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Abstract

Constructed wetlands hold considerable promise for providing water quality and wildlife habitat benefits. At the same time,
constructed wetlands have been described as “mosquito-friendly habitats” and may raise potential conflicts with neighboring
human populations. Conflicts arise because some design features, such as shallow water and emergent vegetation that are essential
for optimizing water quality polishing, can result in undesirable increases in mosquito production. The attraction of large numbers
of birds to constructed wetlands could also increase the risk of transmission of mosquito-borne viral infections to humans in the
vicinity of the wetland. The potential for conflict is typically highest in arid regions where natural mosquito populations have
limited abundance and are found near newly urbanizing areas.

The creation of wildlife habitat is a significant goal of many treatment wetlands. Humans are also welcome in many treatment
wetlands for recreational and educational activities. Risks of disease transmission to humans and livestock as well as the
inconvenience of mosquitoes as pests must be offset by the economic savings of inexpensive water quality enhancement and the
resulting reduction in pollution that also poses a risk to society’s health and well-being. Ecological risks associated with the use
of mosquito control chemicals must be offset by the increased habitat benefits provided by these constructed wetlands. The right
balance between these competing goals can be recognized by the design that provides the greatest net environmental and societal
benefit. This paper describes these tradeoffs between mosquito control and the constructed wetland technology and provides a
synthesis of information that can be used to optimize the benefits of these wetland systems. Basic research is recommended to
better define the cost-effectiveness of the various design and management options.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Most shallow aquatic ecosystems, including natu-
ral and constructed wetlands, provide suitable habi-
tat for a variety of mosquito species. Although risks
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from mosquito-borne diseases are greatly diminished,
they have not been eliminated. Also, many mosquito
species are human pests with painful bites that limit
outdoor activities. A conflict exists between our ap-
preciation of wetlands and some of their inevitable
inhabitants.

The technology of designing and building con-
structed wetlands is expanding rapidly throughout
the United States and the world (Kadlec and Knight,
1996; IWA, 2000). The discovery that wetlands can
purify surface waters at low cost and with signifi-
cant ancillary benefits for habitat creation has been
widely heralded, and the growing inventory of these
constructed water quality treatment wetlands is help-
ing to offset the historic loss of wetland habitat in
areas such as San Francisco Bay, California, and the
Everglades of Florida. An undesirable side effect is
that all wetlands produce mosquitoes. In some areas
with large expanses of existing natural wetlands, ad-
ditional mosquitoes will not significantly add to the
nuisance issue, but in areas that are accustomed to few
mosquitoes, constructed wetlands may create social
conflict. This conflict presents a challenge to wetland
designers and mosquito control experts. This paper
describes the scientific and engineering research that
is being applied to resolve this problem. The goal
of this research is to optimize constructed wetland
design and operation for water quality and habitat
benefits while simultaneously minimizing mosquito
production potential.

2. Mosquitoes and treatment wetlands

Mosquito populations have been studied in a rel-
atively small number of treatment wetlands. Munic-
ipal treatment wetlands typically have stable water
levels and offer habitat for pool-breeding mosquitoes
but offer limited opportunities for floodwater species
(O’Meara et al., 1988; Tennessen, 1993; Walton et al.,
1998). Immature mosquito population densities are
highly variable among sites in different geographical
areas, over the course of system maturity, and over
time and space within individual systems. A general
conclusion from those areas that contain both treat-
ment wetlands and unimpacted natural wetlands is
that adequately designed and appropriately managed
treatment wetlands do not pose any greater mosquito

threat than the existing natural wetlands (Davis, 1984;
Carlson and Knight, 1987).

Many land uses provide habitat for mosquito de-
velopment. Irrigated agriculture, ruderal lands with
shallow isolated pools, dump sites, and ephemeral
wetland areas all may serve as significant mosquito
breeding habitat. The locations where the greatest
potential conflict exists between the advantages of
treatment wetlands for cost effective water quality
improvement and their potential as mosquito habitats
is where natural wetlands have been drained or where
they never existed initially. This potential conflict is
especially acute in the arid West (Dill, 1989; Martin
and Eldridge, 1989). Background levels for mosquito
abundance are so low in some of these areas that even
well-maintained, traditional treatment wetland designs
may not be able to maintain such sparse host seeking
mosquito populations. Design criteria that maximize
treatment efficiency while minimizing mosquito pop-
ulations are sorely needed in these regions.

Collins and Resh (1989)provide a set of guide-
lines for ecological control of mosquitoes inhabiting
non-tidal wetlands in the San Francisco Bay area
of California that are relevant wherever the conflict
between mosquitoes and wetland creation exists. De-
sign criteria for wastewater lagoons (Smith and Enns,
1967; Carlson, 1983; Martin and Eldridge, 1989)
and stormwater treatment wetlands (Schueler, 1992;
O’Meara and Purcell, 1990; Santana et al., 1994) also
are pertinent. A growing body of technical informa-
tion is also available on the ecology and management
of mosquitoes in wetlands treating municipal wastew-
aters (Mortenson, 1983; MVCAC, 1997; FCCMC,
1998; Walton and Workman, 1998; Walton et al.,
1990a, 1990b, 1996, 1997, 1998, 1999; CH2M HILL,
1999; Thullen et al., 2002; Walton, 2002; Keiper
et al., 2003).

2.1. Mosquitoes associated with treatment wetlands

Mosquito species found in treatment wetlands can
be classified into two groups based on their egg lay-
ing and hatching behavior. Females of some species
lay their eggs directly on the water surface or on the
leaves of aquatic plants (stagnant water species). The
eggs hatch usually within a few days and do not need
an external hatching stimulus (Bohart and Washino,
1978). These behavioral traits are characteristic of
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mosquitoes of the following genera (or subgenera):
Anopheles, Coquillettidia, Culiseta, Culex, Mansonia
andUranotaenia. By contrast, the eggs of floodwater
mosquitoes in the generaAedes, Ochlerotatus and
Psorophora normally are deposited on moist soil or
debris on the shore around aquatic systems and do not
hatch until submerged by rising water levels (Bohart
and Washino, 1978). Treatment wetlands seldom gen-
erate severe floodwater mosquito problems, but those
containing emergent or floating plants, steady wa-
ter levels, and nutrient-rich wastewater, may provide
suitable habitats for the immature stages of several
stagnant water species (Walton, 2002; Keiper et al.,
2003).

2.1.1. Mosquitoes in permanent or semipermanent
aquatic habitats

Culex tarsalis, Cx. erythrothorax, Cx. stigmato-
soma, and to a lesser extentCx. quinquefasciatus are
the Culex most frequently found in wastewater sys-
tems in the southwestern United States; whereas in the
southeastern part of the country,Cx. quinquefascia-
tus, Cx. nigripalpus, Cx. salinarius andCx. restuans
are the predominant species of this subgenus.

Coquillettidia perturbans inhabits natural ponds
and marshes and constructed wetlands, especially
where aquatic plants (e.g.,Typha spp.) have roots
that penetrate a muck layer. The larvae and pupae of
Cq. perturbans do not come to the surface to breathe
like most other mosquito species; instead, they obtain
oxygen from the root hairs of aquatic plants by us-
ing a specialized breathing tube for attaching to and
piercing into roots. This species is a major pest and
pathogen-vectoring mosquito in the eastern part of
the United States and a common mosquito in parts of
California, Oregon and Washington.

The immature stages ofMansonia also extract
oxygen from the roots of aquatic plants. However,
Mansonia larvae and pupae normally attach to float-
ing aquatic plants, such as water hyacinth (Eichhornia
crassipes) and water lettuce (Pistia stratiotes) rather
than plants rooted in the substrate.Mansonia egg
masses are deposited on both the upper and under
surfaces ofPistia stratiotes leaves (Lounibos and
DeWald, 1989). Currently,Mansonia mosquitoes have
a very limited distribution in the continental United
States (Mansonia titillans in Florida and Texas and
Mansonia dyari in Florida and south Georgia).

In the eastern United StatesUranotaenia lowii and
Uranotaenia sapphirina are common mosquitoes in
freshwater marshes. In Florida, immatureUr. lowii
are, at times, extremely abundant in man-made la-
goons receiving untreated wastewater from dairy barns
(O’Meara and Evans, 1983).

