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An Overview of Semiparametric
Extensions of Finite Mixture Models
Sijia Xiang, Weixin Yao and Guangren Yang

Abstract. Finite mixture models have offered a very important tool for
exploring complex data structures in many scientific areas, such as eco-
nomics, epidemiology and finance. Semiparametric mixture models, which
were introduced into traditional finite mixture models in the past decade,
have brought forth exciting developments in their methodologies, theories,
and applications. In this article, we not only provide a selective overview of
the newly-developed semiparametric mixture models, but also discuss their
estimation methodologies, theoretical properties if applicable, and some open
questions. Recent developments are also discussed.
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1. WHY SEMIPARAMETRIC MIXTURE MODELS?

Parametric mixture models are popularly used since
they are easy to interpret, quick to estimate and have
well-studied theoretical properties. However, as any
other parametric statistical inference, parametric mix-
ture models are based on strong model assumptions,
such as linearity and normality. Some of the assump-
tions are unrealistic in practice. In addition, model mis-
specification could be disastrous in parametric mixture
models and might lead to misleading results and infer-
ences. Please refer to Pommeret and Vandekerkhove
(2018) for the advantage of a semiparametric method
in testing a parametric assumption on the unknown
component of the two-component mixture model with
one known component.

As a result, many semiparametric mixture models
are proposed to relax assumptions of fully parametric
mixture models. Bordes, Mottelet and Vandekerkhove
(2006), Bordes, Chauveau and Vandekerkhove (2007)
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and Hunter, Wang and Hettmansperger (2007), among
others, studied a two-component mixture of locations
model where the component density is only assumed
to be symmetric. Chang and Walther (2007) studied
a mixture of log-concave distributions for clustering.
This model includes most standard parametric fami-
lies, but suffers from non-identifiability. In addition,
a two-component mixture of locations model with a
known component has been extensively studied during
the past decade by Bordes, Delmas and Vandekerkhove
(2006), Bordes and Vandekerkhove (2010), Patra and
Sen (2016), Hohmann and Holzmann (2013), Xiang,
Yao and Wu (2014), Ma and Yao (2015), Huang et al.
(2018b), and so on.

In addition, many semiparametric finite mixtures of
regressions (FMR) models were proposed in the last
decade. By allowing the mixing proportions to be de-
pendent on a covariate, Young and Hunter (2010) and
Huang and Yao (2012) studied semiparametric mix-
ture of regressions models with varying proportions.
Huang, Li and Wang (2013) and Xiang and Yao (2018)
relaxed the parametric assumptions on the mean func-
tions and/or variances to accommodate for complicated
data structures. However, due to the application of ker-
nel regression in the estimation procedure, the mod-
els were not suitable for data with high-dimensional
predictors. Hunter and Young (2012) studied a FMR
model where linearity was still assumed within each
component, but the error terms were modeled fully
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nonparametrically. However, since the degrees of free-
dom of the aforementioned models are difficult to de-
fine, the selection of the number of components re-
mains an issue.

The need for semiparametric mixture models also
comes from practice. In order to detect differentially
expressed genes under two or more conditions in mi-
croarray data, Bordes, Delmas and Vandekerkhove
(2006) proposed a semiparametric two-component
mixture model (2.14) in which one component was
known. Practically, a real-valued test statistic was
calculated for each gene. Under the null hypothesis,
each test statistic should have a known distribution F0
and an unknown distribution F . The collected sample
should come from a two-component mixture model
with F0 and F as its component distributions. Semi-
parametric mixture models are also needed in eco-
nomics. Since the scatter plot of HPI change and GDP
growth shows different patterns in different macroeco-
nomic cycles, and since the patterns are clearly not lin-
ear, Huang, Li and Wang (2013) proposed a semipara-
metric mixture of regressions model (3.9). To model
Return on Equity (ROE), Huang et al. (2018b) stud-
ied a special two-component model (2.14) to account
for the fact that the earnings included in ROE is com-
prised of real earnings and manipulated earnings. In
their model, the known component F0 is assumed to
be Pareto.

Both theoretically and practically, many semipara-
metric mixture models have been developed and
demonstrated to have superior performance during the
last few years. In Section 2, we will present a system-
atic overview of semiparametric mixture of location
models, and in Section 3, we will discuss semipara-
metric mixture of regression models. For consistency
purposes, we use the same notation system throughout
the article, which might not be the same as the origi-
nal articles. We conclude the article with a discussion
section.

2. MIXTURE OF LOCATIONS

2.1 Introduction

Consider a C-component mixture model

(2.1) g(x) =
C∑

c=1

πcfc(x), x ∈ R
d,

where fc’s are unknown component densities and π =
(π1, . . . , πC)� is a vector of unknown mixture pro-
portions satisfying πc > 0 for all c and

∑C
c=1 πc = 1.

When C is unknown, the selection of C could cause the
convergence rate of the maximum likelihood estimator
(MLE) to vary, and therefore, is a crucial topic. See, for
example, Leroux (1992), Dacunha-Castelle and Gas-
siat (1999), and Lemdani and Pons (1999) for more
discussion on this topic in the parametric setup.

When the unknown component densities are mod-
eled nonparametrically, (2.1) is referred to as a semi-
parametric mixture model by Bordes, Chauveau and
Vandekerkhove (2007) and Benaglia, Chauveau and
Hunter (2009). Finite mixture models with nonpara-
metric components are very flexible, but are generally
not identifiable without additional restrictions. Hall
and Zhou (2003) showed, under some technical con-
ditions, the identifiability of model (2.1) when C =
2, d ≥ 3, and fc(x) is expressed as a product of d

component-specific marginal densities of x.

2.2 d = 1, Semiparametric Location-Shifted
Mixture Model

When d = 1, researchers imposed shape restrictions,
such as symmetry, on fc’s. Let fc(x) = f (x − μc) and
f be symmetric about the origin. Then mixture model
(2.1) becomes

(2.2) g(x) =
C∑

c=1

πcf (x − μc), x ∈ R.

