point, therefore, contains the information that the "poorest" 80% enjoy 70% of the national income. An equivalent way to describe this is from "above": the richest 20% have 30% of the gross income for themselves. The graph that connects all these points is called the Lorenz curve.

Notice that the Lorenz curve begins and ends on the 45° line; the poorest 0% earn 0% of national income by definition and the poorest 100% is just the whole population, and so must earn 100% of the income. How would the Lorenz curve look like if everybody had the same income? Well, it would then coincide everywhere with the 45° line, that is, with the diagonal of the box. The poorest 10% (however selected) would then have exactly 10% of national income, whereas the richest 10% would also have the same 10%. In other words, any cumulative fraction of the population would share exactly that fraction of national wealth. Because the 45° line expresses the relationship \( y = x \), it is our Lorenz curve in this case. With increasing inequality, the
Lorenz curve starts to fall below the diagonal in a loop that is always bowed out to the right of the diagram; it cannot curve the other way. The slope of the curve at any point is simply the contribution of the person at that point to the cumulative share of national income. Because we have ordered individuals from poorest to richest, this "marginal contribution" cannot ever fall. This is the same as saying that the Lorenz curve can never get steeper as we move from left to right.

Thus in Figure 6.4, the "overall distance" between the 45° line and the Lorenz curve is indicative of the amount of inequality present in the society that it represents. The greater the extent of inequality, the further the Lorenz curve will be from the 45° line. Hence, even without writing down any formula for the measurement of inequality, we can obtain an intuitive idea of how much inequality there is by simply studying the Lorenz curve.

Some of the conceptual problems encountered in the measurement of inequality can also be brought out with the aid of this diagram. In Figure 6.5, the Lorenz curves of two different income distributions, marked L(1) and L(2), are represented. Because the second curve L(2) lies entirely below the first one, it is natural to expect a good index to indicate greater inequality in the second case. Let's try to understand why this is so. The fact that L(1) lies above L(2) has the following easy interpretation: if we choose a poorest x% of the population (it does not matter what x you have in mind), then L(1) always has this poorest x% earning at least as much as they do under L(2). Thus regardless of which precise value of x you pick, the curve L(1) is always "biased" toward the poorest x% of the population, relative to L(2). It stands to reason that L(1) should be judged more equal than L(2).

This criterion for inequality comparisons is known as the Lorenz criterion. It says that if the Lorenz curve of a distribution lies at every point to the right of the Lorenz curve of some other distribution, the former should be judged to be more unequal than the latter. Just as we required an inequality measure to be consistent with the criteria of the previous section, we require it to be consistent with this particular criterion. Thus an inequality measure \( f \) is Lorenz-consistent if, for every pair of income distributions \( (y_1, y_2, \ldots, y_n) \) and \( (z_1, z_2, \ldots, z_n) \),

\[
\{(y_1, y_2, \ldots, y_n) \geq f((z_1, z_2, \ldots, z_n))
\]

whenever the Lorenz curve of \( (y_1, y_2, \ldots, y_n) \) lies everywhere to the right of \( (z_1, z_2, \ldots, z_n) \).

This is all very nice, but now confusion starts to set in. We just spent an entire section discussing four reasonable criteria for inequality comparisons and now we have introduced a fifth! Are these all independent restrictions that we have to observe? Fortunately, there is a neat connection between the four criteria of the previous section and the Lorenz criterion that we just introduced: an inequality measure is consistent with the Lorenz criterion if and only if it is simultaneously consistent with the anonymity, population, relative income, and Dalton principles.

This observation is very useful. First, it shuts down our apparent expansion of criteria by stating that the earlier four are together exactly equivalent to the Lorenz criterion. Second, and more important, it captures our four criteria in one clean picture that gives us exactly their joint content. In this way we can summarize our verbal ethical criteria in simple graphical form.

The preceding observation is so central to our understanding of inequality that it is worth taking a minute to see why it is true. First, observe that the Lorenz curve automatically incorporates the principles of anonymity, population, and relative income, because the curve drops all information on income or population magnitudes and retains only information about income and population shares. What we need to understand is how the Dalton principle fits in. To see this, carry out a thought experiment. Pick any income distribution and transfer some resources from people, say, from thefortieth population percentile, to people around the eightieth population percentile. This is a regressive transfer, and the Dalton principle says that inequality goes up as a result.

Figure 6.6 tells us what happens to the Lorenz curve. The thicker curve marks the original Lorenz curve and the thinner curve shows us the Lorenz

* For a useful discussion of the history of this result, see the survey by Foster [1905].
curve after the transfer of resources. What about the new curve? Well, nothing was disturbed until we get close to the forty-fifth percentile, and then, because resources were transferred away, the share of this percentile falls. The new Lorenz curve therefore dips below and to the right of the old Lorenz curve at this point. What is more, it stays below for a while. Look at a point around the sixtieth population percentile. The income shares here are reduced as well, even though the incomes of people around this point were not tampered with. The reason for the reduction is that Lorenz curves plot cumulative population shares on the horizontal axis and their cumulative income share on the vertical axis. Because people from the forty-fifth percentile were "taxed" for the benefit of the eightieth percentile, the new share at the sixtieth percentile population mark (and indeed, at all percentiles between forty and eighty) must also be lower than the older share. This state of affairs persists until the eightieth percentile comes along, at which point the overall effect of the transfer vanishes. At this stage the cumulative shares return to exactly the level at which they were before. In other words, the Lorenz curves again coincide after this point. In summary, the new Lorenz curve is bowed to the right of the old (at least over an interval), which means that the Lorenz criterion remains the Dalton principle; that is, they agree.

The converse comparison is true as well: if two Lorenz curves are comparable according to the Lorenz criterion, as in the case of L(1) and L(2) in Figure 6.5, then it must be possible to construct a set of disqualifying transfers leading from L(1) to L(2). We leave the details to an exercise at the end of this chapter.

6.3 Measuring Economic Inequality

At this point, it looks like we are all set. We have a set of criteria that has a clear diagrammatic reformulation. It appears we can compare Lorenz curves using these criteria, so there is apparently no more need to make a fuss about inequality measurement. Unfortunately, matters are a bit more complicated. Two Lorenz curves can cross.