Culiseta inornata is distributed throughout the con-
tinental United States, occurring in variety of aquatic
habitats including those that are grossly polluted.
However, at the lower latitudesCs. inornata popula-
tions tend to be active only during the cooler months
of the year.Culiseta particeps, which is restricted in
its distribution to southern Arizona and California,
tends to be rare or uncommon mosquito.Culiseta
incidens also tends to be uncommon.

Females of the mosquito genera listed above de-
posit their eggs in rafts or clusters; whereasAnopheles
mosquitoes lay their eggs individually on the water
surface. Each egg is equipped with special structures
(floats), which enable the egg to remain on the wa-
ter surface. Depending upon the species and the en-
vironmental conditions, essentially all the eggs may
hatch shortly after egg deposition, hatching may be
staggered over a period of several weeks, or (a less
frequent occurrence) some eggs may become stranded
on moist substrate above the water and not hatch until
after a flooding episode.

2.1.2. Floodwater mosquitoes
Aedes vexans and members of thePsorophora

columbiae/confinnis group are the most widely dis-
tributed floodwater mosquitoes in the continental
United States. These mosquitoes, along withOchlero-
tatus nigromaculis, Oc. trivittatus, Oc. dorsalis, Ps.
signipennis and Ps. discolor would most likely be
found in or around areas with constructed treatment
wetlands in the southwestern US. Sites receiving
runoff are likely to generate a floodwater mosquito
problem. For example, if the runoff from a con-
structed wetland is sent to a disposal or recharge area
in a floodplain, then suitable microhabitats for these
mosquitoes may be created, especially if the soils be-
come impermeable. In the eastern US, some wastew-
ater disposal sites have been invaded by the saltmarsh
mosquitoesOc. taeniorhynchus and Oc. sollicitans
(Santana et al., 1994). In some cases, the salt content
of soils receiving water from treatment wetlands could
increase to levels that would attract such mosquitoes.
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2.2. Factors affecting adult mosquito abundance

2.2.1. Weather/climate
Throughout much of the temperate zone, low air

temperatures greatly reduce mosquito activity in the
wintertime. During the late summer or fall, flood-
water mosquitoes lay diapausing eggs which do not
hatch until the following spring.Culex andAnopheles
mosquitoes normally diapause in the adult stage. The
duration of the diapausing condition is directly related
to severity and persistence of cold weather conditions.
In the southernmost part of the temperate zone,Culex
mosquitoes might have a very brief or no hibernation
(Nelson, 1971). High temperatures may be a factor in-
ducing inactivity among adultsof Cx. salinarius, Cx.
restuans andCx. quinquefasciatus during the summer-
time in southern Florida and southeast Texas (O’Meara
and Evans, 1983; O’Meara et al., 1989). Variation in
relative humidity may also influence the seasonal ac-
tivity of adult mosquitoes.

Predictable annual changes in environmental fac-
tors such as photoperiod and temperature are used by
mosquitoes and other organisms as cues to initiate
or cease activity and, not surprisingly, seasonal ac-
tivity patterns change with latitude and differ among
mosquito species. A north-south clinal shift from a
unimodal late summer pattern in northern valleys to a
bimodal pattern with a larger spring peak and a smaller
autumnal peak in the southern agricultural valleys of
California is typical forCx. tarsalis (Nelson, 1971;
Bohart and Washino, 1978; Reisen and Reeves, 1990)
and, probably, for many species. In arid southern
regions of its range,Cx. tarsalis host seeking popula-
tions often aestivate during the hot summer months
and exhibit greatest activity from autumn through
spring.

2.2.2. Diurnal patterns
Culex tarsalis, Cx. quinquefasciatus and Cx. ni-

gripalpus are active only at night and rest in the
daytime. Floodwater mosquitoes also rest during the
daytime, but they are opportunistic blood feeders
and will take flight and seek a blood meal if a suit-
able host invades their daytime resting areas. Similar
behavior is exhibited byCx. erythrothorax. Flight
activity for male mosquitoes is confined primarily to
the crepuscular periods. Females are most active dur-
ing dawn and dusk; but activity continues throughout

the night, particularly forAnopheles andCulex mos-
quitoes.

2.2.3. Host abundance
Culex nigripalpus and Cx. tarsalis obtain blood

meals from a wide range of hosts; including birds,
mammals, reptiles and amphibians (Dow et al., 1957;
Edman, 1974). Culex quinquefasciatus and Cx. ery-
throthorax are opportunistic, general feeders;Culex
stigmatosoma feeds primarily on birds;Cx. salinarius
is a general feeder, but in certain areas it feeds primar-
ily on mammals (Edman, 1974; Bohart and Washino,
1978; Walton et al., 1999). Aedes vexans, Oc. dor-
salis, Oc. nigrimaculis, Ps. columbiae, Cs. inornata,
Cq. perturbans, M. titillans, An. franciscanus andAn.
freeborni obtain blood meals mostly from mammals;
while Ur. lowii feed on cold-blooded animals (Edman,
1971). Host-feeding patterns are influenced by the (1)
the mosquito’s host preference, (2) the availability of
specific hosts and (3) environmental conditions that
impact the process of finding a suitable host (Day and
Edman, 1988).

3. Mosquitoes and health risks

Mosquitoes deteriorate the external environment by
creating a biting nuisance that precludes or inhibits
outdoor activities and the internal environment by the
transmission of pathogens that may produce disease.
Both aspects may have a significant economic impact
by driving away visitors resulting in the loss of tourist
income and in costs related to mosquito control and
case management. The risk of human infection with a
mosquito-borne pathogen in the US is generally low;
however, even the perceived threat of infection may
cause public alarm and a demand for public health ac-
tion. In addition, the clinical management of viral en-
cephalitis cases requires considerable medical care and
may impart a severe economic impact (Villari et al.,
1995).

3.1. Nuisance problems

Although many mosquito species are not impor-
tant in pathogen transmission, their aggressive bit-
ing behavior may create important nuisance or pest
problems. Their impact as pests depends on their
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host-seeking behavior and the response of humans
and domestic animals to their bite.

Females of most mosquito species require a blood
meal from a vertebrate host to stimulate the develop-
ment of each clutch of eggs and this behavior poten-
tially places the surrounding human population at risk
of mosquito contact. Species associated with wetlands
exhibit ambushing and/or hunting behavior to acquire
blood. Species that ambush during the day create the
greatest demand for control due to public awareness.

3.2. Potential health problems

For disease transmission, a female mosquito must
acquire a critical number of pathogens from an infec-
tious host during blood feeding, survive long enough
for the pathogen to replicate/develop and infect the
salivary glands, and then transmit the pathogen to
a susceptible host when salivary secretions are re-
leased into the bite wound during a subsequent blood
meal. Surveillance and control strategies depend upon
whether the pathogens are anthroponoses or zoonoses.
Anthroponoses such as malaria have a human reservoir
and are maintained by a simple human to mosquito to
human cycle. Zoonoses such as the mosquito-borne vi-
ral encephalitidies have a primary transmission cycle
among mosquitoes and wild birds, with transmission
to humans and domestic animals incidental or tangen-
tial to the basic cycle.

Although at least 10 arboviruses are known to be
transmitted by mosquitoes in the US, only eastern
equine encephalomyelitis (EEE), western equine en-
cephalomyelitis (WEE), St. Louis encephalitis (SLE),
and West Nile (WN) viruses have caused widespread
illness in humans and are likely to be transmitted by
mosquitoes associated with wetlands (Reeves, 1990;
CDC, 2003). The distribution, transmission cycles and
epidemiology of these four important arboviruses are
discussed below.

EEE occurs in tropical and temperate zones of the
New World. EEE is distributed in the eastern half of
North America and, in the United States, is endemic
east of the Mississippi River and along the Gulf Coast
and Atlantic seaboard, but has been found as far west
as Nebraska (Foote, 1959). EEE is a zoonosis main-
tained in a basic enzootic cycle involving birds and
several mosquito species, particularlyCuliseta mela-
nura (CDC, 2003). EEE can be an important source

of mortality for horses, game birds such as pheas-
ant, domestic fowl, emus and whooping cranes (Foster
and Walker, 2002). This virus causes one of the more
pathogenic mosquito-borne diseases in the US with a
human case fatality rate of 35% (CDC, 2003). The
primary transmission cycles take place in regions ad-
jacent to the coast and freshwater swamps.