Denote θ = (π1, . . . , πC,μ1, . . . ,μC)�. Theoretical
studies by Bordes, Mottelet and Vandekerkhove (2006)
and Hunter, Wang and Hettmansperger (2007) showed
that (2.2) is identifiable for C ≤ 3 under some con-
ditions. Specifically, when C = 2, π /∈ {0,1/2,1} and
μ1 �= μ2, identifiability holds for the following two-
component location-shifted mixture model:

g(x) = πf (x − μ1)

+ (1 − π)f (x − μ2), x ∈ R.
(2.3)

Assuming the component distributions to be sym-
metric, Bordes, Mottelet and Vandekerkhove (2006)
proposed a cumulative distribution function (CDF)
based M-estimation method to estimate the Euclidean
and functional parts separately, and proved that their
estimators are n−1/4+α a.s. consistent for all α > 0. To
be more specific, let F(·) and G(·) be the CDFs of f (·)
and g(·), respectively. Define Aθ = πτμ1 + (1 −π)τμ2

(von Neumann, 1931) with τμ (μ ∈ R) being an in-
vertible operator from L1 to L1. Then the CDF ver-
sion of (2.3) is equivalent to G = AθF . Let Sr be a
symmetry operator defined by Sr{F(·)} = 1 − F(−·).
Then the condition G = AθSrA

−1
θ G happens if and
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only if θ = θ0, where θ0 denotes the true value of the
unknown Euclidean parameter. This is in line with the
identifiability result listed above.

Define the following divergence function

K(θ) = K(θ;G) =
∫
R

{
Gθ(X) − G(x)

}2
dG(x),

where Gθ = AθSrA
−1
θ G. Bordes, Mottelet and Van-

dekerkhove (2006) proposed a minimum contrast esti-
mator for θ , defined by arg minθ∈� K(θ; Ĝn), where �

is a compact parametric space and Ĝn is the empirical
CDF of the sample (X1, . . . ,Xn) drawn from Gθ0 . F

is then estimated by F̂n = 1
2(I + Sr)A

−1
θ̂n

Ĝn, where I

is the identity operator, and I + Sr is imposed to guar-
antee the symmetry of F .

Bordes, Chauveau and Vandekerkhove (2007)
pointed out that the direct estimator of f in Bordes,
Mottelet and Vandekerkhove (2006) is generally not
a probability density function (PDF) and that the
numerical calculation was time consuming. On the
other hand, Bordes, Chauveau and Vandekerkhove
(2007) proposed to estimate f in (2.2) by fh(x) =
1

2n

∑n
i=1

∑C
c=1 pic{Kh(x − xi + μc) + Kh(x + xi −

μc)}, obtained in an EM context, where pic is the
probability that xi comes from component c, Kh =
K(x/h)/h and K(·) is a zero-symmetric kernel den-
sity function. A generalization of the EM algorithm
for model (2.2) was proposed. However, obtaining the
asymptotic behavior of these estimators remains a chal-
lenge.

Define dn(θ; Ĝn) = D[∑C
c=1 πcĜn(x + μc),∑C

c=1 πc{1 − Ĝn(x − μc)}], where D{G1,G2} is some
measure of distance between distributions G1 and G2.
Hunter, Wang and Hettmansperger (2007) proposed to
estimate θ by minimizing dn(θ; Ĝn). They proved that
for C = 2 or 3, under some technical conditions, the
estimator of the Euclidean parameter is asymptotically
normally distributed at the

√
n-rate, which is faster

than the estimator proposed by Bordes, Mottelet and
Vandekerkhove (2006). Balabdaoui (2017) formally
proved the existence of such an estimator and estab-
lished its asymptotic distribution.

Butucea and Vandekerkhove (2014) applied the
Fourier analysis to invert the mixture operator, and re-
lated the symmetry of f to the fact that its Fourier
transform has no imaginary part. Define f ∗(u) =∫
R

eixuf (x) dx as the Fourier transform of f (x), and
denote M(θ , u) = πeiuμ1 + (1−π)eiuμ2 . Then, model
(2.2) implies

g∗(u) = {
πeiuμ1 + (1 − π)eiuμ2

}
f ∗(u)

= M(θ, u)f ∗(u).
(2.4)

The symmetry of f implies Im{g∗(u)/M(θ, u)} = 0
if and only if θ = θ0. By building a contrast func-
tion based on the characteristic function (2.4), the pa-
rameter θ is then estimated by “arg minθ∈� Sn(θ),”
where Sn(θ) is an estimator of the contrast S(θ) =∫
R
{g∗(u)/M(θ,u)}2 dW(u), and W is a Lebesgue

absolutely continuous probability measure supported
by R. Under simpler conditions than Hunter, Wang and
Hettmansperger (2007), Butucea and Vandekerkhove
(2014) proved the central limit theorem of the estima-
tors, and showed the minimax rate for estimating f

was n−2β/(2β+1) for some β > 1/2. The authors ar-
gued that the estimators and the convergence results
could be extended to the C ≥ 3 cases when identifia-
bility assumptions are satisfied.

Chee and Wang (2013) proposed a semiparamet-
ric MLE approach to estimate the Euclidean parame-
ters. Specifically, they suggested to model the unknown
density f of (2.3) as

f̃h(x;Q)

= 1

2

∫ {
Kh(x − σ) + Kh(x + σ)

}
dQ(σ),

(2.5)

a generalization of the kernel-based method, where Q

is a mixing distribution completely unspecified. Even
with fixed θ , the estimation of Q is not a simple task
since it is an optimization problem over an infinite di-
mensional space. As shown by Lindsay (1983), the
NPMLE of Q is discrete with finite support points no
more than the number of distinct observations. Let

(2.6) Q̂n =
m∑

j=1

wjδσj

be a discrete estimator of Q which has mass at σj with
probability wj for j = 1, . . . ,m. Replacing Q by Q̂n,
(2.5) becomes

f̃h(x;w,σ )

= 1

2

m∑
j=1

wj

{
Kh(x − σj ) + Kh(x + σj )

}
,

(2.7)

where w = (w1, . . . ,wm)� and σ = (σ1, . . . , σm)�.
Note that the estimator of f in Bordes, Chauveau
and Vandekerkhove (2007) is actually a special case
of (2.7). Replacing the unknown density f by (2.7),
model (2.2) becomes

(2.8) g̃h(x; θ ,w,σ ) =
C∑

c=1

πcf̃h(x − μc;w,σ ).
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The estimation of θ and f now becomes the estimation
of θ , w, σ and m. The log-likelihood of (2.8) is then
maximized by algorithms of Wang (2010).

