Ovipositional Response, Developmental Effects and Toxicity of Hexavalent Chromium to *Megaselia scalaris*, a Terrestrial Detritivore

John T. Trumble, Peter D. Jensen

Department of Entomology, University of California, Riverside, California 92521, USA

Received: 29 January 2003/accepted: 1 July 2003

Abstract. The effects of hexavalent chromium (Cr VI) on ovipositional response, development, and survival of a common terrestrial detritivore, *Megaselia scalaris* (Diptera: Phoridae), were assessed in the laboratory. Ovipositing females did not discriminate between substrates containing 0, 50, 300, or 1000 µg/g, indicating a lack of avoidance behavior. Eggs placed on artificial diets containing up to 1000 µg/g either did not absorb Cr VI or were unaffected as measured by evisceration rates. However, development and survival of larvae were significantly reduced at the highest concentrations tested. Concentrations of 500 µg/g in their food increased larval development times by nearly 65%. At 1000 µg/g, larval developmental times doubled. The time required from onset to completion of pupariation was not significantly different regardless of Cr VI concentration. Although males emerged before females, there was no significant difference between the sexes in the time required for adult eclosion. In addition, there were no significant differences in the percentage of males and females emerging from any of the treatments. At concentrations of 500 or 1000 µg/g, Cr VI decreased larval survival. Survival was reduced by 44.3% at 500 µg/g as compared with the controls. There was no additional mortality from the onset of the pupal stage to adult eclosion for larvae fed diets containing 500 µg/g Cr VI. At 1000 µg/g Cr VI, larval survival decreased by 86.6%. An additional 7.4% mortality was recorded in the pupal stage for a decrease in total survival (adult plus pupal stage) of 94%. Thus, nearly all of the observed mortality occurred during the larval stage rather than the pupal stage. The population level implications of lack of avoidance of contaminated food and the effects of increased developmental times and reduced survivorship are discussed.

Water and soil contamination with chromium is a significant worldwide problem (World Bank 2002; http://www.worldbank.org/hpp/lopfm.htm). Contamination is associated with a variety of industrial processes, including chrome plating baths, chrome colors and dyes, cement manufacturing, leather tanning agents, wood preservatives, anticorrosive agents, welding fumes, fabricating oils and greases, many cleaning materials, and textile production (Kimbrooth et al. 1999; Kotes and Stasicka 2000). Chromium occurs in several oxidation states with the two major oxidation states, trivalent chromium (Cr III) and hexavalent chromium (Cr VI), behaving very differently in the environment. Chromium III, which is important nutritionally for animals, can form insoluble precipitates and behaves as a hard Lewis acid (Wang et al. 1997). Cr VI is highly soluble in water and toxic to both plants and animals (Zhang and Li 1987; Smith et al. 1989; Elhassan and Al-Hamood 1997). Public concern is related mainly to Cr VI, since it has been found dissolved in drinking water and toxicity is associated with the oxidation of inorganic compounds (Costa 1997).

Hexavalent chromium is known to accumulate in plants. Concentrations in an aquatic plant *Nelumbo nucifera* reached 2,040 µg/g dry weight (d.w.) in leaves and 3,170 µg/g d.w. in the roots (Vajpayee et al. 1999). Chromium levels (specific form not reported) in seeds of *Eruca strigos* (an edible aquatic plant) exceeded 650 µg/g, bioaccumulating from sediment levels of approximately 120 µg/g (Rai et al. 2002). Even short exposures allowed substantial accumulations in plants. Alligator weed, *Alternanthera philoxeroides*, exposed to 10 mg/kg Cr VI for 3 weeks accumulated 214 mg/kg fresh weight (f.w.) in the roots (Naficy and Ritzo 2000). The concentration in earthworms exceeded 500 mg/kg Cr VI in all exposed to 1 mg/L Cr VI (Zayed et al. 1998). Lactuca roots also accumulate Cr VI (Pejnenburg et al. 2000), but transfer of Cr VI from roots to leaves in several vegetable species appears limited (Zayed et al. 1998; Pejnenburg et al. 2000). In other studies, some plants such as mussels concentrated Cr from water even when the plant was no longer living (Gottschal and Fischer 1997). Thus, there is ample evidence for availability of Cr-contaminated plant material in many ecosystems.