Figure 6.7 illustrates a Lorenz crossing. There are two income distributions that are represented by the Lorenz curves L(1) and L(2) in the diagram. Observe that neither Lorenz curve is uniformly to the right of the other. For two income distributions that relate to each other in this fashion, the Lorenz criterion does not apply. By the equivalence result discussed previously, it follows that our four principles cannot apply either, but what does it mean for these criteria "not to apply"? It means that we cannot go from one distribution to the other by a sequence of Dalton regressive transfers. Put another way, there must be both "progressive" and "regressive" transfers in going from one distribution to the other. The following example illustrates this point.

Example. Suppose that society consists of four individuals who earn incomes of 75, 125, 200, and 600. Now consider a second income distribution, given by (25, 175, 400, 400). Compare the two. We can "travel" from the first distribution to the second in the following manner. First transfer 50 from the first person to the second: this is a regressive transfer. Next transfer 200 from the fourth person to the third: this is a progressive transfer. We have arrived at
the second distribution. Of course, these transfers are just a "construction" and not something that need have occurred (e.g., the two distributions may be for two different four-person societies). Try another construction. Transfer 50 from the first person to the third: This is regressive. Transfer now 150 from the fourth to the third: this is progressive. Finally, transfer 50 from the fourth to the second: this is progressive as well. Again, we arrive at the second distribution.

Hence, there are many imaginary ways to travel from the first to the second distribution, but the point is that they all necessarily involve at least one regressive and at least one progressive transfer. (Try it.) In other words, the four principles of the previous section are just not enough to permit a comparison. In this case we have to consider how we judge the economy's the "cost" of the regressive transfer(s) against the "benefit" of the progressive transfer(s). These trade-offs are almost impossible to quantify in a way so that everybody will agree.

What about the Lorenz curves in the example? Sure enough, they mirror the complications of the comparison. The poorest 25% of the population earn 7.5% of the income in the first distribution and only 2.5% of the income in the second. The opposite comparison holds when we get to the poorest 75% of the population, who enjoy only 40% of the total income under the first distribution, but 60% of the income under the second distribution.

Now go back and look at Figure 6.7 once again. You can see that (1) and (2) are precisely the Lorenz curves for the two distributions in this example.

Despite these ambiguities, Lorenz curves provide a clear, visual image of the overall distribution of income in a country. Figure 6.8 provides several examples of Lorenz curves for different countries. By looking at these figures, you can get a sense of income inequalities in different parts of the world, and with a little mental superimposition of any two diagrams you can compare inequalities across two countries.

6.3.4. Complete measures of inequality

Lorenz curves provide a pictorial representation of the degree of inequality in a society. There are two problems with such a representation. First, policy makers and researchers are often interested in summarizing inegal-

---

A note: Shorrocks and Foster [1989] argued for a fifth principle, which they call transfer sensitivity. Their principle, which compares progressive transfers at the lower end of the income distribution with regressive transfers at the upper end, is often referred to as the "fat electron cloud" test. The idea behind it is that if a policy is sensitive to transfers, then it is also sensitive to transfers at the lower end.

Figure 6.8. Lorenz curves for different countries. Source: Deininger-Squire data base. See Deininger and Squire (1996a).

---

by a number, something that is more concrete and quantifiable than a picture. Second, when Lorenz curves exist, they cannot provide useful in-

equality rankings. Thus an inequality measure that splits out a number for every conceivable income distribution can be thought of as a complete rank-

ing of income distributions. As we will see, this completeness does not come
free of charge; it means that in some situations, inequality measures tend to disagree with one another.

We now survey some commonly used inequality measures.\footnote{See Sen [1997] for a discussion of these and other measures, and for a comprehensive overall treatment of the subject of economic inequality.} We use the following notation. There are $n$ distinct incomes, and in each income class $j$, the number of individuals earning that income is denoted by $n_j$. Thus the total number of people $n = \sum n_j$, where the symbol $\sum_{j=1}^{n}$ henceforth denotes the sum over the income classes $j$ through $n$. The mean $\mu$ of any income distribution is simply average income, or total income divided by the total number of people. Thus

$$\mu = \frac{1}{n} \sum_{j=1}^{n} n_j \bar{x}_j$$

The following (complete) measures of inequality are often used.

$(1)$ The range. This value is given by the difference in the incomes of the richest and the poorest individuals, divided by the mean to express it independently of the units in which income is measured. Thus the range $R$ is given by

$$R = \frac{1}{\mu} (x_n - x_1).$$

Quite obviously, this is a rather crude measure. It pays no attention, whatever, to people between the richest and the poorest on the income scale. In particular, it fails to satisfy the Dalton principle, because, for example, a small transfer from the second poorest to the second most rich individual will keep the measure unchanged. However, the range is often used as a crude, though useful, measure when detailed information on income distribution is missing.

$(2)$ The Kuznets ratio. Simon Kuznets introduced these ratios in his pioneering study of income distributions in developed and developing countries. These ratios refer to the share of income owned by the poorest 20% or 40% of the population, or by the richest 10%, or more commonly to the ratio of the shares of income of the richest 1% to the poorest 5%, where $x$ and $y$ stand for numbers such as 10, 20, or 40. The ratios are essentially "pieces" of the Lorenz curve and, like the range, serve as a useful shorthand in situations where detailed income distribution data are missing.

$(3)$ The mean absolute deviation. This is our first measure that takes advantage of the entire income distribution. The idea is simple: inequality is proportional to distance from the mean income. Therefore, simply take all income distances from the average income, add them up, and divide by total income to express the average deviation as a fraction of total income. This means that the mean absolute deviation $M$ is defined as

$$M = \frac{1}{\mu n} \sum_{j=1}^{n} n_j |x_j - \mu|$$

where the notation $| \cdot |$ stands for the absolute value (neglecting negative signs). Although $M$ looks promising as a measure of inequality that takes into account the overall income distribution, it has one serious drawback: it is often insensitive to the Dalton principle. Suppose that there are two people with incomes $x_1$ and $x_2$, such that $x_1$ is below the mean income of the population and $x_2$ is above the mean income of the population. Then a regressive income transfer from $x_1$ to $x_2$ certainly raises inequality as measured by $M$. This is obvious from the formula, because the distance of both $x_1$ and $x_2$ goes up and no other distance is altered, so $M$ unambiguously rises. However, the Dalton principle is meant to apply to all regressive transfers, not just those
from incomes below the mean to incomes above the mean. For example, take any two incomes \( y_i \) and \( y_j \) that are both above the mean, and make a transfer from the lower of the two, say \( y_i \), to the other (higher) one. Clearly, if the transfer is small enough so that both incomes stay above the mean, after the transfer, there will be no difference in the sum of the absolute difference from mean income. The mean absolute deviation will register no change in such a case, and so fails the Dalton principle. We must conclude that using as it does the entire income distribution, the mean absolute deviation has no compensatory features as a quick estimate and is therefore a bad measure of inequality.