Xiang, Yao and Seo (2016) studied a method that is
somewhat similar to Chee and Wang (2013). Instead of
(2.5), they assumed the unknown density f to be

(2.9) f̌ (x;Q) =
∫
R+

1

σ
φ

(
x

σ

)
dQ(σ),

where φ(x) is the standard normal density, and Q is
also estimated by (2.6). Then, the authors proposed to
iteratively update θ and Q in turn until convergence.
With fixed θ , other variables w, σ and m are estimated
through a gradient based algorithm. At a given Q̂n,
θ is updated by a regular EM algorithm. Xiang, Yao
and Seo (2016) argued that (2.9) includes a rich class
of continuous distributions, and the resulting estima-
tors are robust against outliers. In addition, this method
avoids the tedious work of the selection of the tuning
parameters.

Wu, Yao and Xiang (2017) proposed to estimate
(2.3) by minimizing a profile Hellinger distance be-
tween the assumed semiparametric two-component
location-shifted mixture model and a nonparametric
kernel density estimator.

2.3 With Shape Constraints

Nonparametric shape constraints are becoming in-
creasingly popular in semiparametric mixture models.

Chang and Walther (2007) proposed mixtures of log-
concave distributions for clustering. Examples of log-
concave densities include normal, Laplace, logistic, as
well as gamma and beta with certain parameter con-
straints. Since such distributions are not restricted to
any parametric assumptions, the corresponding estima-
tion results will not suffer from model misspecifica-
tion. In addition, the estimation of log-concave distri-
butions does not involve any tuning parameters. Chang
and Walther (2007) assumed that each component in
(2.1) is log-concave, that is, logfc(x) is a concave
function. Note that the corresponding log-likelihood is
a concave function, and so the existence of a MLE is
guaranteed. The computation algorithm consists of two
parts. The first part computes the MLE of a Gaussian
mixture through an EM algorithm. Define π̂c and f̂c as
the MLEs, and

(2.10) pic = π̂cf̂c(Xi)∑C
c′=1 π̂c′ f̂c′(Xi)

as the classification probability of the ith observa-
tion belonging to the cth component. The second

part of the algorithm also involves an EM algo-
rithm. In the E-step, (2.10) is calculated with f̂c(·)
replaced by the log-concave MLE f̃c(·). The compu-
tation for π̃c in the M-step is still π̃c = ∑n

i=1 pic/n,
and pic is used as weights for Xi when the log-
concave MLE f̃c was computed using the methods
developed in Walther (2002) and Rufibach (2007).
Their simulation study shows that only five itera-
tions are required in the second part of the algorithm.
The model is then extended to the multivariate situ-
ation. Assume (N1, . . . ,Nd) to be a multivariate nor-
mal distribution with mean 0 and covariance matrix �,
and F1, . . . ,Fd be CDFs of arbitrary univariate log-
concave distributions. Then, within a component, ob-
servations (Xi1, . . . ,Xid)� ∈ R

d are assumed to have
density (F−1

1 �(N1), . . . ,F
−1
d �(Nd)), where � de-

notes the CDF of the standard normal distribution. The
joint density for the cth component is then defined as

fc(x1, . . . , xd) = φ0,�

{
�−1F1(x1), . . . ,�

−1Fd(xd)
}

×
d∏

j=1

fj (xj )

φ0,I{�−1Fj (xj )} ,

where φμ,� is the multivariate normal density with
mean μ and covariance �. The resulting EM algo-
rithm is quite similar to the univariate case, and thus
is omitted here. However, without symmetry, a main
drawback of such a model is that it suffers from non-
identifiability.

Hu, Wu and Yao (2016) proposed a log-concave
maximum likelihood estimator (LCMLE) to estimate
the mixture densities and provided its theoretical prop-
erties. It is assumed that (X1, . . . ,Xn) are independent
d-dimensional random variables whose mixture distri-
bution belongs to

(2.11) Gη =
{
g : g(x) =

C∑
c=1

πc exp
{
φc(x)

}}
,

where φ = (φ1, . . . , φC) ∈ �η and �η is a constrained
parameter space defined by �η = {(φ1, . . . , φC) : φc

is concave, |S(φ)| ≥ η > 0 for some η ∈ (0,1]}. Here,
Mc(φ) = maxx∈Rd {φc(x)}, M(1)(φ) = minc{Mc(φ)},
M(C)(φ) = maxc{Mc(φ)}, and S(φ) = M(1)(φ)/

M(C)(φ). The LCMLE is then defined as

gn = arg max
g∈Gη

∫
log(g) dQn,

where Qn is the empirical distribution of (X1, . . . ,Xn).
Hu, Wu and Yao (2016) proved the existence of the
LCMLE for the log-concave mixture models and the
consistency of the estimated mixture density.
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Balabdaoui and Doss (2018) discussed the estima-
tion and inference for mixtures of log-concave distribu-
tions assuming symmetry. Under some technical con-
ditions, if the location and mixing estimators are

√
n-

consistent, then the nonparametric log-concave MLE
converges to the true symmetric density at the (usual)
n−2/5-rate in the L1 distance.

Al Mohamad and Boumahdaf (2018) considered a
semiparametric two-component mixture model where
one component is parametric and the other is from
a distribution family with linear constraints. A new
estimation method is proposed which incorporates a
prior linear information about the distribution of the
unknown component and is based on φ-divergences.
When the proportion of the parametric component is
very low and the moment constraints hold, this method
shows better performance than existing methods.

2.4 d > 1

When multivariate covariates x ∈ R
d (d > 1) are

considered, a common restriction placed on fc is that
each joint density fc is equal to the product of its
marginal densities. In other words, the coordinates
of the x vector are independent, conditional on the
subpopulation or component from which x is drawn.
Therefore, model (2.1) becomes

(2.12) g(x) =
C∑

c=1

πc

d∏
j=1

fcj (xj ).

Hall and Zhou (2003) showed that when C = 2 and
d > 2, identifiability of model (2.12) can typically be
achieved. Allman, Matias and Rhodes (2009) proved
that if the density functions f1j , . . . , fCj are linearly
independent except possibly on a set of Lebesgue mea-
sure zero, the parameters in (2.12) are identifiable
whenever d > 2.