Most studies on Cr toxicity have been conducted on aquatic organisms such as brine shrimp (Hodgkiss et al. 2001), *Daphnia* species (Ruggero and Ayala 1993), crabs (*Portunus pelagicus*, Al-Mohammed and Subramaniam 2001), and crayfish (*Procambarus clarkii*, Bollinger et al. 1997). We found few studies that examined the effects of Cr VI on insects, and these investigations focused on an aquatic species. Leslie et al. (1999) studied caddisflies (*Hydropsyche pellucidula*, Trichoptera) exposed to chromium contamination (including
Effects of Chromium on Megastigmus scalaris

both Cr VI and Cr III) of 922 ± 102 mg/L. They found that the anal papillae of immatures were damaged when exposed to high concentrations of chromium. The anal papillae are the main respiratory organ and respiratory organs responsible for taking up ions from the water. Exposure of the insect's body fluids with respect to the surrounding aquatic environment. Papillae damage is typically accompanied by reduced fitness of affected individuals (Viorel 1994). Leslie et al. (1999) also found evidence of bioaccumulation of Cr and physical abnormalities in many surviving cadisflies larvae. Thus, information on the effects of Cr VI on insects is quite limited, and data on terrestrial insect herbivores and detritivores appear to be entirely lacking. For this reason, we investigated the effects of Cr VI on a terrestrial insect in an artificial diet to eliminate potentially confounding effects of plant defensive chemicals, pollutant mixtures, and variable nutrition. We hypothesized that despite the variation in routes of exposure between arthropods in terrestrial and aquatic systems, ingestion of Cr VI by a terrestrial arthropod would also have detrimental effects.

Materials and Methods

Megastigmus scalaris

(Linnaeus) (Diptera: Phoridae), a small yellowish-brown phorid of nearly cosmopolitan distribution, was selected as a test organism. This type has been found throughout North America and in Asia, Africa, and Europe (Miller 1964; Robinson 1977). The larvae colonize Shortly after emerging as adults and as pupae, as well (Maren 1964). Eggs are laid directly on the food, and larvae are capable of limited movement within the host material. Larvae of this species have been reported developing on a wide variety of host materials (including dead mollusks and preys) and a broad spectrum of decomposing plant material (Tinimbala and Piaskowski 1979). Thus, this species functions as a detritivore and is likely to feed on decaying organisms (plants or animals) contaminated with many different pollutants, including Cr VI. After completion of the larval stage, the larval puparium (essentially the larval integument) at 27°C larval development averages about 7 days, and the pupal stage averages approximately 10 days; development is not affected by short (LD: 12:12) or long day photoperiods (LD: 16:8) (Tinimbala and Piaskowski 1979).

A laboratory colony was established in 2001 from adult flies found feeding on an alfalfa-based diet (Mandeville et al. 1988) used for another insect species. The flies were reared at a constant 26°C with a photoperiod of 16:8 L:D. For all tests, age of each fly was synchronized by allowing groups of 25 adult females from the colony to oviposit on Fischer's Drosophila diet (Fischer Scientific, Pittsburgh, PA, USA) in Petri dishes for 2 h.

Hexavalent chromium was dissolved in HPLC grade water and used to make Drosophila diet (Fischer Scientific, Chicago, IL) containing 0 (control) to 1000 μg Cr VI. These levels are within the range found occurring in plants at contaminated sites (Vajpey et al. 1995). The diet provided excellent contrast with the white eggs, white larvae, and yellow-brown puparia, greatly facilitating counts. To achieve the desired concentrations of Cr VI, A.C.S. certified chromium trioxide (Fisher Scientific) was slowly diluted and then used to hydrate the diet. All bioassays were maintained at 28 ± 2°C, 75% RH, and a 14:10 (L:D) photoperiod with fluorescent lighting. Tests were conducted for ovipositional preference, effects on egg hatch, development rate, and survival.

Oviposition Studies

To measure the potential for ovipositional preference or avoidance of contaminated food, were prepared diets using 0 (control), 50, 200, and 1000 μg of Cr VI. Dies initially were dispensed into the bases of Petri dishes to a depth of 1.2 cm. A 0.5 ml dropper was then used to cut cylinders of diet (1.2 cm depth × 1.2 cm diameter) from diets with each Cr VI concentration. These cylinders provided uniform sizes and quantities of diet for oviposition. The diet cylinders were arranged in groups of four in larger Petri dishes (1.2 cm depth × 5.0 cm diameter), with pairs of controls alternating with pairs of cylinders containing a single concentration. Each cylinder was separated by approximately 4 cm from all other cylinders. Approximately 10 pairs of flies were placed into each dish and allowed to oviposit for 1.5 days. Each concentration was replaced (10 times, requiring ca. 600 adult flies) for the test. At the end of the oviposition period, the number of eggs on each of treatment and control cylinders were recorded for each diet by using a microscope. All eggs were laid in direct contact with a diet cylinder. None of these eggs were used in any other studies. Oviposition preference was analyzed using the Wilcoxon signed rank non-parametric procedure for paired comparisons (Stat View 2001; Tallman et al. 1997; Vickermain et al. 2002).