WEE is distributed widely throughout the New
World (Reisen and Monath, 1989), but in North
America west of the Mississippi typically is associ-
ated with riparian corridors and irrigated agriculture
habitats supporting large populations of the primary
vector,Cx. tarsalis (Mitchell, 1977). WEE is a zoono-
sis maintained in a basic enzootic cycle involvingCx.
tarsalis mosquitoes and birds in the orders Passer-
iformes [especially house finches, house sparrows],
Columbiformes [mourning doves, common ground
doves] and Galliformes [e.g. Gambel’s and California
quail]. Domestic chickens frequently become infected
in rural settings, but adult chickens do not develop
sufficient viremia to infect mosquitoes making them
an excellent sentinel (Reisen et al., 1994). Humans
and horses become infected incidentally by the bite of
eitherCx. tarsalis or Aedes mosquito species, but do
not develop sufficient viremias to infect mosquitoes
and therefore are dead end hosts for the virus.

SLE is distributed widely throughout the New
World, but most outbreaks typically have occurred at
warm latitudes in North America (Hess et al., 1963).
Strains vary markedly in virulence. Geographic varia-
tion in strain virulence has been related to coevolution
with susceptibility to infection by the three regional
vectors,Cx. tarsalis [western US],Culex pipiens com-
plex [southern, central and eastern US], andCulex
nigripalpus [Florida] (Mitchell et al., 1983; Meyer
et al., 1983).

SLE [like WEE] is amplified in nature within a pri-
mary enzootic cycle involvingCx. tarsalis and birds
in the orders Passeriformes and Columbiformes. After
amplification in the primary cycle, secondary vectors
includingCx. quinquefasciatus andCx. stigmatosoma
may become involved, especially in suburban/urban
situations. Humans are infected tangentially and are
a dead-end host for the virus. SLE causes clinical
central nervous system illness in humans; domestic
animals and poultry appear to be unaffected by in-
fection (Tsai and Mitchell, 1989). Unlike WEE, SLE
continues to be a significant health problem in the
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United States with substantial epidemics occurring in
the Ohio River drainage during 1975–1976 and in
Florida during 1992. In California, outbreaks of 25–35
cases have occurred in the Los Angeles basin during
1984 (Murray et al., 1985) and in the southern San
Joaquin Valley during 1989 (Reisen et al., 1992).

Prior to its introduction into North America in
1999, West Nile virus was found in the Old World
and Oceania (Africa, Europe, the Middle East, west
and central Asia and landforms of the southern Pacific
Ocean:CDC, 2003). Since its introduction to North
America, WN has spread rapidly across the US and
into Mexico, Central America and the islands in the
Caribbean Ocean. WN is maintained in nature within
a primary enzootic cycle involving mosquito vectors
and bird reservoir hosts. WN has been found in nearly
140 North American bird species (CDC, 2003), about
15% of these species occur frequently in or near wet-
lands, but only a subset of the 140 species is severly
affected by WN infection. Like the three aforemen-
tioned arbovirus encephalitides, humans, horses and
other mammals are incidentally infected, primarily by
blood-feeding mosquitoes. Other less common forms
of WN transmission have been suggested (CDC,
2003). While most WN infections in humans are mild
and do not manifest symptoms of illness, approxi-
mately 20% of infections develop West Nile fever.
Severe infections occur in about 1 in 150 cases. Neuro-
logical disease, encephalitis, paralysis, rash and some-
times death occur from severe infections (CDC, 2003).

In addition to arboviruses that are detected annually
by surveillance programs in the US, mosquitoes asso-
ciated with wetlands have been linked to the transmis-
sion of pathogens causing other diseases of humans,
wildlife and domestic animals. For example, human
malaria occurred routinely in the United States until
early in this century.

4. Mosquito control strategies

Biological control agents for mosquitoes can be
placed into eight general categories: four micro-
bial agents (viruses, protozoans, fungi and bacteria)
and four multicellular agents (nematodes, cyclopoid
copepods, predaceous aquatic insects, and larvivo-
rous fish). Extensive reviews of biological control
agents for mosquitoes and other pestiferous flies have

been published (Chapman, 1974, 1985; Mulla, 1985;
Lacey and Undeen, 1986; de Barjac and Southerland,
1990; Lacey and Mulla, 1990). Although particular
species within each of the parasite or predator groups
can be responsible for mortality of mosquitoes un-
der specific conditions, only a subset of these agents
is suitable for large-scale biological control in con-
structed treatment wetlands. There are no effective
biological control agents for adult mosquitoes. Even
though some aerial vertebrate predators consume
mosquitoes, bats and birds such as purple martins
do not routinely eat mosquitoes, do not feed during
the peak activity period of many mosquito species,
feed on non-biting adult mosquitoes (i.e. swarming
males) and, at natural densities, cannot consume suf-
ficient numbers of mosquitoes to reduce population
size significantly (Kale, 1968; Whitaker and Long,
1998). The most effective biological agents against
immature mosquitoes are mosquito-specific bacteria
and larvivorous fish (Chapman, 1985).

4.1. Mosquito-specific bacteria

Two Bacillus species are currently registered for
use against mosquitoes in much of the United States.
Bacillus thuringiensis varietyisraelensis (Bti) was fed-
erally registered for mosquito control in 1981.Bacillus
sphaericus (Bs) was approved for larval control more
recently (1991).Bacillus sphaericus is a more effec-
tive control agent for mosquitoes in wastewater with
high organic content and/or suspended sediment than
is Bti. However,Bs has a narrower host range thanBti;
mostAedes species are not susceptible toBs. Bacillus
toxins exhibit specific pathenogenicities and are safe
to humans and to other non-target organisms at current
application rates and by common modes of contact
(see reviews inLacey and Undeen, 1986; Mulla, 1990;
Walton and Mulla, 1992). The toxin is short-lived and
degraded rapidly by UV light in aquatic environments.

Bacillus is a very attractive and effective candidate
for controlling mosquitoes associated with treatment
wetlands; however, any program usingB. sphaericus
should be carried out in such a manner as to reduce the
likelihood of resistance induction in the mosquitoes.
The effectiveness of the mosquitocidal toxins against
mosquito larvae will vary with environmental condi-
tions such as the concentration of suspended solids,
water temperature, water depth, ionic content of the
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water, larval density, solar radiation, flow regime, and
vegetative cover (Walton and Mulla, 1992). Pelletized
and granular formulations of the bacteria are recom-
mended for vegetated habitats; however, it is very dif-
ficult to penetrate thick vegetation and to uniformly
apply mosquitocidal dosages. Because the spores con-
taining the toxin precursors readily settle out of the
water column and treatment wetlands are flushed con-
tinuously, repeated applications are necessary (Walton
et al., 1998).

4.2. Larvivorous fish

The mosquitofish (Gambusia affinis) is the most
widely distributed larvivorous fish used for mosquito
control (Meisch, 1985), having been used worldwide
for more than 80 years. The use of mosquitofish re-
cently has become controversial because it has been
suggested thatGambusia affects the biodiversity and
abundance of local fish local fauna (Gamradt and
Kats, 1996; Rupp, 1996), particularly certain rare
fishes in western drainages (Page and Burr, 1991).
The mosquitofish is an effective biological control
agent in only a subset of the habitats to which the
fish has been introduced (Rupp, 1996; Gratz et al.,
1996). The mosquitofish is tolerant of a wide range of
environmental conditions (Meisch, 1985): tempera-
ture tolerances range from 0.5 to 42◦C; mosquitofish
populations have been observed to maintain them-
selves at pH 5–9.5 with a greater range possible;
as long as access is provided to the water surface,
mosquitofish persist at dissolved oxygen concentra-
tions circa 0 ppm;Gambusia will frequent brackish
water and is known to occur in power plant cooling
ponds with salinities as high as 15 ppt; and successful
reproduction has been observed in chemical oxy-
gen demand (COD) concentrations between 40 and
150 ppm, and survival is possible in CODs as high as
200 ppm (Coykendall, 1980; Meisch, 1985).

The mosquitofish is a live-bearer and reproduces
from early spring through the late autumn in the
western US (Coykendall, 1980). Females are ovo-
viviparous; eggs hatch within the body of the female
and clutch size can be as high as several hundred
young. Interbrood intervals average approximately 3
weeks during the summer and approximately 60 days
at the beginning and end of the annual reproductive
period. Reproduction is typically rapid after introduc-

tion into a newly inundated habitat or at the beginning
of the summer; however, following a rapid increase in
population size, population growth can often become
food limited.