(4) The coefficient of variation. One way to avoid the insensitivity of the mean absolute deviation is by giving more weight to larger deviations from the mean. A familiar statistical measure that does just this is the standard deviation (see Appendix 2), which squares all deviations from the mean. Because the square of a number rises more than proportionately to the number itself, this is effectively the same as attaching greater weight to larger deviations from the mean. The coefficient of variation (C) is just the standard deviation divided by the mean, so that only relative incomes matter. Thus

\[
C = \frac{1}{\bar{y}} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}
\]

(6.3)

The measure C, it turns out, has satisfactory properties. It satisfies all four principles and so is Lorenz-consistent. In particular, it always satisfies the Dalton transfer principle. Consider a transfer from \( j \) to \( k \), where \( y_j < y_k \). This implies a transfer from a smaller number \( i.e., (y_j - \bar{y}) \) to a larger one \( i.e., (y_k - \bar{y}) \), which increases the square of the larger number by more than it decreases the square of the smaller number. The net effect is that \( C \) invariably registers an increase when such a regressive transfer is made. You should check by trying out various examples that this is always the case.

(5) The Gini coefficient. We now come to a measure that is widely used in empirical work: the Gini coefficient. The Gini approach starts from a base that is fundamentally different from measures such as \( M \) and \( C \). Instead of taking deviations from the mean income, it takes the difference between all pairs of incomes and simply totals the (absolute) differences. It is as if in equality is the sum of all pairwise comparisons of "two-person inequalities" that can conceivably be made. The Gini coefficient is normalized by dividing by population squared (because all pairs are added and there are \( n^2 \) such pairs) as well as mean income. In symbols, the Gini coefficient \( G \) is given by

\[
G = \frac{1}{2n^2\bar{y}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} n_i y_i |y_i - y_j|
\]

(6.4)

The double summation sign signifies that we first sum over all \( j \), holding each \( j \) constant, and then sum over all the \( n_i \). This is like summing all pairs of income differences (weighted by the number of such pairs, \( n_i \)). Notice that because each \( |y_i - y_j| \) is counted twice (again as \( |y_i - y_j| \)), the whole expression is finally divided by 2 as well as by the population and income normalizers.

The Gini coefficient has pleasing properties. It satisfies all four principles and is therefore Lorenz-consistent, just like the coefficient of variation. Figure 6.9 shows us why the Gini coefficient is consistent with the Lorenz criterion. In this figure, we arrange everybody's incomes from lowest to highest. Now take two incomes, say \( y_i \) and \( y_j \), with \( y_i < y_j \) and transfer some small amount \( \delta \) from \( y_i \) to \( y_j \). Figure 6.9 shows us how these two incomes change. Now let us see how the Gini coefficient has altered as a result of this regressive transfer. All we have to do is see the change in those pairs in which \( j \) or \( k \) figure. Consider incomes to the left of \( y_i \). Because \( y_i \) has come down, the difference between these incomes and \( y_j \) has narrowed by \( \delta \). This narrowing is exactly counterbalanced by the fact \( y_j \) has gone up by the same amount, so the distance between \( y_j \) and incomes to the left of \( y_j \) has gone up by an equal amount. The same argument holds for incomes to the right of \( y_j \), the distance between \( y_j \) and \( y_j \) narrows, but the distance to \( y_j \) goes up by the same amount, so all these effects cancel. This leaves us with incomes between \( y_i \) and \( y_j \). However, the pairwise distance between these incomes and both \( y_i \) and \( y_j \) has gone up. So the distance between \( y_i \) and \( y_j \) narrows. Thus the overall effect is an increase in the Gini coefficient. This shows why the Gini coefficient is Lorenz-consistent.

There is another interesting property of the Gini coefficient that ties it very closely indeed to the Lorenz curve. Recall that the more "bowed out" the Lorenz curve, the higher is our intuitive perception of inequality. It turns out that the Gini coefficient is precisely the ratio of the area between the Lorenz curve and the 45\(^\circ\) line of perfect equality, to the area of the triangle below the 45\(^\circ\) line.

We have thus surveyed five indexes. Of these, the first two are very crude but nevertheless useful indicators of inequality when detailed data are unavailable. The third should not be used. Finally, both the coefficient

\(^{*}\) We take it as understood to preserve the ranking of individuals in ascending order of income. The argument for larger values of \( \delta \) follows by breaking up the transfer into smaller pieces and applying the logic to the next.
of variation (C) and the Gini coefficient (G) appear to be perfectly satis-
factory indexes, given our four principles (or what is equivalent, Lorenz
consistency),12 but this gives rise to a puzzle. If both C and G are satis-
factory in this sense, why use both measures? Why not just one?

This brings us back full circle to Lorenz crossings. We have just seen that
both C and G are Lorenz-consistent. This means that when Lorenz curves
are to be compared, both C and G give us exactly the same ranking, because
they both agree with the Lorenz criterion. The problem arises when two
Lorenz curves cross. In that case, it is possible for the Gini coefficient and
the coefficient of variation to give contradictory rankings. This is nothing
but a reflection of the fact that our intuitive sense of inequality is essentially
incomplete. In such situations, we should probably not rely entirely on one
particular measure of inequality, but rely on a whole set of measures. It may
be a good idea to study the two Lorenz curves as well.

As a hypothetical example, consider two societies, each consisting of only
three persons. Let the distribution of income in the two societies be (3, 12, 12)
and (4, 9, 14), respectively. You can easily check that for the first of our
hypothetical societies, the coefficient of variation is 0.27, whereas it is 0.26 for
the second. Using C as an index, therefore, we reach the conclusion that
the first society is more unequal than the second. However, if we calculate the
Gini coefficient, the values come out to be 0.22 and 0.25, respectively. On
the basis of the latter measure, therefore, inequality seems to be higher in the
second society compared to the first.13

To be sure, this isn’t just a hypothetical possibility. Such contradictory
movements of inequality indexes occur in real life as well. Consider, for
instance, the study by Weiskoff [1970] on inequality variations in Puerto
Rico, Argentina, and Mexico during the 1950s. Table 6.1, put together from
Weiskoff’s study by Fields [1980], illustrates the ambiguities that arise.