Because of a known potential for insect eggs to absorb liquid from the surface of the diet (Chapman 1977) and thereby possibly acquire Cr VI, an additional analysis was conducted to determine whether numbers of non-hatching eggs differed with Cr VI concentration. In order to get comparable replicates of eggs from a general source of diet, an oviposition substrate was placed in the colony and adults were allowed to oviposit for 2 h. These eggs were then serially transferred to the surface of Drosophila diets containing concentrations of 0, 0.05, 0.5, 5.0, 20.0, and 100.0 μg Cr VI. The numbers of eggs collected after 12 h were assessed for eight replicates of 20 eggs per concentration. These rates were compared against the controls by one way ANOVA (P = 0.05) (Stat View 2001).

Development and Survival Studies

Hexavalent chromium-contaminated Drosophila diet was prepared as described earlier in concentrations of 0, 0.05, 0.5, 5.0, 20.0, and 100.0 μg Cr VI. These diets were dispensed into one side of 75 ml clear plastic, divided Petri dishes. The larva either move to the surface or left the diet to pupariate (Tinimbala and Piaskowski 1979), and the dead-on side provided a preferred site for pupariation in our test. Each Petri dish received 20 eggs. Additionally, potential confounding effects of slowed egression or egg mortality were eliminated by removing any eggs that had not hatched within 12 h (mean ± 100). Eight replicate Petri dishes containing 20 eggs each were tested for each concentration, for a total of 960 eggs. The dishes were examined daily, and dead and numbers of puparii were recorded. The date of adult emergence and sex of emerging adults were also recorded daily for each dish for 27 days, at which time all individuals had completed development in the adult stage or had died. Dishes remained acceptable for the length of the experiment and were not changed. Surviving larvae were never observed to feed on dead larvae. This procedure allowed documentation of the larval development period, the duration of puparial development, and the total larval and puparial developmental time. All development and survival data were analyzed by one-way ANOVA (ANOVA, P = 0.05 level) (Stat View 2001).
Results

Oviposition Preference Study

Female Megodra scalaris did not show any preference or avoidance of food contaminated with Cr VI at concentrations up to 1000 µg/g (P values all ≥ 0.14, overall mean = 54% on control). No significant differences in oviposition rate were detected for eggs oviposited on control diets as compared with any of the concentrations tested (mean range 15.9–18.9; P > 0.15; ANOVA). Thus, either the eggs did not absorb appreciable concentrations of Cr VI or the Cr VI did not have measurable effects on this life stage. Regardless, eggs laid on Cr VI-contaminated food could be expected to eclose in normal numbers, at least up to concentrations of 1000 µg/g.

Development and Survival Studies

Larval development times increased significantly at the highest concentrations of Cr VI (Fig. 1). Concentrations of 500 µg/g in their food increased larval development times by nearly 65%. At 1000 µg/g, larval developmental times doubled. Development to the adult stage was similarly affected (Table 1). Concentrations at 500 µg/g and above significantly increased the time required to reach adult eclosion for both males and females. However, this could be attributed to effects occurring in the larval stage because time spent in the puparial stage was not significantly different between treatment concentrations (Table 1). There was no significant difference between the sexes in the time required for adult eclosion (P > 0.32; ANOVA). In addition, there were no significant differences in the percentage of females emerging from any of the treatments (overall mean = 50.2%; P > 0.05; ANOVA).

At concentrations of 500 or 1000 µg/g, Cr VI decreased both larval survival and survival to the adult stage (Fig. 2). Larval survival was reduced by 44.3% at 500 µg/g as compared with the controls. There was no additional mortality from the onset of the puparial stage to adult eclosion. At 1000 µg/g, larval survival decreased by 86.6%. An additional 6.4% mortality was recorded in the puparial stage, for a decrease in total survival (larval plus puparial stages) of 94%. Thus, nearly all of the observed mortality occurred during the larval stage rather than the puparial stage.