Benaglia, Chauveau and Hunter (2009) considered a
more general case of (2.12) by assuming that the co-
ordinates of x are conditionally independent and that
there be blocks of coordinates with identical density.
They proposed an EM-like estimation method. If all
the blocks are of size 1, such as the setting in model
(2.12), then the coordinates in xi are conditionally in-
dependent but with different distributions. If there only
exists one block, then the coordinates are not only con-
ditionally independent but also identically distributed,
that is, fc1(·) = · · · = fcd(·). Let bj denote the block to
which the j th coordinate belongs, where 1 ≤ bj ≤ B ,
and B is the total number of such blocks. Then model

(2.1) becomes

(2.13) g(x) =
C∑

c=1

πc

d∏
j=1

fcbj
(xj ).

At the t th iteration (t = 1,2, . . .), in the E-step, the
“posterior” probabilities of component inclusion p

(t)
ic ,

conditional on the current estimators, are calculated in
the same manner as in any regular EM algorithms. In
the M-step, the algorithm updates the mixing propor-
tion by π

(t+1)
c = n−1 ∑n

i=1 p
(t)
ic , and the density as

f
(t+1)
cl (u) = 1

nhClπ
(t+1)
c

×
d∑

j=1

n∑
i=1

p
(t)
ic I {bj = l}K

(
u − xij

h

)
,

for c = 1, . . . ,C, l = 1, . . . ,B , where Cl =∑d
j=1 I {bj = l} is the number of coordinates in the lth

block. However, the authors did not discuss the theo-
retical properties of the estimators or of the algorithm.

To improve the work of Benaglia, Chauveau and
Hunter (2009), Levine, Hunter and Chauveau (2011)
introduced a smoothed log-likelihood function which
replaces the component density function fc(x) with
a nonlinear smoother Nfc(x) = exp

∫
Kd

h (x − u) ×
logfc(u) du, where Kd

h (u) = h−d ∏d
j=1 Kd(uj/h),

Kd(u) = ∏d
j=1 K(uj ), u = (u1, . . . , ud)�. Then the

new EM algorithm is proved to have the monotonicity
property similar to the manner of an maximization-
minimization (MM) algorithm.

Chauveau, Hunter and Levinez (2015) extended an
algorithm to estimate the parameters in nonparamet-
ric multivariate finite mixture models assuming condi-
tional independence. Similar to the work of Benaglia,
Chauveau and Hunter (2009), Chauveau, Hunter and
Levinez (2015) also assumed that conditionally inde-
pendently and identically distributed coordinates be-
long to the same block. The algorithm is quite similar
to the one of Benaglia, Chauveau and Hunter (2009),
except that they used different bandwidths for each
component and block. Applying the smoothed log-
likelihood, similarly to what Levine, Hunter and Chau-
veau (2011) did, Chauveau, Hunter and Levinez (2015)
proved that the algorithm attains the ascent property of
a typical EM algorithm. Additionally, due to the algo-
rithm’s good properties and ease of calculation, the au-
thors further extended it to the univariate model (2.2).
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2.5 d = 1, C = 2 with a Known Component

Consider the following two-component mixture
model:

(2.14) g(x) = (1 − π)f0(x) + πf (x − μ), x ∈ R,

where f0 is a known PDF, f ∈ F , where F = {f :
f ≥ 0,

∫
f (x) dx = 1 and f (−x) = f (x)}, and θ =

(π,μ)� are the unknown parameters. Model (2.14) is
motivated by the detection of differentially expressed
genes under two or more conditions in microarray data
analysis (Bordes, Delmas and Vandekerkhove, 2006)
and the sequential clustering algorithm (Song, Nicolae
and Song, 2010), and is also commonly used in con-
tamination problems in astronomy and biology, among
other fields (Patra and Sen, 2016). It is an extension
of the classical two-component mixture models in the
sense that the unknown component f is not restricted
to any distribution families, but assumed only to be
symmetric. In the parametric setup, this model is some-
times referred to as a contamination model.

Bordes, Delmas and Vandekerkhove (2006) showed
the identifiability of model (2.14) when f has third-
order moment and is zero-symmetric. Similar to Bordes,
Mottelet and Vandekerkhove (2006), the inversion of
the CDF of model (2.14) leads to

(2.15) F(x) = 1

π

{
G(x + μ) − (1 − π)F0(x + μ)

}
,

where F0 is the CDF of f0. Define

H1(x;μ,m,G) = μ

m
G(x + μ) + m − μ

m
F0(x + μ),

H2(x;μ,m,G) = 1 − μ

m
G(μ − x)

+ μ − m

m
F0(μ − x),

where m is the first-order moment of G. Then, by
the symmetry of F , the estimator of μ is defined as
μ̂n = arg minμ d{H1(·;μ, m̂n, Ĝn),H2(·;μ, m̂n, Ĝn)},
where d is the Lq distance, and Ĝn and m̂n are the
empirical versions of G and m, derived from a sample
of size n. Then, π̂n = m̂n/μ̂n. However, the estimator
was shown to be numerically unstable and the theoret-
ical properties were not shown.

Similar to Bordes, Delmas and Vandekerkhove (2006),
Bordes and Vandekerkhove (2010) also considered
(2.15), and defined

H1(x; θ ,G) = 1

π
G(x + μ) + 1 − π

π
F0(x + μ),

H2(x; θ ,G) = 1 − 1

π
G(μ − x) + 1 − π

π
F0(μ − x).

However, Bordes and Vandekerkhove (2010) consid-
ered

d(θ) =
∫
R

H 2(x; θ,G)dG(x),

where H(x; θ ,G) = H1(x; θ,G)−H2(x; θ ,G). In or-
der to estimate θ by a differentiable optimization rou-
tine, another empirical version of d is defined as

dn(θ) = 1

n

n∑
i=1

H 2(Xi; θ, G̃n),

where G̃n(x) = ∫ x
−∞ ĝn(t) dt is a smoothed version of

Ĝn and ĝn(x) = 1
nh

∑n
i=1 K(x−Xi

h
). By these improve-

ments, the authors showed the asymptotic normality of
the estimators.