The table is remarkable in its varied movements of inequality measures.
In each of the three countries, there is some ambiguity. In Puerto Rico, for in-
stance, both the poorest 40% and the richest 5% of the population lost income

12Of course, other measures are in use as well. There is the use of log variance as an inequality
measure, which is in the strictest sense of the derivation of lognormal. Although it is easy
to compare and has the log variance sufficiently disagree with the Deheuvels principle in some
cases. Another measure, introduced to inequality evaluation by Irene Theil and known as the Theil
index, is derived from entropy theory. Although it looks bizarre at first, it turns out to be the only
measure that satisfies the four principles and a conventional decomposability principle that permits us
to separate overall inequality into between and within-group components (Foster 1982). This
makes the Theil index uniquely useful in situations where we want to decompose inequality into
various categories, for example, inequality within and across ethnic, religious, caste, occupational,
or geographical lines.

13Warning: There is no connection between a value of say, 0.25 achieved by the Gini coefficient
compared to the same months achieved by C. That’s like comparing apples and oranges. All this
example is doing is contrasting different trends in the movements of these indexes as the distribution
of income changes.
distribution among its members, then this fact will be captured in every rea-
sponsible inequality index, and we will not have to quibble over technicalities. 
It pays, however, to be aware of the difficulties of measurement. 
In the economics instead of plain measure-
ment. Our goal will be to relate inequality to other features of the develop-
ment process.

6.4. Summary
In this chapter, we studied the measurement of inequality in the distribution 
of wealth or incomes. We argued that there are two reasons to be interested 
in inequality: the intrinsic, in which we value equality for its own sake and 
therefore regard inequality as an objective in itself, and the func-
tional, in which we study inequality to understand its impact on other features 
of the development process.

As a prelude to the study of measurement, we recognized that there were 
several conceptual issues. For instance, inequality in incomes may be com-
patible with overall equality simply because a society might display a high 
degree of mobility: movement of people from one income class to another. We 
also paid attention to the functional distribution of income as opposed to the 
personal distribution of income: how income is earned may have just as much 
social value as how much is earned.

With these caveats in mind, we then introduced four criteria for inequal-
ity measurement: (1) the anonymity principle (names do not matter), (2) the 
population principle (population size does not matter as long as the compo-
sition of different income classes stay the same in percentile terms), (3) the 
relative income principle (only relative incomes matter for the measurement 
of inequality, and not the absolute amounts involved), and (4) the Dalton trans-
fer principle (if a transfer of income is made from a relatively poor to a rela-
tively rich person, then inequality, however measured, regresses an increase).

It turns out that these four principles create a ranking of income distribution 
identical to that implied by the Lorenz curve, which displays how cumulat-
ively shares of income are earned by cumulatively increasing fractions of the 
population, arranged from poorest to richest.

However, the ranking is not complete. Sometimes two Lorenz curves cross. In such situations the four principles are not enough to make an 
unequivocal judgment about inequality. We argued that in this sense, our 
notions of inequality are fundamentally incomplete, but that forcing an ad-
ditional degree of completeness by introducing more axioms may not neces-
sarily be a good idea.

Complete measures of inequality do exist. These are measures that assign 
a degree of inequality (a number) to every conceivable income distribution, 
so they generate complete rankings. We studied examples of such measures 

that are popularly used in the literature: the range, the Quetelet ratio, the mass 
absolute denotation, the coefficient of variation, and the Gini coefficient. Of these 
measures, the last two are of special interest in that they agree fully with our 
four principles (and so agree with the Lorenz ranking). That is, whenever 
the Lorenz ranking states that inequality has gone up, these two measures 
do not disagree. However, it is possible for these measures (and others) to 
agree when Lorenz curves do cross: we provided a numerical example 
of this, as well as real-life instances drawing on studies of Latin American 
inequality.

Thus the theory of inequality measurement serves a double role. It tells us 
the ethical principles that are widely accepted and that we can use to 
rank different distributions of income or wealth, but it also warns us that 
such principles are incomplete, so we should not treat the behavior of any 
one complete measure at face value. We may not have direct information 
regarding the underlying Lorenz curves, but it is a good idea to look at the 
behavior of more than one measure before making a provisional judgment 
about the direction of change in inequality (if any such judgment can be 
made at all).

Exercises

1. (1) Connect and contrast the following concepts: (a) inequality of current 
income versus inequality of lifetime income, (b) functional versus personal 
income distribution, (c) efficiency versus equity, (d) inequality of income ver-
sus inequality of opportunities, and (e) wage inequality versus income in-
equality. In each case, make sure you understand each of the concepts and 
how they are related to each other.

2. (2) The economy of ShortLife has two kinds of jobs, which are the only 
source of income for the people. One kind of job pays $200; the other pays 
$100. Individuals in this economy live for two years. In each year, only half 
the population can manage to get the high-paying job. The other half has to 
be content with the low-paying one. At the end of each year, everybody is 
fired from existing positions, and those people assigned to the high-paying 
job next year are chosen randomly. This means that at any date, each person, 
irrespective of past earnings, has probability 1/2 of being selected for the 
high-paying job.

(a) Calculate the Gini coefficient based on people's incomes in any one par-
ticular period and show that it suggests a good deal of inequality. Now 
calculate each person's average per period lifetime income and compute the 
Gini coefficient based on these incomes. Does the latter measure suggest more 
or less inequality? Explain why.
which entire economies function. Some of these functional implications were
tied up in our discussion of inequality, but there are others that are specific
to poverty itself. This chapter is divided into four parts. First, we discuss the concepts of poverty, and—something that’s obviously related—how to go about meas-
uring it. Next, we apply some of these measures to obtain a sense of the
extent of poverty. In addition to these quantitative esti-
mates, we also describe the attributes of poverty, characteristics that are widely
shared by poor people. Thirdly, we ask what do we do? How can we alleviate these chal-
 lenges and help to identify the poor, but it may also serve as a focal point
for policies that are geared toward ending poverty. Third, we analyze the
fundamental causes of poverty. At all stages this issue ties up with mater-
ial in other chapters of this text, and we will point to this material to avoid repetition. Finally, we discuss policies for poverty alleviation.