Dietary preferences, a capacity for rapid numeri-
cal response after stocking, and wide environmental
tolerances make the mosquitofish a preferred bio-
logical control agent in a wide range of habitats
which includes wetlands and wastewater (oxidation)
ponds.Gambusia has a broad diet and is opportunis-
tic, concentrating its feeding at the water surface
where mosquito immature stages are likely to congre-
gate. Environmental tolerances are wide. Hardiness
is particularly important in some treatment wetlands
where dissolved oxygen concentrations near the sed-
iment, and within the water column during periods
of each day, can be extremely low. The effectiveness
of any larvivorous fish declines in dense vegetation
(Coykendall, 1980) and under low ambient oxygen
concentrations found in many constructed treatment
wetlands (Walton et al., 1997).

4.3. Source reduction

Emergent vegetation in constructed treatment wet-
lands is an integral component of the water treatment
process; however, dense emergent vegetation pro-
motes mosquito production and impedes mosquito
abatement efforts (Schaefer and Miura, 1986; Orr
and Resh, 1990; Walton et al., 1990b; Westerline,
1995; Russell, 1999; Walton et al., 1998; Thullen
et al., 2002). Wetland vegetation provides treatment
benefits such as organic carbon needed for microbial
transformation processes, reduced flow rates that en-
hance settling of suspended particulates, absorption
of certain pollutants into plant tissues, physical struc-
ture for the attachment of microbes, moderation of
environmental factors such as water temperature and
oxygen concentrations in the sediment, and habitat
for wildlife (Kadlec and Knight, 1996). Dense stands
of plants physically obstruct access to mosquitoes by
predators and hinder mosquito control efforts. Some
authors have ranked different wetland plant species
based on their contribution to mosquito production
(TVA, 1947, Collins and Resh, 1989). All Typha
species, severalSchenoplectus {=Scirpus} species,
and Phragmites communis are at the bottom of the
desirable plant list (Table 1).
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Table 1
Estimated mosquito production propensity of various wetland plant species (fromCollins and Resh, 1989)

Plant group Plant species Common name Mosquito production score

Rooted emergent plants Alisma geyeri Water-plantain 7
Alisma trivale Water-plantain 7
Alopercurus howellii Foxtail 9
Carex obnupta Sedge 11
Carex rostrata Sedge 14
Carex stipata Sedge 13
Cyperus aristatus Flat sedge 9
Cyperus difformis Flat sedge 11
Cyperus esculentus Flat sedge 13
Cyperus niger Flat sedge 12
Deschampsia danthonides Grass 11
Echinochloa crusgalli Barnyard grass 11
Echinodorus berteroi Burhead 10
Eleocharis palustris Spikerush 10
Equisetum arvense Horsetail 14
Frankenia grandifolia Alkali heath 14
Glyceria leptostachya Mannagrass 12
Juncus acutus Softrush 13
Juncus effusus Softrush 10
Jussiaea repens Primrose 16
Leersia oryzoides Rice cutgrass 11
Leptochloa fasicularis Salt-meadow grass 10
Ludwigia spp. Primrose willow 9
Lythrum californicum Loosestrife 13
Oryza sativa Rice 9
Phalaris arundinacea Reed canary grass 14
Phragmites communis Common reed 17
Plantago major Common plantain 9
Polygonum amphibium Water smartweed 14
Polygonum hydropiperoides Smartweed 12
Polygonum pennsylvanicum Pinkweed 12
Polygonum punctatum Smartweed 12
Polypogon elongatus Rabbitfoot grass 11
Potentilla palustris Cinquefoil 11
Pterididum aquilinum Fern 13
Sagittaria latifolia Duck-potato 7
Sagittaria longiloba Arrowhead 7
Sagittaria montevidensis Giant arrowhead 8
Scirpus acutus Bulrush 15
Scirpus americanus Three-square bulrush 10
Scirpus californicus Giant bulrush 15
Scirpus olneyi Alkali bulrush 12
Sparganium eurycarpum Burreed 13
Typha angustifolia Narrowleaf cattail 16
Typha glauca Cattail 16
Typha latifolia Common cattail 17
Zizania aquatica Wildrice 13

Floating aquatic plants Azolla filiculoides Water fern 10
Bacopa nobsiana Water hyssop 13
Brasenia schreberi Water shield 12
Eichhornia crassipes Water hyacinth 18
Hydrocotyle ranunculoides Pennywort 15
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Table 1 (Continued )

Plant group Plant species Common name Mosquito production score

Hydrocotyle umbellata Pennywort 15
Lemna gibba Duckweed 9
Lemna minima Duckweed 9
Nasturtium officinale Water cress 15
Nuphar polysepalum Spatterdock 11
Pistia stratiotes Water lettuce 18
Potamogeton crispus Curled pondweed 8
Potamogeton diversifolius Pondweed 8
Ranunculus aquatilis Buttercup 16
Ranunculus flammula Buttercup 15
Spirodela polyhyiza Duckmeat 9
Wolffiella lingulata Bog mat 9

Submerged aquatic plants Callitriche longipedunculata Water starwort 11
Ceratophyllum demersum Coontail 15
Eleocharis acicularis Spikerush 8
Elodea canadensis Waterweed 8
Elodea densa Waterweed 11
Isoetes howellii Quillwort 7
Isoetes orcuttii Quillwort 7
Lilaeopsis occidentalis Lilaeosis 7
Myriophyllum spicatum Water milfoil 14
Najas flexilis Naiad 11
Najas graminea Naiad 11
Poamogeton filiformis Pondweed 13
Potamageton pectinatus Sago pondweed 13
Ruppia spiralis Ditchgrass 11
Utricularia gibba Bladderwort 12
Utricularia vulgaris Bladderwort 13
Zannichellia palustris Horned pondweed 10

Low scores indicate that the plant species are compatible with effective ecological mosquito control. According to Collins and Resh, scores
less than 9 indicate minimal mosquito breeding problems, scores between 9 and 13 indicate a need to maintain a low coverage for this plant
species, and scores of 14 and above indicate a need to minimize the occurrence of the plant species in the wetland to avoid mosquito issues.

An effective environmental control for vegeta-
tion and mosquitoes is proper water level control
(Cardarelli, 1976; Collins and Resh, 1989) and the
incorporation of design features that reduce mosquito
production. Contrary to normal design of wetland
littoral zones, optimal design for mosquito control
includes steep, nearly vertical basin sides and con-
veyance structures that eliminate standing water.
Channelization to increase the water flow, to steepen
banks and provide access to predators of mosquitoes
will reduce the likelihood that isolated pools and
marshy areas, which are favorable for mosquito de-
velopment, will occur (Service, 1993). Management
practices that create depressions and collect standing
water should be avoided. Partial drawdown is an ef-
fective abatement strategy in habitats where mosquito
habitats are restricted to the wetland periphery (Collins

and Resh, 1989). However, partial drawdown is of-
ten a counter-productive mosquito control strategy in
thickly vegetated wetlands (Collins and Resh, 1989).

Augmentation of water levels is generally more
successful than is drawdown, because mosquito habi-
tat in submerged vegetation and emergent vegetation
is reduced by inundation. Augmentation of water level
is an effective control strategy for mud flats in the
high zone of salt marshes (Carlson, 1983; FCCMC,
1998). Mosquito habitat just below the water surface
in rooted submergent and floating plants of non-tidal
wetlands is eliminated by flooding (Collins and Resh,
1989). Emergent vegetation is drowned and further
proliferation is discouraged by raising water levels.
Increasing water depth 5–8 cm (2–3 in.) (Collins and
Resh, 1989) is probably sufficient in wetlands where
submerged vegetation is prevalent. Water depth must
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be maintained for extended periods at depths greater
than 80–150 cm to discourage the growth of bulrush
(Schoenoplectus) and cattail (Typha) (Kadlec and
Knight, 1996). If emergent vegetation at the wetland
periphery is the primary source of mosquitoes, aug-
mentation could exacerbate mosquito problems by
increasing the amount of wetted vegetation (Collins
and Resh, 1989). Augmentation is impractical for
many wetlands because (1) designs cannot accom-
modate the vertical change in water levels necessary
for effective management of emergent vegetation, (2)
the loss of the majority of emergent macrophytes is
contraindicated for water quality improvement and
(3) water supply is not predictable or sufficient to
carry out manipulations of water depth. Steep-sided
basins also may pose a safety concern for wetlands
accessible to the public.