Maiboroda and Sugakova (2011) considered a gen-
eralized estimating equations (GEE) method to esti-
mate the Euclidean parameters of model (2.14). Let
(X1, . . . ,Xn) be a sample generated from (2.14), and
z, z0 and δ be three random variables such that z ∼ f ,
z0 ∼ f0 and δ ∼ B(1, π). Then, Xi ∼ δ(z + μ) + (1 −
δ)z0. Denote hj (j = 1,2) as two odd functions, and
let Hj(μ) = Ehj (z0 − μ) for any μ ∈ R. It is easy to
see that Ehj (Xi − μ) = πEhj (z) + (1 − π)Hj (μ) =
(1 − π)Hj (μ) where the second equality is derived di-
rectly by the oddness of hi and the symmetry of f .
Motivated by this, the authors proposed the following
unbiased estimating equations for the estimation of θ :{

ĥ1(μ) − (1 − π)H1(μ) = 0,

ĥ2(μ) − (1 − π)H2(μ) = 0,

where ĥj (μ) = n−1 ∑n
i=1 hj (Xi − μ). Maiboroda and

Sugakova (2011) proved, under mild conditions, the
consistency and the asymptotic normality of their es-
timators.

Patra and Sen (2016) studied model (2.14) without
assuming the symmetry of f . The article uses ideas
from shape restricted function estimation and devel-
ops “tuning parameter free” estimators that are easy to
implement and have good finite sample performance.
Consider the first estimator of the unknown CDF F ,

F̂ (x;π) = Ĝn(x) − (1 − π)F0(x)

π
,

where Ĝn is the empirical CDF. This estimator is easy
to calculate but is not guaranteed to satisfy the condi-
tions of a distribution function: lying between 0 and
1 and nondecreasing. Therefore, a second estimator
of F is proposed as F̃ (x;π), which is the minimizer
of 1

n

∑n
i=1{W(Xi) − F̂ (Xi;π)}2 over all distribution



REVIEW OF SEMIPARAMETRIC MIXTURE MODELS 397

functions W . Since the two estimators indeed all de-
pend on π , the authors suggested estimating π by

π̂ = inf
{
p ∈ (0,1) : pdn

{
F̂ (x;p), F̃ (x;p)

} ≤ cn√
n

}
,

where cn is a sequence of constants and dn stands for
the L2 distance. It is shown that the estimating pro-
cedure is consistent for a broad range of cn. In addi-
tion, the “elbow” of pdn(F̂ (x;p), F̃ (x;p)), that is, the
point that has the maximum curvature, is a good esti-
mator of π , and is free of tuning. Once an estimator of
π is decided, say π̂n, then it is natural to estimate F by
F̃ (·; π̂n).

There are some generalizations of model (2.14). For
example, Hohmann and Holzmann (2013) studied

g(x) = (1 − π)f0(x − ν) + πf (x − μ), x ∈ R,

where ν is another nonnull location parameter. They
showed identifiability under assumptions made on the
tails of the characteristic function for the true underly-
ing mixture. The authors applied methodologies quite
similar to Bordes and Vandekerkhove (2010), and con-
structed asymptotically normally distributed estima-
tors.

Xiang, Yao and Wu (2014) and Ma and Yao (2015)
studied another transformation of model (2.14), assum-
ing f0 to be known with an unknown parameter. That
is,

g(x; θ, f ) = (1 − π)f0(x; ξ)

+ πf (x − μ), x ∈ R,
(2.16)

where ξ is an unknown parameter and θ = (π,μ, ξ)�.
Ma and Yao (2015) studied the identifiability condi-
tions of model (2.16) and proposed a general class of
estimation equations based estimators, who have a nice
connection to the most efficient estimator in the sense
of semiparametric efficiency. The estimator of Xiang,
Yao and Wu (2014) is based on the minimum profile
Hellinger distance. Define the Hellinger distance be-
tween two functions g1, g2 as

dH (g1, g2) = ∥∥g1/2
1 − g

1/2
2

∥∥,
where ‖ · ‖ denotes the L2-norm. It is a natural idea
to estimate θ and f by minimizing dH {g(·; θ , f ), ĝn}
over θ ∈ � and f ∈ F , where ĝn is a nonparametric
kernel density estimator of the data. Note that this op-
timization problem involves both the parametric part
θ and the nonparametric part f . Therefore, the au-
thors suggest to apply the profile idea to implement
the calculation. First, for any θ , define f (θ , ĝn) =

arg minl∈F dH {g(·; θ , l), ĝn}. Then the minimum pro-
file Hellinger distance estimator of θ is defined as
θ̂H = arg minθ∈� dH [g{·; θ , f (θ , ĝn)}, ĝn]. The algo-
rithm works by iterating between updating the param-
eter θ and updating the nonparametric function f .
Xiang, Yao and Wu (2014) further showed the asymp-
totic normality of the estimator.

Assuming that f0 follows a Pareto distribution with
unknown parameter ξ , Huang et al. (2018b) proposed
another special case of model (2.16). The identifiabil-
ity is discussed, and a novel estimation method is stud-
ied using smoothed likelihood and profile-likelihood
techniques. A smoothing kernel Kh,μ(x, t) =
(2h)−1[K{(x − t)/h} + K{(2μ − x − t)/h}] is de-
fined, which is μ-symmetric, and correspondingly a
nonlinear smoothing operator for f (·) is defined as

Nμf (x) = exp
{∫

Kh,μ(x, t) logf (t) dt

}
.

Replacing f by its nonlinear smoother, the smoothed
log-likelihood of a data is then defined as

�(μ,π, ξ, f ) =
n∑

i=1

log
{
(1 − π)f0(Xi; ξ)

+ πNμf (Xi)
}
.

The authors proposed an estimation method that sepa-
rates μ from π , ξ and f . Given a known μ, or an es-
timator of it, denoted by μ0, the maximum likelihood
estimator of π , ξ and f can be calculated by maximiz-
ing �(μ0, π, ξ, f ) via an EM algorithm. Denote the es-
timators by π̂μ, ξ̂μ, and f̂μ(·). Then, the estimator of
μ is calculated through maximizing the profile likeli-
hood �̂p(μ) = �(μ, π̂μ, ξ̂μ, f̂μ), using some advanced
numerical methods.

Nguyen and Matias (2014) studied a special case
of (2.14) when f0(·) = 1, and proved an impossibil-
ity result. They showed that the quadratic risk of any
estimator of π does not have a parametric conver-
gence rate when f is not 0 on any nonempty interval.
This happens mainly because the Fisher information
for the model is 0 when f is bounded away from 0
for all nonempty intervals. We conjecture that such re-
sults might also hold for model (2.2) and model (2.12),
which could be an interesting topic for future work.