8.2. Poverty: First principles

8.2.1. Conceptual issues

At the heart of all discussions on poverty is the notion of a poverty line: a
critical threshold of income, consumption, or, more generally, access to goods
and services below which individuals are declared to be poor. The poverty
line, then, represents a minimum level of “acceptable” economic participa-
tion in a given society at a given point in time. For instance, we could collect
data on minimum nutrient levels that make up an adequate diet, on the
prices of foodstuffs that contain such nutrients, and on the costs of shelter
and clothing, and then add up the consumption expenditures needed to ob-
tain these basic requirements to obtain an estimate of the poverty line for a
particular society. We could use the prevailing legally decreed minimum wage
in a country as an estimate for the poverty line of that country. Alter-
natively, we could fix some other norm, say, 60% of the mean income of a
country, to arrive at an estimate of its poverty line.

Nutrition-based poverty lines are not uncommon. The poverty line used in
the United States is based on Chomsky’s [1963, 1962] estimates, which
scale by three a minimum-budget estimate for food requirements (the scal-
ing proxies for other requirements such as rent and clothing). Indian poverty
lines have traditionally been drawn by using estimates of expenditure nec-
essary to guarantee a minimum consumption of calories. Of course, such
poverty lines (and probably all poverty lines) should be approached with
some caution and scepticism: the poorer the country, the better the nutrition-
based approximation. Issues of scaling become more problematic as the av-
ge average standard of living rises.

The following subsections explain some of the fundamental concerns that
surround poverty measurement.

8.2. Poverty First Principles

Overall expenditure or item-by-item consumption?

Should we declare a person to be poor when her actual, observed consump-
tion hader falls below certain prespecified thresholds or when her expenditure
(or overall income) falls below the minimum required to obtain these con-
sumption standards? Certainly, we could conjure up examples where the
two approaches yield different results; for instance, what are we to make of
the wealthy ascetic who starves himself on an ongoing basis? At a more se-
rious level, nutrition levels may not unambiguously rise with income.3 For
instance, canned foods may become quite popular at certain levels of income,
even though their nutritive value is questionable. Thus, even through elastic-
ties may be high with respect to changes in income, nutrient elasticities may
not be correspondingly high. Income represents the capacity to consume, not
consumption itself. Nevertheless, income- or (aggregate) expenditure-based
poverty lines are far easier to use, given the scarcity of available data.

Absolute or relative?

Clearly, there is something absolute about the notion of poverty. Regardless
of the society we live in, people need adequate levels of food, clothing, and
shelter. Whereas it is certainly the case that there are variations in what might
be considered “adequate” (shelter, in particular, might be subject to varying
society-specific interpretations), nobody would deny the biological imperative
of nutrition, for instance, or the near-universal norms of adequate clothing.
At the same time, it is unclear that the phrase “acceptable levels of participation
in society” can be given absolute meaning, independent of the contours of the
society under consideration. In some societies, the ownership of a television
may be deemed socially necessary for living a “full” life; in others it is not.
Likewise, minimal standards of literacy, access to scientific education, owner-
ship of private means of transportation, and so on, are all concerns that must
be evaluated relative to the prevailing socioeconomic standards. These consid-
erations quite naturally give rise to the need for poverty lines that share certain
common components, but vary (perhaps widely) from country to country.
Note carefully that although poverty lines should (and do) incorporate relative
notions of what constitutes “necessity” or “basic needs,” we must still think of them as fulfilling some absolute notion of the ability to function
in a society. The previous paragraph chooses our examples carefully to make
this point.4 For instance, it would be foolish to define poverty by, say, the
percentage of the population earning less than half the average income of
society. Such a measure confines poverty with inequality. For instance, the

3 On this, see, for example, Behrman and Deolalikar [1987] and the box on nutrition and income
in South India later in this chapter.
4 For a detailed discussion of these issues see Sen [1981].
measure would remain completely unchanged if all incomes were scaled down by the same proportion, plunging half the population into famine.

Temporary or chronic?
As we will see, people who live in (or close to) a state of poverty, however that state is measured, often experience significant fluctuations in their income and consumption. This is especially true for the poor or near-poor in developing countries, where a large fraction of the population may depend on a quixotic, weather-dependent agriculture. Expressed as fractions of their average expected incomes, these fluctuations are large. As Morduch [1994] pointed out, notions of "structural" or chronic poverty must therefore be complemented by a study of "temporary poverty." The latter occurs when, because of bad economic shocks (such as poor rainfall or low prices for one's production), individuals temporarily enter a poverty sample. The distinction is not just for the sake of a distinction: the policies required to combat temporary poverty may be very different.

The temporary versus chronic distinction is closely related to Friedman's [1957] distinction between temporary and permanent income. In come in a given year may be far from capturing the smoothed or "permanent" stream of consumption that an individual household enjoys over the long run. For this reason, household or individual expenditures are often thought of as a more reliable way to assess chronic poverty.

Households or individuals?
Often household-level data on expenditure and income are all that is available. It is tempting, then, to simply express household consumption as individual averages (so that household size can be accounted for), and then apply one's favorite measure of poverty. However, this neglects an exceedingly important issue: the allocation of expenditures within the household is often seriously skewed. Among the potential victims are females and the elderly. There is some evidence that such discrimination grows sharper with the overall level of destitution of the household. Macroeconomists of poverty should therefore be complemented by "microstudies" that study intrahousehold allocation. We will study some examples in the subsequent text.

Neglecting altogether the problems of distribution, a second set of concerns arises from the idea that poverty households typically have more children. Some correction for the presence of children is desirable, because they consume somewhat less than adults. The construction of adult equivalence scales—conversion factors that express the consumption of children as a fraction of a representative adult—would get around this problem. Finally, there are fixed costs in setting up and running a household. Smaller households cannot spread these fixed costs over several household members. They are therefore at a disadvantage. We return to this and related issues later.