Other forms of vegetation management by physi-
cal control include herbiciding, harvesting and con-
trolled burning (Collins and Resh, 1989; Kadlec and
Knight, 1996). Herbiciding on a large scale is imprac-
tical in situations where water quality is the primary
concern. Some herbicides are toxic to aquatic fauna
and desirable plant species and their usage can ad-
versely affect water quality in freshwater ecosystems
(McComas, 1993). Harvesting requires either heavy
equipment such as backhoes and bulldozers (Thullen
et al., 2002) or expensive amphibious/aquatic mechan-
ical weed-harvesting equipment (McComas, 1993). If
backhoes or bulldozers are to be used, then the ability
to dry habitats without compaction and/or furrowing
of the substrate is needed. Cut vegetation should not
be left in the basin to decay (Keiper et al., 2003). Dis-
posal of the harvested material requires access to the
basin floor and along the perimeter of the wetland.

Effects of various vegetation management methods
on mosquito production was the focus of research at
a constructed pilot wetland project in Sacramento,
California (Wright et al., 1995; Nolte and Associates,
1997). Various cells received different treatments in-
cluding thatching (complete removal of standing veg-
etation), combing (partial vegetation removal), edging
(removal of bank vegetation), and channelization
(creating of deep channels). Reduction in vegetation
density had a positive effect on mosquitofish density
and mosquito control. It was noted that plant regrowth
quickly replaced the removed vegetation and negated
the effects of thatching, combing, and edging. The

need for annual vegetation maintenance equates to a
relatively high cost for these vegetation management
methods.

Burning of dried emergent vegetation allows large
areas to be cleared quickly and cheaply (Walton,
2002). Burning and discing have been shown to re-
duce mosquito production and enhance waterfowl
habitat in saltgrass (Distichlis spicata) and pickleweed
(Salicornia virginica)-dominated seasonal wetlands
in central California (Schlossberg and Resh, 1997).
Burning destroys the organic carbon source for den-
itrifying bacteria and mobilizes stored nutrients and
pollutants (Kadlec and Knight, 1996). The impact of
ash and other residuals could affect water quality. Air
quality concerns and forest/brush fire potential are
important considerations for burning programs.

There is a need to design mosquitoes out of wetlands
(as much as possible) rather than relying on control
measures after dense vegetation develops. Vegetation
management strategies need to be evaluated not only
for vector control, but also for their impact on water
quality goals and hydrological considerations.

4.4. Chemical control

Conventional chemical pesticides, such as the
organophosphate compound temephos, still remain
economical for larviciding in large-scale abatement
efforts (FCCMC, 1998). Even though such chemicals
are not particularly toxic to mammals, their toxicity to
wetlands wildlife, such as fish and birds, is a concern.

Mosquitocidal oils, such as Golden Bear1 1 1 1
or Bonide Mosquito Larvicide, kill mosquito larvae
and pupae by interfering with air intake at the wa-
ter surface. Mosquitocidal oils typically are reserved
for emergency use when pupae are present and the
emergence of adults is imminent. Oils frequently are
combined with surfactants and other agents that en-
hance spreading across the water surface. The oils
volatize within about 48 h when exposed to sun-
light and are federally and state approved for vector
control.

In regions where rainfall is common and large ex-
panses of water are present, adulticiding is the only
means of controlling mosquitoes. However, in the
arid regions where surface waters can be delineated,
surveyed and treated, adulticiding is used primarily
as a last resort to control mosquitoes. For situations
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where larviciding is ineffective or under emergency
situations when a disease outbreak is imminent, adul-
ticiding is the only effective means of quickly elim-
inating infected mosquito populations. Recent studies
indicated that adulticides (i.e. pyrethrin, malathion
and permethrin) applied at mosquitocidal dosages
were not acutely toxic to common freshwater insects
and aquatic vertebrates (Lawler et al., 1997).

The cost of mosquito abatement for small wet-
lands is several hundred dollars for each application
of mosquitocidal materials. The costs rise rapidly
once aircraft or helicopters are needed; the cost of
each mosquito abatement treatment (labor, materials,
and larvicides) by helicopter for a moderately sized
wetland (10 ha) is approximately US$ 4000 (Walton,
2002).

Integrated pest management approaches combine
source reduction, biological control agents and appli-
cation of mosquito-specific larvicides. Native biolog-
ical control agents are preferable to exotic species.
Mosquito control is moving away from application of
conventional chemical pesticides to more environmen-
tally friendly methods such as mosquito-specific bac-
teria in the genusBacillus and insect growth regulators
(IGRs). Although long-term effects on aquatic food
webs of the latter mosquito control agents have been
suggested (Hershey et al., 1998), subsequent studies
(Schmude et al., 1998; Balcer et al., 1999) failed to
confirm that either mosquito control agent causes the
food web effects observed in the study of Hershey
et al. Nevertheless, judicious use of any control agent
is advisable.

5. Constructed treatment wetland design to avoid
mosquito problems

This section describes how constructed treatment
wetland design may conflict with published guidelines
to reduce mosquito production or mosquito-related
nuisance conditions. The apparent ramifications of
each wetland design decision in light of the mosquito
issue are described, and the available alternative de-
sign methods are discussed. When known, the efficacy
of these design alternatives are quantified, both for
their effect on reducing mosquito nuisance conditions
and for their effect on meeting water quality treatment
goals.

5.1. Treatment wetland siting

Site selection for new treatment wetlands must
consider the costs and benefits of alternative loca-
tions. Conveyance of wastewaters and stormwaters
is expensive and impractical over long distances.
Large centralized collection and treatment facilities
may have the resources to pump water to a remote
wetland treatment location, but local stormwater treat-
ment facilities and small municipal treatment wetland
systems usually require sites near the wastewater
source. All sites have some potential for mosquito
production prior to their conversion to a treatment
wetland site. If all other factors are equal, sites with
a pre-existing land use that is favorable for mosquito
production should be ranked higher for selection
than sites without existing mosquito problems. This
criterion will result in the lowest net effect of the
treatment wetland project on increasing mosquito
populations.

Adult mosquitoes effectively disperse up to several
kilometers from developmental sites (Service, 1993).
Distances within the flight range of a significant
percentage of the mosquitoes produced at wetlands
are a siting consideration when nuisance biting by
mosquitoes is the primary concern. Dispersal distance
curves are generally decreasing exponential functions
(Southwood, 1978). A typical range of distances
reached by 90% of the emerging mosquitoes from a
freshwater treatment wetland might be from 1–5 km
(Service, 1993; Tennessen, 1993; Walton et al., 1999);
yet, species-specific differences in dispersal behav-
ior may result in nuisance biting, and the need for
mosquito abatement near human residences at much
greater distances.

While efforts need to minimize mosquito develop-
ment from the treatment wetland through design and
control measures, some mosquitoes are almost always
present and will disperse in search of hosts. The fewer
people who are living or working within the mosquito
flight radius of a treatment wetland, the lower the risk
of nuisance conditions or disease transmission. A con-
flict can be created over time as suburban sprawl en-
croaches on rural areas where treatment wetlands fre-
quently are sited. On the other hand, some people like
to live near wetlands or to engage in wetland-related
recreational activities. These people might choose to
live near an aesthetically designed and maintained
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treatment wetland and brave the potential mosquito
nuisance in favor of the view and the wildlife.

If mosquito dispersal distances were well known,
then a criterion of a percent reduction (for example
90%) could be used to establish an appropriate buffer
zone around a treatment wetland. This buffer zone, if
any, will be dependent upon regional mosquito popu-
lation size, production of adult mosquitoes in the wet-
land, the neighbor’s tolerance to mosquitoes and de-
sire to be near wetlands, and the actual risk of disease
transmission. The buffer zone also will depend upon
the mosquito species of concern and local conditions
(e.g. topography, meteorological conditions, etc.).

5.2. Pretreatment to minimize mosquito production

Wastewaters and stormwaters frequently are pre-
treated before discharge into a treatment wetland
(Kadlec and Knight, 1996). The appropriate level of
pretreatment is an important consideration in the de-
sign of any treatment wetland because the treatment
wetland may need to be larger or smaller depending
on its influent water quality.