3. SEMIPARAMETRIC MIXTURE OF
REGRESSIONS

3.1 Introduction

Assume {(xi , yi), i = 1, . . . , n} is a random sample
from (x, Y ), where xi = (xi,1, . . . , xi,p)�(p < n) is a
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vector of predictors. The goal of a typical finite mix-
ture of regressions (FMR) model is to describe the con-
ditional distribution of Yi |xi using a mixture of lin-
ear regressions with assumed Gaussian errors. That
is, let C be a latent class index random variable with
P(C = c|x) = πc for c = 1, . . . ,C. Given C = c, sup-
pose that the response y depends on x in a linear way
y = x�βc + εc, where εc ∼ N(0, σ 2

c ). Then the condi-
tional distribution of Y given x is

(3.1) Y |x ∼
C∑

c=1

πcφ
(
y|x�βc, σ

2
c

)
,

where θ = (π1, . . . , πC,β1, . . . ,βC,σ 2
1 , . . . , σ 2

C)� is
the vector of parameters, φ(y|μ,σ 2) is the normal den-
sity with mean μ and variance σ 2, 0 ≤ πc ≤ 1, and∑C

c=1 πc = 1. See McLachlan and Peel (2000) for com-
prehensive discussions.

3.2 Mixture of Regression Models with Varying
Proportions

In a parametric mixture of regressions model, the
mixing proportions are assumed to be known and fixed
as πc, c = 1, . . . ,C. However, if the covariates x con-
tain some information about the relative weights, then
model (3.1) is mistakenly specified and might provide
misleading results. In the following paragraphs, several
FMR models with varying proportions are discussed.
The error density is assumed to be known throughout
the section.

The first model is

(3.2) Y |x ∼
C∑

c=1

πc(x)φ
(
y|x�βc, σ

2
c

)
,

whose identifiability was discussed by Huang and Yao
(2012) under some mild conditions. If πc(x) is mod-
eled as a logistic function, then model (3.2) becomes
the hierarchical mixtures of experts (HME; Jacobs,
Peng and Tanner, 1997) in the neural network setting.
Young and Hunter (2010), on the other hand, modeled
πc(x) as

(3.3) πc(xi ) = E[zic|xi],
where zic is a component indicator variable that is 1
if the ith observation is from the cth component, and 0
otherwise. Note that if one treats zic as a response, then
(3.3) indicates nothing but a mean structure in a re-
gression analysis. Therefore, Young and Hunter (2010)

proposed to estimate πc(xi ) by local polynomial re-
gression (Fan and Gijbels, 1996) as

arg min
α

n∑
l=1

Kh(xi − xl)

×
{
zic −

(
α0 +

p∑
t=1

αt(xi,t − xl,t )

)}2

,

(3.4)

where α = (α0, α1, . . . , αp)�, and Kh(xi − xl) is a
multivariate kernel density function. However, since
zic is not known in reality, they proposed to run the
EM algorithm for model (3.1) first, and then use the
converged value of the classification probability, de-
noted by p∞

ic , to replace zic. Given estimators of πc(x),
βc and σc can then be estimated through a regular EM
algorithm. However, due to the “curse of dimensional-
ity,” the authors only did simulation study for the p = 1
case, and argued that extra cautions should be given for
high-dimensional predictors cases. Theoretical results
were not discussed for this method.

Huang and Yao (2012), on the other hand, studied
π(x) fully nonparametrically, and proposed a one-step
backfitting procedure to achieve the optimal conver-
gence rates for both the regression parameters and the
nonparametric functions of mixing proportions. They
further derived the asymptotic bias and variance of the
one-step estimator.

Allowing the response to come from other distribu-
tion families, model (3.2) can be extended to a mix-
ture of GLMs with varying proportions (Wang, Yao
and Huang, 2014):

(3.5) Y |x ∼
C∑

c=1

πc(x)fc(y|x, θc),

where fc is a function of the exponential family whose
mean is μc(x) = g−1

c (x�βc) and gc(·) is a component-
specific link function. For example, when a binomial
response Y is considered, Cao and Yao (2012) stud-
ied a special case of (3.5), where both the component
proportions and the success probabilities depend on the
predictor nonparametrically. That is,

Y |X=x ∼ π1(x)Bin(y;N,0)

+ π2(x)Bin
{
y;N,p(x)

}
,

(3.6)

where π1(x) + π2(x) = 1, and Bin(Y ;N,p) denotes
the probability mass function of a binomially dis-
tributed random variable Y with the number of trials
N and success probability p. Note that the first com-
ponent is a degenerate distribution with mass 1 on 0.
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Therefore, model (3.6) has wide application in data
with extra number of zeros. Cao and Yao (2012) suc-
cessfully applied model (3.6) to a rain dataset from a
global climate model and a historical rain dataset from
Edmonton, Canada.

3.3 Nonparametric Errors

Traditional FMR models (3.1) are all based on the
assumption of normally distributed errors. The esti-
mation results might be biased or even misleading if
this assumption is problematic. Different methods have
been proposed to relax this assumption in the following
article.

Hunter and Young (2012) studied a FMR model
where linearity is still assumed within each component,
but instead of normality, the error terms are modeled
fully nonparametrically as εi ∼ g. That is,

(3.7) Y |x ∼
C∑

c=1

πcg
(
y − x�βc

)
.

Without loss of generality, g is assumed to have median
0. The identifiability of model (3.7) can be achieved
whenever the regression planes are not parallel. If some
further conditions are put on g, then (3.7) can still be
identifiable even when the regression planes are par-
allel. Similar to Levine, Hunter and Chauveau (2011),
Hunter and Young (2012) proposed an estimation pro-
cedure that maximizes the following smoothed log-
likelihood:

�s(π,β, g) =
n∑

i=1

log

{
C∑

c=1

πcNhg
(
yi − x�

i βc

)}
,

where Nhg = exp
∫

h−1K{(x − u)/h} logg(u)du is a
nonlinear smoother. The effectiveness of the new meth-
ods was demonstrated through numerical studies.

Ma et al. (2018) extended the identifiability result
for model (3.7) by allowing different error densities for
each component. They established the consistency and
asymptotic normality of their estimators and of those
by Hunter and Young (2012).

Hu, Yao and Wu (2017) assumed the error densities
to be log-concave. That is, the model has the same form
as (3.7), where gc(x) = exp{φc(x)} for some unknown
concave function φc(x).