Discussion

Because M. scalaris larvae are not capable of substantial movement, immatures are essentially restricted to the food selection made by the adult females at the time of oviposition. Thus, the lack of avoidance behavior by adults will result in exposure of offspring to Cr VI in contaminated sites. Because of a long-standing focus on toxicological effects of pollutants, only one other study is available on behavioral effects of chromium on insects. LeFort et al. (2000) determined that four oxidophilic species from four different genera did not lose antipredatory defensive behaviors when exposed to a mixture of Cr III and Cr VI. Nonetheless, our study suggests that additional emphasis should be placed on behavioral responses of insects to generate a more complete description of the effects of chromium and other metals on ecosystem ecology.

Relatively few studies are available on effects of toxicants on population growth factors. Stark and Banks (2003) reported that 95% of the literature they reviewed used mortality and median lethal dose/concentration as a toxicological endpoint. The importance of Cr VI on developmental times underscores this point. The observed increases in development time at the higher concentrations would decrease the intrinsic rate of population increase and expose the remaining larvae to additional mortality from environmental factors or predators. Such increases in time for development would likely impact population fitness in many natural systems because the availability of food sources for the larvae are often temporary (Tromble and Pienkowski 1979), and extending larval developmental times could exceed the suitability of the food supply. Measurement of potential effects on adults was beyond the scope of this
paper. However, any Cr VI-induced changes in fecundity, adult longevity, or altered predation patterns would likely affect population fitness.

We chose to work with the egg, larval, and pupal stages of *M. scalaris* to measure effects of Cr VI across the entire immature lifespan. Studies of acute toxicity are undeniably useful, but can be misleading. For example, Cazneaux et al. (2001) tested the toxicity of Cr VI to larvae of two aquatic insect species (*Hyalesthes sp.* and *Hydropsychidae sp.*), three aquatic crustaceans (*Gammarus sp.*, *Niphargus sp.*, and *Austropotamobius sp.*), and a snail (*Physa sp.*). LC₅₀ values were determined over 96- and 240-h periods; toxicity increased with longer exposure times. However, the increased toxicity was not equivalent across species. The relative toxicity at 240 h as compared with 96 h increased two-fold for snails, while chromium toxicity to various insect and crustacean species ranged from 6- to 20-fold. While the differences between dermal exposure to a contaminant (as seen for aquatic invertebrates) versus oral exposure to a contaminant (as occurs with terrestrial herbivores or detritivores) preclude direct comparisons of LC₅₀ values for Cr toxicity, the general pattern of more accurate estimates of population-level effects with longer exposures is evident. In our study, concentrations of Cr VI as low as 500 μg/L caused significant reductions in survival. However, nearly all the mortality occurred in the larval stage as opposed to the pupal stage, and no sex-linked effects were documented, so future investigations with Cr VI and *M. scalaris* could reliably focus on just the larval stage as a reasonable measure of potential adverse effects.

Little is known regarding the effects of various forms of chromium on insects. While data are important because: 1) the valence states of metals and metalloids have been shown to have very different impacts on insects (Trumble et al. 1998; Vickerman and Trumble 1999) and 2) insects occupy broad niche dimensions in nearly every terrestrial and freshwater ecosystem and are, therefore, responsible for a significant amount of energy transfer from primary producers to carnivores (Price et al. 1974). Although the present study examined the effects of Cr VI on an insect in an artificial diet in order to eliminate confounding effects of plant defensive chemicals, pollutant mixtures, and variable nutrition, future investigations that incorporate these variables will be required before accurate predictions can be made regarding the effects of Cr VI on ecosystem function.

Acknowledgments
We appreciate the identification of *M. scalaris* by B. Brown, Natural History Museum of Los Angeles County. The laboratory assistance of L. Johnson and M. Atas is also appreciated. We thank W. Corey, G. Kundi, and D. Liu for their critical reviews of this manuscript. The UC Toxic Substances Research and Teaching Program, EPA grant 83084101, and UCR Dean’s Office Fellowship provided initial support for this project.

References

Al-Mohanna SY, Subramaniam MVN (2001) Fate of heavy metal accumulation in various organs of the intertidal marine blue crab, *Portunus pelagicus* (L.) from the Kuwait coast after the Gulf War. *Environ Int* 27:321-326

Kungolo A, Aposiman SA (1993) Interaction effect of food effect and bioaccumulation of cadmium and chromium for the system *Gephyra elegans - Chironella aperta* *Pandoros Toxicol Water Qual* 8:351-369

Leslie HA, Peschall T, Vario A, Keram MHS (1996) Tissue evaluation of the impact of chromium contamination on hatchling microcrainers