There are numerous references documenting an
apparent relationship between mosquito production
and poor water quality (Carlson and Knight, 1987;
Collins and Resh, 1989; Kramer and Garcia, 1989;
Tennessen, 1993). High levels of dissolved organic
matter are thought to provide nutrients for the bacteria
and algae used as food by mosquito larvae. Com-
pounding this apparent enhancement of mosquito pro-
duction is the potential effect of high organic matter
concentrations leading to high decomposition rates,
low dissolved oxygen, and unsuitable conditions for
aquatic mosquito predators such as dragonflies or fish
(Mian et al., 1986; Walton et al., 1996, 1997). Insec-
ticides may be less effective in highly polluted wa-
ters (Russell, 1999), particularly the environmentally
friendly bacterial larvicides that require ingestion by
mosquito larvae.

The levels of dissolved organic matter that can
occur in partially treated wastewaters may lead to ex-
plosive increases in mosquito abundance (Smith and
Enns, 1967; Rutz et al., 1980; O’Meara and Evans,
1983). Secondary treated wastewaters do not appear
to support these rapid and excessive outbreaks; how-
ever, minimum mosquito production criteria in some
regions are often exceeded in treatment wetlands re-

ceiving even advanced secondary and tertiary treated
wastewaters (Schaefer and Miura, 1986; O’Meara
et al., 1988; Martin and Eldridge, 1989). These eco-
logical conditions may be the result of autochthonous
production of organic matter rather than allochthonous
inputs (Sartoris et al., 2000). Although pretreatment
before discharge into a treatment wetland may reduce
mosquito production, it is not a guarantee against
mosquito presence.

No quantitative correlation or model for predicting
the effects of water quality in wetlands and ponds
and their resulting mosquito production is available
(O’Meara and Evans, 1983; Martin and Eldridge,
1989), although eutrophication may predictably alter
the species composition of the mosquito fauna. Such
a prediction is essential before allocating limited
resources towards wastewater pretreatment prior to
discharge into a treatment wetland. Based on avail-
able information, it can be assumed that discharge of
raw or primary treated municipal wastewaters into a
vegetated lagoon or shallow vegetated wetland pe-
riodically can result in mosquito larval abundance
from several hundred to over 1000 larvae per dipper
sample (animal wastewater lagoons:Rutz et al., 1980;
O’Meara and Evans, 1983). Treatment to secondary
standards may limit average densities to less than 200
mosquito larvae per sample (Walton and Workman,
1998). Average densities of 0.2–0.5 mosquito larva
(Culex plus other species) per dipper sample have
been used as threshold values for intervention against
mosquitoes in seasonally-flooded and treatment wet-
lands (Tennessen, 1993). However, wetland size must
be considered in combination with larval density
for estimating the impact on the host-seeking adult
mosquito population. Although enhancing oxidation
of nitrogenous compounds in wastewater might lessen
potential mosquito production by providing more fa-
vorable conditions for mosquito predators, additional
benefits for mosquito abatement, if any, from remov-
ing nitrogen or phosphorus through tertiary treatment
have not been quantified.

5.3. Wetland basin design to minimize mosquito
production

5.3.1. Wetland type
Treatment wetlands typically are designed for ei-

ther surface flow (SF) or subsurface flow (SSF). Well-
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designed and operated SSF wetlands largely eliminate
the potential for mosquito production. However, SSF
wetlands typically cost from 1.4 to 7.1 times more than
SF wetlands for treatment of a given amount of BOD,
TSS, nitrogen, or phosphorus (Kadlec and Knight,
1996). SSF treatment wetlands may be a clear favorite
when mosquito breeding must be near zero and total
installation and operation & maintenance (O&M) cost
is a lesser concern. This has only been the case for rel-
atively small treatment systems and on-site SSF wet-
lands at single family residences and housing clusters.

In spite of their relatively high cost, SSF wetlands
are not mosquito-proof. SSF wetlands can create nui-
sance mosquito populations if flow is greater than
hydraulic capacity or solids plug the subsurface filtra-
tion matrix. Accumulation of water above the wetland
surface can be particularly attractive to mosquitoes
because wastewater usually receives less pretreat-
ment and has higher organic loads in SSF systems
than water in SF systems. SSF wetlands typically
do not have predatory fish or insect larvae available
to prevent mosquito outbreaks when surface flow
occurs.

SF wetlands are generally the lowest cost treatment
wetland alternative (Kadlec and Knight, 1996). They
simulate most of the conditions typical of natural wet-
lands, including conditions suitable for production of
immature mosquitoes and aquatic predators that eat
mosquito larvae. While most SF treatment wetlands
are predominantly vegetated with emergent plants,
they frequently include areas of open water with float-
ing and submerged aquatic plants. A complete range
of water depths and plant diversity options is included
in existing SF treatment wetlands. All of these options
have different potentials for mosquito production;
however, quantitative criteria are seldom available for
selection of one design option compared to another.

SF treatment wetlands receiving pretreated wastew-
aters typically have mosquito production rates similar
to natural wetlands (Davis, 1984; Carlson and Knight,
1987; Tennessen, 1993). Russell (1999)noted that
permanently flooded habitats, with a diverse inverte-
brate and vertebrate fauna, generally produce fewer
mosquitoes than newly or intermittently flooded habi-
tats without predators. This is especially true for
colonizing mosquito species such asCx. tarsalis that
typically track newly created oviposition sites or
perturbations that renew primary productivity rates.

SF treatment wetlands designed for wildlife habitat
creation typically meet these criteria.

5.3.2. Wetland sizing
Selection of the wetland area necessary to meet ef-

fluent limits without excessive conservatism is the key
to cost effective wetland design. Treatment wetland
capital cost is a direct function of wetland area. Exces-
sively large wetlands result in unproductive expendi-
tures, but they also buffer inflow variations and pollu-
tant loads. Wetland sizing typically is based on deter-
mining the area needed to effectively treat the single
most restrictive effluent limitation. Differing types of
wetlands have different performance efficiencies and
may call for different design models or parameters.
Densely vegetated wetland cells with limited open or
deep-water areas typically provide higher pollutant re-
moval rates than deep-water cells or ponds (Kadlec
and Knight, 1996). Cells without short circuiting chan-
nels from the inlet to the outlet also provide higher
treatment efficiencies. Incorporation of large open wa-
ter areas and channels perpendicular to water flow to
reduce mosquito production, as described below, re-
sult in the need to construct larger treatment wetlands
and, in some cases, may result in the inability of a
treatment wetland to meet effluent regulations.

5.3.3. Wetland configuration
Typical treatment wetland design requires two or

more parallel wetland cells to provide the ability to
continue treatment when one cell is removed from op-
eration (Kadlec and Knight, 1996). Wetland cells also
may be arranged in series to adapt a project to a sloped
site or to ensure flow redistribution at various points
through the treatment wetland. Design for mosquito
control flexibility also requires multiple cells. Some
authors have suggested that dry down may be an ef-
fective tool for control of the immature stages of some
mosquitoes (Chanda and Shisler, 1980; Tennessen,
1993; Mitsch and Gosselink, 2000). Maximizing wet-
land system operation flexibility by incorporating al-
ternate flow paths does not present a conflict between
treatment wetland design and mosquito control.

5.3.4. Selection of design water depths
Water depth is an important aspect of treatment

wetland design due to its effect on plant growth, dif-
fusion distance, and hydraulic residence time. Very
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shallow water depths (less than 15 cm) may not result
in complete flooding of wetland cells that have not
been graded to close elevation tolerances. However,
shallow water depths increase linear flow velocities
and shorten diffusion gradients important for ex-
change of gaseous and dissolved pollutants and lim-
iting substances such as atmospheric oxygen. Higher
linear flow velocities are known to reduce the po-
tential for mosquito production due to their effect on
mosquito survival (Russell, 1999); however, a quan-
titative estimate for the inverse relationship between
flow velocity and mosquito production does not exist.

Limited empirical evidence indicates that wetland
treatment performance does not typically increase at
average water depths greater than about 30 cm (Kadlec
and Knight, 1996). Water depths over 30 cm also may
result in decreased health and growth of emergent
plants in treatment wetlands. The result is increased
plant mortality and eventual replacement by floating
aquatic plant species. Both of these conditions may ac-
tually result in increased mosquito production. Deeper
water is often included in limited areas of treatment
wetlands. These “deep zones” are most effective at
enhancing treatment when they are arranged perpen-
dicular to the direction of flow. In this configuration
deep zones help to redistribute waters that are sheet
flowing across shallow emergent marsh areas. They
also provide a sump for long-term retention of settled
solids and a safe harbor for fish and other fauna that
may prey on mosquito larvae and pupae.