Why a poverty line, anyway?
It is possible to argue that a fixed notion of the poverty line is untenable. In part this is because of some issues raised earlier; for example, the relativity of poverty or its fluctuating nature. Even if we stick to chronic, nutrition-based measures of poverty, we still are unable to find some magic level of nutrition below which people abruptly go up in little puffs of smoke (or which case there would probably be no poverty to speak of, anyway). As we shall see later in this chapter, undernutrition is not the same as immediate and obvious disaster, and therefore it is more insidious. The world can indefinitely carry a stock of undernourished people, living and breathing under impaired circumstances. Although more will be said presently on such issues, it is important to realize that poverty lines are always approximations to a threshold that is truly fuzzy: more because the effects of sustained deprivation are often felt at a later point in time. There is really little to be done about this criticism except to realize that quantitative estimates of poverty lines are not to be memorized all the way down to the third decimal place and that they are basically (important) pointers to a deeper and less quantifiable concept.

8.2. Poverty Measured

With the preceding qualifications in mind, then, we will consider a poverty line to be an expenditure threshold that is regarded as minimally necessary for "adequate" participation in economic life. People below this threshold will be said to be poor.

A little notation will be useful. As in Chapter 6, y denotes income (or expenditure) and subscripts i, j, k, will be used to denote individuals. Let's denote by p the poverty line and by m the mean income of the economy.

One natural measure that comes to mind is simply to count the number of people below the poverty line. We might be interested in the numbers per se or in the relative incidence of the poor. In the latter case, divide by the total population. The measure would remain completely unchanged if all incomes were scaled down by the same proportion, plunging half the population into famine.

Temporary or chronic?
As we will see, people who live in (or close to) a state of poverty, however that state is measured, often experience significant fluctuations in their income and consumption. This is especially true for the poor or near-poor in developing countries, where a large fraction of the population may depend on a quixotic, weather-dependent agriculture. Expressed as fractions of their average expected incomes, these fluctuations are large. As Morduch [1994] pointed out, notions of "structural" or chronic poverty must therefore be complemented by a study of "temporary poverty." The latter occurs when, because of bad economic shocks (such as poor rainfall or low prices for one's production), individuals temporarily enter a poverty sample. The distinction is not just for the sake of a distinction: the policies required to combat temporary poverty may be very different.

The temporary versus chronic distinction is closely related to Friedman's [1957] distinction between temporary and permanent income. Income in a given year may be far from capturing the smoothed or "permanent" stream of consumption that an individual household enjoys over the long run. For this reason, household or individual expenditures are often thought of as a more reliable way to assess chronic poverty.

Households or individuals?
Often household-level data on expenditure and income are all that is available. It is tempting, then, to simply express household consumption as individual averages (so that household size can be accounted for), and then apply one's favorite measure of poverty. However, this neglects an exceedingly important issue: the allocation of expenditures within the household is often seriously skewed. Among the potential victims are females and the elderly. There is some evidence that such discrimination grows sharper with the overall level of destitution of the household. Macroeconomists of poverty should therefore be complemented by "microstudies" that study intrahousehold allocation. We will study some examples in the subsequent text.

Neglecting altogether the problems of distribution, a second set of concerns arises from the idea that poverty households typically have more children. Some correction for the presence of children is desirable, because they consume somewhat less than adults. The construction of adult equivalence scales—conversion factors that express the consumption of children as a fraction of a representative adult—would get around this problem. Finally, there are fixed costs in setting up and running a household. Smaller households cannot spread these fixed costs over several household members. They are therefore at a disadvantage. We return to this and related issues later.

Why a poverty line, anyway?
It is possible to argue that a fixed notion of the poverty line is untenable. In part this is because of some issues raised earlier; for example, the relativity of poverty or its fluctuating nature. Even if we stick to chronic, nutrition-based measures of poverty, we still are unable to find some magic level of nutrition below which people abruptly go up in little puffs of smoke (or which case there would probably be no poverty to speak of, anyway). As we shall see later in this chapter, undernutrition is not the same as immediate and obvious disaster, and therefore it is more insidious. The world can indefinitely carry a stock of undernourished people, living and breathing under impaired circumstances. Although more will be said presently on such issues, it is important to realize that poverty lines are always approximations to a threshold that is truly fuzzy: more because the effects of sustained deprivation are often felt at a later point in time. There is really little to be done about this criticism except to realize that quantitative estimates of poverty lines are not to be memorized all the way down to the third decimal place and that they are basically (important) pointers to a deeper and less quantifiable concept.

8.2. Poverty Measured

With the preceding qualifications in mind, then, we will consider a poverty line to be an expenditure threshold that is regarded as minimally necessary for "adequate" participation in economic life. People below this threshold will be said to be poor.

A little notation will be useful. As in Chapter 6, y denotes income (or expenditure) and subscripts i, j, k, will be used to denote individuals. Let's denote by p the poverty line and by m the mean income of the economy.

One natural measure that comes to mind is simply to count the number of people below the poverty line. We might be interested in the numbers per se or in the relative incidence of the poor. In the latter case, divide by the total population.
population of the country or region under consideration. The first measure is known as the head count, and the latter as the head-count ratio, which is just head count as a fraction of population. In part because they don’t place great emphasis on inequality, these measures are widely used. In our notation, the head-count ratio (HCR) is just

\[
HCR = \frac{HC}{N},
\]

where \(N\) is the total population.

An obvious problem with the head-count ratio is that it fails to capture the extent to which individual income (or expenditure) falls below the poverty line. This is related, of course, to observation 5 (Why a poverty line, anyway?) in the previous section that poverty is not a “zero-one” concept. People further below the poverty line are “poorer” than people closer to it, and the head count is insensitive to this observation. However, matters are worse than plain insensitivity: use of the head count can lead to problematic policy decisions, as the following example suggests.

Example 1: You are a planner in Ping, a poor land, where the poverty line is set at 1000 pah a year. It turns out that in Ping there are two equal-sized groups below the poverty line. One group consists of 100 individuals; they have equal earnings of 500 pah a year each. The second group also has 100 people; they earn 900 pah a year each. Of course, there are also people who are above the poverty line. You have been allocated a budget of 20,000 pah a year. You must allocate this budget among the 200 poor people.

(i) Suppose you were to forget about the poverty line. Who would you give the money to?

(ii) Now suppose that you are firmly told by the president of Ping to use this money to minimize, as far as possible, the head count. Who would you give the money to?