The three articles studied above all focus on the
mean regressions. By regressing the conditional quan-
tiles (such as median) on the covariates without any
parametric assumptions, Wu and Yao (2016) studied a
semiparametric mixture of quantile regressions model.
Given C = c,

(3.8) Y = x�βc(τ ) + εc(τ ),

where βc(τ ) = (β0c(τ ), . . . , βpc(τ ))� is the τ th quan-
tile regression coefficient for the cth component. The
only assumption on the error density gc(·) is that the
τ th quantile is zero. Model (3.8) is believed to be more
robust than regular FMR model, and could reveal more
detailed data structure. Wu and Yao (2016) proposed
an EM-type algorithm which incorporates the kernel
regression to estimate the parameters and error densi-
ties.

3.4 Semiparametric Mixtures of Nonparametric
Regressions

In the traditional FMR model (3.1) and the mod-
els discussed above, linearity is always assumed in the
mean functions. In the following, different models have
been proposed to relax this assumption.

Motivated by a US house price index dataset, Huang,
Li and Wang (2013) proposed the following model:

(3.9) Y |X=x ∼
C∑

c=1

πc(x)N
{
mc(x), σ 2

c (x)
}
, x ∈ R,

where πc(·), mc(·), and σ 2
c (·) are unknown but smooth

functions, and
∑C

c=1 πc(·) = 1. Note that the errors are
assumed to follow a normal distribution, and model
(3.9) is still considered as a semiparametric mixture
model. Since there are nonparametric functions, kernel
regression is used in a modified EM algorithm. Specif-
ically, like any regular EM algorithm, at (t + 1)th it-
eration (t = 1,2, . . .), a “posterior” probability is cal-
culated and labeled as p

(t+1)
ic , based on current estima-

tors. Then, at the M-step, to update the estimators, the
following local objective function is maximized with
respect to πc, mc and σc:

n∑
i=1

C∑
c=1

p
(t+1)
ic

[
logπc + logφ

{
Yi |mc,σ

2
c

}]
Kh(Xi − x).

Although model (3.9) is very flexible, it lacks effi-
ciency. Taking both matters into account, Xiang and
Yao (2018) suggested a new model by assuming the
mixing proportions and variances to be constant. The
model is defined as

(3.10) Y |X=x ∼
C∑

c=1

πcφ
{
y|mc(x), σ 2

c

}
,

where mc(·)s are the unknown smooth functions. Due
to the coexistence of both global and local parameters,
model (3.10) is more difficult to estimate. An efficient
one-step backfitting estimation procedure, similar to
the ones discussed in Huang and Yao (2012) and Cao
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and Yao (2012), was proposed. A generalized likeli-
hood ratio test was also proposed to compare between
model (3.9) and model (3.10), and was shown to have
the Wilks type of phenomenon.

Similar to the issue discussed in the previous sec-
tion, model (3.9) and model (3.10) are not suitable for
data with high-dimensional predictors due to the ap-
plication of kernel regression in the estimation proce-
dure. As a result, Xiang and Yao (2017) studied a series
of FMR models with single-index. First, replacing the
one-dimensional covariate x in (3.9) by α�x, a mixture
of single-index models (MSIM) is defined as

(3.11) Y |x ∼
C∑

c=1

πc

(
α�x

)
φ

{
y|mc

(
α�x

)
, σ 2

c

(
α�x

)}
.

When C = 1, model (3.11) reduces to a single index
model (Ichimura, 1993; Härdle, Hall and Ichimura,
1993). If x is a scalar, then model (3.11) reduces to
model (3.9). Models with nonparametric means are
flexible, but are difficult to estimate and interpret. In-
troducing single-index into the mixing proportions of
model (3.2), Xiang and Yao (2017) proposed another
model:

(3.12) Y |x ∼
C∑

c=1

πc

(
α�x

)
N

(
x�βc, σ

2
c

)
.

The global parameters α,β = (β�
1 , . . . ,β�

C)�, σ 2 =
(σ 2

1 , . . . , σ 2
C)� and the nonparametric functions π(·) =

(π1(·), . . . , πC(·))� are estimated alternately by fixing
the others.

3.5 Semiparametric Regression Models for
Longitudinal/Functional Data

In this section, we introduce the applications of
semiparametric mixture models to more complex data,
such as longitudinal and functional data. Early works
of such models can be found in Yao, Fu and Lee
(2011). They extended traditional functional linear
models to the framework of classical mixture regres-
sion models, and proposed a functional mixture regres-
sion model.

Rich in information, intensive longitudinal data
(ILD) are becoming increasingly popular in behavioral
sciences. However, since ILD are often heterogeneous
and nonlinear, they are difficult to analyze. Dziak et al.
(2015) proposed a mixture of time-varying effect mod-
els (MixTVCM), which incorporated time-varying ef-
fect model (TVEM) into a mixture model framework.
Conditional on time-invariant subject-level covariates

s1, . . . , sQ, the probability that individual i comes from
class c is

πic = P(Ci = c) = exp(γ0,c + ∑Q
q=1 γ1qcsq)∑k

t=1 exp(γ0,t + ∑Q
q=1 γ1qt sq)

,

and within each component, the means are assumed to
be the same as the TVEM model in Tan et al. (2012):

μij = E(yij |Ci = c)

= β0c(tij ) + β10(tij )xij1 + · · · + βpc(tij )xijP ,

where x1, . . . , xP are the observation-level covariates.
The covariance structure of Yij is assumed to be of the
form

cov(yij , yij ′) = σ 2
a ρ

|tij−tij ′ | + σ 2
e ,

where σ 2
a and σ 2

e denote the variances of subject-level
and observation-level errors, respectively. Though non-
parametric in means, MixTVEM is still considered as
semiparametric since normality is assumed for the er-
ror distributions. In order to make the model identifi-
able, it is assumed that individuals are clustered into
one and only one latent class. In the presence of mix-
ture structure, the EM algorithm is used for estima-
tion. The penalized B-spline is used to approximate
β(·)’s, where the penalization is considered to ensure
a smooth and parsimonious shape.

To deal with inhomogeneous data collected at irregu-
lar, possibly subject-depending time points, which oc-
curs when data are functional, Huang et al. (2014) pro-
posed a new estimation procedure for the mixture of
Gaussian processes. Conditional on C = c, the model
assumes

yij =μc(tij ) +
∞∑

q=1

ξiqcνqc(tij )

+ εij , i = 1, . . . , n; j = 1, . . . ,Ni,

(3.13)

where εij ’s are i.i.d. and N(0, σ 2) distributed, μc(t) is
the mean of a Gaussian process with covariance func-
tion Gc(s, t), and ξiqc and νqc(t) are the functional
principal component (FPC) score and eigenfunctions
of Gc(s, t) (Karhunen-Loève theorem, Roger and Pol,
1991).