The literature on mosquito control in treatment
wetlands suggests that water depths should be up to
and greater than 1 m (Russell, 1999). However, any
water depths over about 60 cm ultimately will re-
sult in pond or shallow lagoon conditions. There is
preliminary evidence that a shallow wetland that is
colonized heavily with submerged aquatic plants is
just as effective or more effective for water quality
treatment than an emergent marsh at low nutrient con-
centrations (Chimney and Moustafa, 1999). However,
controlling shallow pond environments to promote
submerged aquatic plant growth over floating plant
growth is not an exact science at this time. Also,
mosquito control professionals are not looking to re-
place an emergent marsh with a weed-filled shallow
pond. They are looking for open water with minimal
vegetation resulting in maximum access by fish and
wind fetch for disruption of mosquito oviposition.

Such a system is the antithesis of a treatment wet-
land and when propagated over more than half of a
treatment wetland area is likely to result in significant
performance impairment and creation of algal solids
(Kadlec and Knight, 1996).

5.3.5. Wetland grading and bottom slopes
Wetland cell grading and bottom slopes are both

potentially important in the effective control of
mosquitoes. Typical grading is within the range of
±15 cm. Constructed treatment wetland cells can be
graded using laser-leveling to a consistent elevation
with a variation as low as±3 cm. Wetland operation
at shallow water depths in poorly graded cells will
likely result in isolated areas that are not accessible
to mosquitofish and other aquatic predators. Varying
inflow rates may result in periodic wet/dry cycles on
the highest ground that could result in production
of floodwater mosquito species. Effective grading of
treatment wetlands provides the double benefits of
increased areal treatment performance and reduced
mosquito production potential.

Inclusion of a slight slope in wetland cells facili-
tates drainage. Bottom slopes in SF treatment wetlands
typically range from zero to about 0.5%. Excessive
bottom slopes result in difficult water depth manage-
ment in the wetland; a high bottom slope (greater than
about 0.1%) makes maintenance of a consistent water
depth along the length of the wetland cell impossible.
In the interest of operational flexibility, a slight bot-
tom slope (typically 0.01–0.05%) is recommended for
wetlands.

5.3.6. Wetland embankments
Constructed treatment wetland embankments typi-

cally are built with the steepest side slopes that are
compatible with mowing and levee maintenance and
with safety concerns. These slopes typically are in the
range from 2.5:1 to 4:1 (horizontal:vertical). Steeper
side slopes cost less to construct due to the smaller
earth volume that must be moved and compacted.
However, excessively steep slopes result in increased
erosion and slumping potential prior to establishment
of groundcover. When habitat is an important con-
sideration in treatment wetlands side slopes may be
lengthened to 5:1 to 10:1. These broad, gentle sloping
embankments (littoral “shelves”) are conducive to es-
tablishing a gradient of dominant plant growth zones
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and are easier for many wetland animals to climb and
colonize.

Steep embankments adjacent to deep water are a
preferred mosquito control design configuration for
ponds (O’Carroll, 1978; Mortenson, 1983). Steep
slopes and deep water (>60 cm) reduce the amount
of emergent vegetation coverage and allow better ac-
cess by aquatic predators. In the case of embankment
slope there is typically no conflict between treat-
ment wetland cost and performance considerations
and mosquito production potential–both can benefit
from relatively steep side slopes. As discussed above,
water depth is the principal conflict between these
goals. This potential conflict is greatest where wetland
habitat creation is an important project goal.

5.3.7. Wetland liners
Constructed treatment wetlands may or may not

be lined—depending on wastewater or stormwater
quality, site-specific groundwater considerations, soil
types, and mosquito management. The presence or
absence of a liner in a treatment wetland may be
important in mosquito control due to its effect on the
operator’s ability to rapidly dry down the wetland.
Unlined wetland cells can be drained faster than lined
cells because of the lack of any impermeable liner
and a high hydraulic conductivity. Addition of a liner
slows drainage time making it dependent upon gravity
flow out of the wetland cells and evapotranspiration.
No liner is necessary in some poorly drained soils.
Rapid drainage of wetlands is not necessary for rou-
tine mosquito control and may impact survival of
fish populations in event-driven wetlands. For these
reasons the liner decision is site specific.

5.4. Hydrological control to minimize mosquito
production

Water control is an important feature of treatment
wetland design. Control of water flows and depths
allows the operator flexibility in setting hydraulic
residence time and the resulting level of treatment.
Effective water distribution and collection structures
are required to direct water to all areas of the treat-
ment wetland. Inlet valves or splitter weirs allow flow
regulation to each cell individually. Adjustable outlet
weirs or stop log structures allow positive control of
water levels in the cells. All of these design criteria

are important for optimizing treatment performance
and for mosquito management. There are no appar-
ent treatment versus mosquito control conflicts that
result from incorporating good hydrological control
in treatment wetlands.

5.5. Vegetation selection to minimize mosquito
production

There is ample evidence that the presence of dense
stands of emergent plants is critical for optimal per-
formance of treatment wetlands (Kadlec and Knight,
1996; Vymazal et al., 1998). The species composi-
tion of the wetland plant community appears to be
less important for treatment performance than the
density and net biomass production of the plants
(Kadlec and Knight, 1996). The three most widely
used plant genera in treatment wetlands are:Typha
(cattails),Schoenoplectus (bulrush), andPhragmites
(reed) (CH2M HILL, 1998).

Most of the major plant species that commonly oc-
cur in treatment wetlands have been implicated as
mosquito production and control problems. The pres-
ence of dense emergent and aquatic plant populations
in treatment wetlands is the biggest single source of
conflict between the goals of pollutant reduction and
mosquito control. Design options to reduce this con-
flict may include:

• Selecting plant species that optimize both treatment
performance and mosquito production control.

• Incorporating deep water zones that are free of
emergent and aquatic plants to provide fish habitat
and access to vegetated areas.

• Limiting the width of emergent plant zones to fa-
cilitate access by predaceous mosquitofish and for
application of chemical control agents.

Collins and Resh (1989)rank plants in terms of
their compatitbility with promoting low mosquito
productivity in constructed wetlands. Each parameter
is rated between 1 and 5 with a low value indicat-
ing compatibility with mosquito control and a high
value indicating increased mosquito production. The
Collins and Resh ranking system is based on four
semi-quantitative ecological parameters:

1. Intersection line value. This value is high for plants
with many stems and leaves that pass through the
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water surface (menisci) and lower for plants with
a simple structure and few stems.

2. Crayfish food value. This value is low for plants that
are preferred food for crayfish and high for plants
that are not palatable or accessible to crayfish.

3. Waterfowl food value. This value is low for plants
that are preferred food for waterfowl and high for
plants that are not grazed by waterfowl.

4. Fish obstruction value. This parameter has a high
value for plants that block fish access and low for
plants with a simple structure and wider spacing
that does not block fish access.

The values for the four indices are summed and the
total is used as the plant assessment score.Table 1
summarizes point rankings for a number of the plant
species that are common in treatment wetlands.

Selection and ranking of the parameters in the
Collins and Resh method is somewhat subjective.
Quantitative data show a positive correlation between
mosquito larval density and the intersection line,
whereas correlations between the other indices and
mosquito density are less quantitative. Although the
four indices reflect common sense about the apparent
effects of plant growth on mosquito production, they
miss other possible correlates that are much easier to
quantify (e.g. plant biomass, net annual production,
percent standing dead cover, tissue nutrient content,
etc.). Quantitative mosquito sampling data have not
been correlated with the plant species assessed by the
Collins and Resh ranking method. However, if use of
these plants will not significantly diminish treatment
efficiency, then plant species that are most likely to
result in low mosquito production should be utilized.
The general rankings inTable 1can be used as a start-
ing point for this decision, but quantitative research
on this issue is essential for effective design.