The point of the example is very simple. The use of the head count as a measure of poverty systematically biases policy in favor of individuals who are very close to the poverty line. Statistically, these people offer the biggest bang for the buck, because they are most easily taken above the poverty line. Yet of all the poor, they are relatively in the least need of help. A benevolent government that is perfectly secure and without fear of losing the next elections may ignore the problem and act in the best interests of the people, but most governments, like most people, are more interested in maximizing the observable and seemingly objective measures of their success.
of people that are below the poverty line. In a sense, PGR and IGR only capture the "per capita intensity" of poverty. The head count (or HCR), whatever its other failings, does not suffer from this problem. For this reason, it is a good idea to use measures of each type jointly, where possible, to evaluate the extent of poverty.

Finally, we note that both the head count and the poverty gap class of measures share an additional drawback relating to the fact that both these measures ignore the important issue of relative deprivation among the poor. Relative deprivation is just another phrase for inequality among the poor. The new phrase is used to capture the fact that we are concerned only with the inequality among the deprived, or poor. The main concern is captured by the following example.

Example 2: Return to Example 1, where, as you will recall, there are 200 people below the poverty line; half of them have an income of 500 paq and the rest have an income of 900 paq.

(i) Suppose that each person who earns 500 paq gave 50 paq to each person who earns 900 paq. The new income levels are then 450 and 950 paq. What do you think would happen to the intensity of poverty in this new situation relative to the old? Now compute the HCR and PGR (or IGR) in both situations and compare them with what you feel intuitively.

(ii) To make the point even more starkly, transfer 110 paq each (instead of 50 paq) between the same groups and redo the exercise.

Even if we were to take the head count and the gap-ratio measures together, there are other aspects of poverty that may be left out. This observation leads to more sophisticated measures of poverty that have been proposed by economists such as Sen [1976] and Foster, Greer, and Thorbecke [1984]. With better data, these more demanding measures can be easily applied. The Appendix to this chapter contains a discussion of the Foster-Greer-Thorbecke index.

8.3. Poverty: Empirical observations

We now turn to the data to get a sense of the extent of poverty and the characteristics of the poor. We begin with a universal poverty line to facilitate cross-country comparison. Be aware that this is a tricky business. We already discussed the fact that poverty has relative as well as absolute components. The choice of some "universal" poverty line creates overly high "real poverty" in some countries and too little poverty in others. To partly circumvent this problem, the World Development Report (World Bank [1990]).

For a more detailed treatment of this issue, see Sen [1981].

Table 8.1. Poverty in developing countries, 1985 and 1990, using "universal" poverty lines.

<table>
<thead>
<tr>
<th>Region</th>
<th>1985</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HCR</td>
<td>HCR</td>
</tr>
<tr>
<td></td>
<td>(millions)</td>
<td>(%)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>120</td>
<td>19</td>
</tr>
<tr>
<td>East Asia</td>
<td>120</td>
<td>19</td>
</tr>
<tr>
<td>South Asia</td>
<td>300</td>
<td>29</td>
</tr>
<tr>
<td>Latin America</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>&amp; Caribbean</td>
<td>600</td>
<td>60</td>
</tr>
<tr>
<td>All LDCs</td>
<td>633</td>
<td>48</td>
</tr>
</tbody>
</table>

Note: Poverty lines are at 1985 PPPs. The 1992 report updates and changes head-count information for 1985 and provides 1990 data. The PCRs for 1985 are unchanged from the 1990 report.

which represents a landmark study on poverty in developing countries, experimented with a choice of two poverty lines: $275 and $370 per person per year, expressed in 1985 PPP prices. The range was chosen to reflect that fact that the poverty lines of some of the poorest nations fall between these two limits. Table 8.1 puts together poverty data from two World Development Reports. Keeping in mind that these poverty lines were chosen quite conservatively, the results are staggering, to say the least. In 1990, well over one billion individuals were estimated to earn less than $370 per year (or $420 per year at 1990 PPP prices). The time trend does not look very hopeful either. Except for East Asia, which experienced very high rates of growth, the absolute numbers of the poor rose significantly between 1985 and 1990. The overall percentage of people in poverty (at the $370 line) was roughly constant over this period at 30% of the population of all developing countries.

Even if we were to use the extra-conservative poverty line of $275 per person per year, we would see that in 1985, over 600 million people were poor even by these unexpected standards. The overall figures for poverty would be significantly higher were we to use country-specific poverty lines. We now turn to the characteristics of the poor.

8.3.1. Demographic features

It is not surprising that those households whose members fall below the poverty line also tend to be large relative to the average family. For

* These are Bangladesh, Egypt, India, Indonesia, Kenya, Morocco, and Tanzania. The lower limit, $275, coincides with a poverty line used for India.

For a more detailed treatment of this issue, see Sen [1981].
Chapter 8: Poverty and Underdevelopment

Brazil, Fishlow (1972) reported that 29% of all families had a size of six or more individuals, and over half of such families fell below the poverty line. Similarly, for Malaysia, Anand [1977] noted that the incidence of poverty with family size ranging from 24% in a household of one to six people, rising to 40% in households with ten or more people. The World Development Report (1990) observed that in Pakistan in 1984, the poorest 10% of households had an average of 7.7 members; the corresponding national average was 6.1.

Not surprisingly, these larger, poor families often have a high ratio of dependent members, often children. In all the examples cited, the number of children per family was significantly correlated with their poverty. This is of great concern, because it suggests that the burden of poverty often falls disproportionately on the young. Given the immensely important role that childhood nutrition and education play, this is a double tragedy that even head counts and poverty gap ratios cannot fully capture.

Clearly family size may be both a cause of poverty as well as an effect. Larger families, especially those with larger numbers of children, are likely to have lower per capita income simply because of the higher dependency ratio. To be sure, some of this dependency is eroded by institutions such as child labor; but children are not paid much. More significantly, poverty can actually feed on itself by creating the incentive to have a large number of children. Why this might be the case is a topic for Chapter 9. Suffice it to say that we speak of a correlation here, but as always, we cannot establish causality without more careful study.

There are two reasons, however, to doubt the high degree of observed correlation between household size and poverty. First, there is the problem of using per capita expenditure (or income) of the household as the relevant indicator, as most studies do. Larger households have a greater fraction of children, as we've already noted, and so the extent to which children consume less than adults, the use of per capita expenditure overstates the amount of poverty. Second, some allowance should be made for the fact that large households enjoy significant economies of scale. Once again, per capita measures generally overstate the extent of their poverty.