To analyze heterogeneous functional data with func-
tional covariates, given C = c, Wang et al. (2016) pro-
posed to model {y(t), t ∈ T } in a functional-linear way:

(3.14) y(t) = X(t)�βc(t) + εc(t),

where X(t) is a random covariate process of dimension
p, and βc(t) is a smooth regression coefficient func-
tion of cth component. εc(t) is a Gaussian process with
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mean zero, independent of X(t), and is assumed to be
of the form

εc(t) = ζc(t) + e(t),

where ζ(t) denotes a trajectory process with covari-
ance �c(s, t) = cov{ξc(s), ξc(t)}, and e(t) is the mea-
surement error with constant variance σ 2. For ease of
notation, define yij = yi(tij ), j = 1, . . . ,Ni , and simi-
larly define εcij , eij , etc. Similar to Huang et al. (2014),
by the Karhunen-Loève theorem, model (3.14) can be
represented as

(3.15) yij = Xi (tij )
�βc(tij ) +

∞∑
q=1

ξiqcvqc(tij ) + eij ,

where vqc(·)’s are the eigenfunctions of �c(s, t) and
λqc’s are the corresponding eigenvalues, and ξiqc’s are
the uncorrelated FPC of ζc(t) satisfying E(ξiqc) = 0
and var(ξiqc) = λqc. Ignoring the correlation structure,
yij can be thought to be coming from the following
mixture of Gaussian process:

y(t) ∼
C∑

c=1

πcN
{
X(t)�βc(t), σ

∗2
c (t)

}
,

where σ ∗2
c (t) = �c(t, t)+σ 2. Then, the parameters πc,

βc(·), and σ ∗2
c (·) can be estimated by an EM-type al-

gorithm, which is very close to the one discussed above
in Huang et al. (2014).

3.6 Some Additional Topics

Additionally, we explore a few more interesting top-
ics. For example, Vandekerkhove (2013) studied a two-
component mixture of regressions model where the
mixing proportion, slope, intercept and error distribu-
tion of one component is unknown while the other
is known. The method proposed by Vandekerkhove
(2013) performs well for datasets of reasonable sizes.
However, the performance is not desirable as the sam-
ple size increases, since this method is based on the
optimization of a contrast function of size O(n2).
Bordes, Kojadinovic and Vandekerkhove (2013) also
studied the same model as Vandekerkhove (2013), and
proposed a new method-of-moments estimator whose
computation order is of O(n). Young (2014) extended
the mixture of linear regression models to incorporate
changepoints by assuming one or more of the com-
ponents as piecewise linear. Such a model is a great
combination of the traditional mixture of linear re-
gression models and the standard changepoint regres-
sion model. Faicel (2016) proposed a new fully unsu-
pervised algorithm to learn regression mixture mod-
els with unknown number of components. Unlike the

standard EM for mixture of regressions, this method
does not require accurate initialization. Montuelle and
Le Pennec (2014) studied a mixture of Gaussian re-
gressions model with logistic weights, and proposed
to estimate the number of components and other pa-
rameters through a penalized maximum likelihood
approach. Butucea, Ngueyep Tzoumpe and Vandek-
erkhove (2017) considered a nonlinear mixture of re-
gression models with one known component. A local
estimation procedure based on the symmetry of local
noise is proposed to estimate the proportion and loca-
tions functions. Huang et al. (2018a) proposed a semi-
parametric hidden Markov model with nonparametric
regression in which the mean and variance of emis-
sion model are unknown smooth functions. See also
Gassiat, Cleynen and Robin (2016), de De Castro, Gas-
siat and Le Corff (2017), Gassiat, Rousseau and Vernet
(2018), Gassiat and Rousseau (2016), and Dannemann,
Holzmann and Leister (2014) for more discussion on
nonparametric/semiparametric hidden Markov models,
and Gassiat (2017) for a survey of mixtures of nonpara-
metric components and hidden Markov models. Huang
et al. (2018b) investigated the identifiability and statis-
tical inference for mixture of varying coefficient mod-
els, in which each mixture component follows a vary-
ing coefficient model and the mixing proportions and
dispersion parameters are unknown smooth functions.

4. DISCUSSION

This article summarizes several semiparametric ex-
tensions of parametric mixture of locations model and
regressions model. Detailed model settings and cor-
responding estimation methods are presented. As we
have seen, this field has received much attention, but
there are still a great number of questions and issues re-
maining unaddressed. Choosing the number of compo-
nents in mixture models is an important problem which
has attracted much attention in statistical research. For
parametric mixture models, some popular and simple
approaches involve information criteria, such as AIC
or BIC, and likelihood ratio tests. See McLachlan and
Peel (2000), Chen, Chen and Kalbfleisch (2004) and
Chen and Li (2009) for more details. For semiparamet-
ric mixture models, however, one main difficulty lies
in the definition of model complexity. Huang, Li and
Wang (2013) applied the degrees of freedom derived
in Fan, Zhang and Zhang (2001), and proposed an in-
formation criterion approach for model selection. It is
still an open and interesting topic waiting for other at-
tempts. In addition, since many of the models we dis-
cussed are closely connected or even nested, testing
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procedures are desired for model selection in addition
to data-driven methods. For example, Pommeret and
Vandekerkhove (2018) investigated a semiparametric
testing approach to test whether the Gaussian assump-
tion made by McLachlan, Bean and Jones (2006) on
the unknown component of their false discovery type
mixture model is correct or not.

Furthermore, in some of the articles that we re-
viewed, such as Bordes, Chauveau and Vandekerkhove
(2007), Benaglia, Chauveau and Hunter (2009) and
Hunter and Young (2012), only EM-type algorithms
are proposed without rigorous theoretical justifications
or asymptotic properties. Due to the application of ker-
nel density estimators, those EM-type algorithms do
not possess the ascent property of a standard EM al-
gorithm. More research is required to investigate the
convergence properties of the above EM-type algo-
rithms and establish some theoretical properties about
the semiparametric mixture estimators, such as the op-
timal convergence rate and semiparametric efficiency.
We hope that this article could inspire researchers who
are interested in this field to shine more light on the
topic.
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