5.5.1. Incorporation of plant-free zones
Wetland designers have the ability to control the

distribution of rooted emergent wetland plants by ex-
cavating deep-water zones within a treatment wetland.
Typically these zones are at least 1 m deeper than the
surrounding cell bottom elevation (Kadlec and Knight,
1996). These deep zones are typically linear and ar-
ranged perpendicular to the direction of flow and are
often limited to less than 25% of the entire wetland
surface area (Knight et al., 1994). In some treatment

wetlands that specifically have a wildlife habitat cre-
ation goal these deep zones may have sinuous mar-
gins and may occupy up to 50% of the entire wetland
area (Knight, 1992). Low islands are often constructed
within these larger deep zones to increase the wet-
land/upland edge and to create protected refuges for
nesting and roosting of birds.

Incorporation of deep-water zones in treatment wet-
lands is compatible with mosquito control objectives.
However, deep water zones that run adjacent to the
shores of the treatment wetland cells or from the in-
let to the outlet are not compatible with efficient hy-
draulics and optimum treatment performance (Kadlec
and Knight, 1996).

5.5.2. Maintenance of narrow emergent plant zones
Access by aquatic predators to mosquito larvae

and pupae may be prevented by dense emergent plant
growth (Collins and Resh, 1989). It was observed that
this difficulty increases with distance into the emer-
gent plant zone. One possible approach to alleviate
this potential problem is to limit the width of emergent
plant areas to allow fish to penetrate to at least the
center of any emergent plant zone.Collins and Resh
(1989) reported that these plant zones might need to
be limited to as little as 1 m in width to provide effec-
tive fish access for mosquito predation. The density
of the plant growth is the only important factor—if a
fish cannot penetrate to the middle of a cattail clump
it does not matter if the cattail zone is limited in
width. Jiannino and Walton (2004)found that im-
mature mosquito abundance in and adult mosquito
production from comparatively dense bulrush stands
were significantly greater than for cattail stands when
water level was maintained at a depth of 0.5 m. More-
over, in shallow zones where emergent vegetation can
rapidly recolonize, enhanced mosquito production
following wetland drying and vegetation management
offset the short-term reduction in mosquito abundance
provided by increasing the area of open water zones.
No recommendation for limiting the width of plant
zones currently can be supported by data.

The Tres Rios Cobble Site Demonstration Wetlands
in Phoenix, Arizona, were redesigned in 1998 to limit
the width of emergent plant zones and to facilitate
movement of aquatic predators within the wetlands
for more effective control of mosquito larvae (Wass,
1998). Quantitative mosquito sampling results fol-
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lowing that re-engineering indicated reduced breed-
ing and adult mosquito populations associated with
that constructed wetland project; however, long-term
trends indicate that host-seeking adult mosquito pop-
ulations at that site are affected more by regional
breeding success than by breeding in the constructed
wetland cells (Knight and Wass, in preparation). Ad-
ditional research must be conducted to provide a
quantitative basis for incorporating deep zones in con-
structed treatment wetlands to reduce mosquito pro-
duction.

5.5.3. Plant harvesting and removal
Plant harvest by use of mechanical equipment is

very disruptive to flocculent wetland soils and can re-
sult in the export of significant quantities of dissolved
and particulate pollutants from a treatment wetland.
Mechanical harvesting is expensive and disposal of the
harvested biomass, which is mostly water, is problem-
atic. For these reasons plant harvesting is not a prac-
tical tool for management in most full-scale treatment
wetlands.

Controlled burning on a reasonable schedule (ev-
ery 2–5 years) with bypass for a period of one or
more months around the burned cells is a reasonable
method to maintain a relatively lower quantity of plant
biomass in a wetland and to favor growth of new
plants. Published results following a controlled burn
of small (0.1 ha), replicated wetlands in southern Cal-
ifornia indicated that there was a net increase in the
ratio of phosphorus/nitrogen upon inundation because
of greater volatilization of nitrogen by the fire and that,
during the three months of operation after inundation
following a burn ofSchoenoplectus californicus, less-
vegetated wetlands were more efficient at converting a
highly reduced nitrogenous secondary-treated effluent
to nitrate than were more thickly vegetated wetlands
(Thullen et al., 2002).

5.6. Design for chemical control of mosquito
populations

Maintenance of low mosquito production rates is
likely to be contingent on periodic use of chemical
control agents as described elsewhere in this report.
Treatment wetland design can facilitate access for this
chemical control. Specific recommendations to pro-
vide good access include:

• Incorporate wide embankments to allow drivable
shoreline access to all wetland cells. These embank-
ments will typically have a top width no less than
4 m and should have side slopes no steeper than 3:1
to allow mowing and sampling access.

• Provide access structures with appropriate slopes to
allow access into deep water zones. Boats can be
launched into these areas to provide spraying access.
Airboats can be used for access to larger wetland
cells.

• Keep embankments and all wetland areas free of
powerlines and other tall obstructions that might
limit aerial spraying.

• Provide piping and valving needed to apply chem-
ical and biological control agents directly into the
flowing water. Water management structures pro-
vide a convenient point of application throughout
the constructed wetland.

6. Research needs

Several areas of research still need to be pursued to
resolve the potential conflict between use of treatment
wetlands and their reputation as “mosquito-friendly
habitats.” This proposed research agenda includes
additional basic mosquito ecology studies as well as
side-by-side comparisons of the efficacy of treatment
wetland design criteria. This additional research is
needed to determine the extent and relevance of the
mosquito problems at constructed treatment wetlands
and to develop more effective procedures for mini-
mizing these problems in full-scale projects. Priority
areas for research into better management of mosquito
issues in constructed wetlands include:

• Additional research needs to be conducted on the
effect of wetland design and O&M on water quality
and mosquito production. Investigation of factors
such as surface area coverage by particular types
of vegetation (emergent, floating, and submerged
species), pollutant loading rates, flow/velocity rates,
etc. is warranted. The purpose of this proposed re-
search is to determine whether minor modifications
in flow rates, water quality conditions and plant
cover in the constructed wetlands significantly re-
duce the abundance of immature mosquitoes or
change species composition.
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• The effect of wetland immature mosquito produc-
tion on populations of host-seeking adults needs to
be clarified. If larval mosquitoes are just “fish food”,
then they are an ecological benefit to the wetland.
If these larval populations are correlated with the
number of emerging adults, then they are a poten-
tial nuisance. Additional population studies need to
be conducted to quantify the relationship between
larval mosquito populations and emerging adults.

• Mosquito production from constructed treatment
wetlands needs to be quantitatively compared
with production from other man-made and natural
sources in the area. Relationships should be de-
termined between land use patterns and mosquito
production from areas adjacent to the treatment
wetland site.

• Additional information should be obtained concern-
ing larvicidal treatment methods and other mosquito
abatement practices to achieve the best results for
mosquito abatement. The research question is how
to better integrate conventional control with habitat
manipulations and natural mortality factors.

• Approriate thresholds for mosquito control need
to be developed that avoid nuisance conditions in
differing areas.

• Additional research needs to better document the
dispersal patterns of mosquitoes produced by treat-
ment wetlands. Research questions include: how do
disperal patterns change seasonally (particularly if
meterological conditions, such as prevailing wind
direction, change seasonally); how do the dispersal
distance relationships of mosquitoes relate to the
spatial pattern of host seeking mosquito abundance
in the region surrounding the site; is mosquito
production from the wetland complex a major con-
tributor to the host seeking mosquito abundance in
adjacent wetland and floodplain environments, or
might mosquito production be higher at surround-
ing sites; and can a buffer zone around a treatment
wetland realistically be estimated?

• Quantitative research needs to be conducted to de-
termine the actual risk of viral infections resulting
from mosquitoes produced by treatment wetlands.
Specific research questions related to health is-
sues include: how does the intensity of enzootic
encephalitis virus activity as measured by sero-
conversion rates in sentinel chickens and infection
rates in Cx. tarsalis mosquitoes compare to the

surrounding wetland habitats; what will be the ef-
fect of riparian or wetland habitat enhancement on
virus activity levels; what is the seasonal pattern
of disease transmission from constructed wetlands;
what are the effects of wetland habitat creation on
wildlife composition and abundance; and what are
the zoonotic implications of wildlife enhancement
and the potential risk to the human populations?

• Additional research also needs to be conducted on
the potential impacts of mosquito control activities
on the wildlife inhabiting constructed and natural
treatment wetlands. The ecological risk of all bi-
ological and chemical control agents need to be
tested in constructed wetland environments.

• Together, these research efforts may provide a suc-
cessful strategy for resolving the mosquito/treatment
wetland conflict.
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