Correcting for these factors in a way that is conceptually satisfactory is not an easy task, but some allowance for adult equivalence is better than none. For example, one can argue that the welfare of 0.5 for children (although with variation here is also desirable, depending on age and sex). This weight will certainly lower the estimates of poverty for large households. Correcting for the fixed costs of setting up and running a household—has its own share of conceptual problems as well. One way of doing this is to try different parametric values for returns to scale and see

Property: Empirical Observations

Anand and Melland (1980) used the Bangladesh Household Expenditure Survey, 1979-80, to study the relation between household expenditure and the number of children. They used the number of children as the independent variable in their regression. The results of this study are presented in Table 8.2. The table shows that the number of children has a significant positive effect on household expenditure. The coefficient of the number of children is 0.24, which indicates that a one-child family would spend 24% more than a one-child family. This suggests that the number of children is a significant determinant of household expenditure. However, it is also important to note that the number of children is only one of many factors that determine household expenditure. Other factors, such as household income, education, and location, also play a role. Additionally, the coefficient of the number of children is only 0.24, which indicates that the effect of the number of children on household expenditure is relatively small compared to other factors. Therefore, it is important to consider the effects of other factors when analyzing household expenditure.
### Table 8.2. Rural and urban poverty in the 1980s

<table>
<thead>
<tr>
<th>Region and country</th>
<th>Rural population (% of total population)</th>
<th>Rural poor (% of total poor)</th>
<th>Infant mortality (per 1000 live births)</th>
<th>Acute diarrhea (% of population)</th>
<th>Urban</th>
<th>Rural</th>
<th>Landless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Saharan Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>57</td>
<td>86</td>
<td>121</td>
<td>70</td>
<td>10</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Senegal</td>
<td>65</td>
<td>80</td>
<td>87</td>
<td>67</td>
<td>39</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Kenya</td>
<td>80</td>
<td>96</td>
<td>59</td>
<td>57</td>
<td>21</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>77</td>
<td>79</td>
<td>105</td>
<td>57</td>
<td>50</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>73</td>
<td>79</td>
<td>74</td>
<td>57</td>
<td>36</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>62</td>
<td>80</td>
<td>80</td>
<td>67</td>
<td>76</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>60</td>
<td>67</td>
<td>55</td>
<td>42</td>
<td>54</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>70</td>
<td>80</td>
<td>43</td>
<td>28</td>
<td>66</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guatemala</td>
<td>59</td>
<td>66</td>
<td>85</td>
<td>65</td>
<td>26</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>51</td>
<td>37</td>
<td>79</td>
<td>29</td>
<td>51</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>Panama</td>
<td>50</td>
<td>59</td>
<td>28</td>
<td>22</td>
<td>63</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Peru</td>
<td>44</td>
<td>52</td>
<td>101</td>
<td>54</td>
<td>17</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>15</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>


Kenya, and Nigeria are small farmers or pastoralists (World Development Report, World Bank [1990]). Apart from southern Africa, where the rural poor hire out their labor, the poor are largely self-employed. In contrast, in South Asia, landless labor is more widely represented among the poor. India, Pakistan, and Bangladesh all display a mix of poverty that is borne as much by landless labor as by small holders. Note, however, that after a point, the distinction between small landowners and landless laborers is blurred or meaningless as they are talking about pitifully low quantities of land in any case.

Nevertheless, it is true that there is a significant difference in poverty once we move from negligible or near-negligible holdings of land to more moderate holdings. Table 8.3 illustrates this difference.

### Table 8.3. Poverty and landholding in rural Bangladesh, 1978-79

<table>
<thead>
<tr>
<th>Acute of land owned</th>
<th>% of total households</th>
<th>Income (taka per month)</th>
<th>Mean landholdings (acres)</th>
<th>JCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landless</td>
<td>7.1</td>
<td>508</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>0-0.5</td>
<td>36.1</td>
<td>540</td>
<td>81</td>
<td>93</td>
</tr>
<tr>
<td>0.5-1.0</td>
<td>10.5</td>
<td>711</td>
<td>67</td>
<td>84</td>
</tr>
<tr>
<td>1.0-1.5</td>
<td>8.9</td>
<td>783</td>
<td>12</td>
<td>78</td>
</tr>
<tr>
<td>1.5-2.5</td>
<td>12.1</td>
<td>912</td>
<td>2.0</td>
<td>68</td>
</tr>
<tr>
<td>2.5-3.0</td>
<td>13.8</td>
<td>1,163</td>
<td>3.3</td>
<td>45</td>
</tr>
<tr>
<td>3.0-5.0</td>
<td>5.7</td>
<td>1,216</td>
<td>10.0</td>
<td>33</td>
</tr>
<tr>
<td>5.0-7.5</td>
<td>5.8</td>
<td>2,135</td>
<td>14.0</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>845</td>
<td>2.1</td>
<td>70</td>
</tr>
</tbody>
</table>


Urban poverty shows the same mix of self-employment and wage labor. Most of the poor reside in the "informal sector," which we will study in more detail in Chapter 10. Self-employment is common: as vendors, petty traders, tea-stall owners, beggars, shoe-shine boys, garbage settlers, load carriers, and laborers in the roadbuilding industry. Wage employment is often on a casual basis and not subject to minimum wage laws. Because of the chronic lack of assets, the vulnerability of the poor, quite apart from the low average levels of living, can be frightening. Side by side with the scarcity of physical assets are the low levels of human capital. The most important determinant of the access to human capital is the ability to temporarily remove oneself from the labor force and use this period to acquire skills. This removal must be covered financially, through other loans or the support of close family and relatives. This kind of financial cover is the last thing one can associate with the poor and, consequently, it is far from surprising that the majority of poor have little or no human capital. Illiteracy rates are very high indeed, and among those who are not illiterate, there is little evidence of schooling beyond primary levels.

8.3.4. Nutrition

There is an intimate connection between poverty and undernutrition, especially in low-income countries. With low income, it is difficult for individuals to acquire adequate levels of food and nutrition consumption for themselves and their families. "Anarchy," as we shall see, in a loaded word, because the notion depends fundamentally on the kinds of activities in which an individual is engaged, as well as the nutritional history of that person. Nevertheless, it is not difficult to see the effects of undernutrition. In children...