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Development of an eight-band theory for quantum dot heterostructures
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We derive a nonsymmetrized eight-band effective-mass Hamiltonian for quantum dot heterostructures
~QDH’s! in Burt’s envelope-function representation. The 838 radial Hamiltonian and the boundary conditions
for the Schro¨dinger equation are obtained for spherical QDH’s. Boundary conditions for symmetrized and
nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are com-
monly used to match the wave functions found from the bulkk•p Hamiltonians of two adjacent materials.
Electron and hole energy spectra in three spherical QDH’s, HgS/CdS, InAs/GaAs, and GaAs/AlAs, are calcu-
lated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized
838 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions
of an electron and a hole and, consequently, the energies of both intraband and interband transitions.
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I. INTRODUCTION

The 434 k•p hole Hamiltonian for the wave-function en
velopes ~so-called effective-mass Hamiltonian!, that takes
into account mixing of the light- and heavy-hole bands, w
obtained in Ref. 1 using perturbation theory. This multiba
Hamiltonian has been employed for description of the h
states in bulk crystals2 as well as in low-dimensional struc
tures, in particular, in free-standing homogeneous quan
dots ~QD’s!.3,4 The inclusion of the mixing with the spin
orbit split-off hole band leads to the 636 k•p Hamiltonian
which has also been applied5,6 to QD’s. To consider the non
parabolicity of the electron dispersion in narrow- a
medium-gap semiconductors, it is necessary to take into
count the coupling of the conduction and valence bands.
ing thek•p perturbation theory for bulk semiconductors wi
cubic lattice symmetry, the 838 k•p model was developed in
Ref. 7. This model explicitly includes eight bands around
G point of the Brillouin zone, namely, electron, heavy
light-, and spin-orbit split-off hole bands~each of them is
twice degenerate due to the spin!, and treats all other band
as remote. Along with more simple models, the 838 k•p
Hamiltonian has been used to investigate different QD’s~see,
e.g., Refs. 8–11!.

Recently, experimentalists have begun to apply multiba
effective-mass Hamiltonians to investigate elastic, electro
and optical properties of multilayer nanostructures such
quantum dot heterostructures~QDH’s! CdS/HgS,11

InAs/GaAs,12,13 GaAs/AlxGa12xAs,14,15 and
CdS/HgS/CdS/H2O.16,17 However, it should be emphasize
that multibandk•p Hamiltonians are derived for homoge
neous bulk materials, i.e., under the assumption that
effective-mass parameters areconstant. This is important,
because at a certain step of the derivation, wave numbek
are declared as operatorsp̂/\ that do not commute with the
0163-1829/2001/64~24!/245328~16!/$20.00 64 2453
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functions of coordinates. But, at the heterointerfaces of
multilayer nanostructures, there occurs an abrupt chang
effective-mass parameters from their values in one mate
to those in the adjacent material. Inside a thin transitio
layer that contains the heterointerface, the ordering of
differential operators and coordinate-dependent effect
mass parameters in the multiband Hamiltonian becomes
cial. In QD’s with an infinitely high confining potential fo
electrons and holes, all components of the wave funct
vanish at the heterointerface, and there remains a possib
of applying the bulk multiband k•p Hamiltonian
straightforwardly.3–6,8–11 There are two ways to procee
from QD’s to QDH’s.

~i! The first way is to use an appropriate bulk multiba
Hamiltonian for each constituent material separately, a
then to match the obtained homogeneous solutions at
abrupt heterojunctions applying the connection rules~CR’s!
that are usually obtained by imposing the continuity of t
wave-function envelopes and of the normal to the hetero
erface component of the velocity.11,16 It should be underlined
that this way is heuristic and nonunique. In Ref. 18 the g
eral CR’s, that do not even require the continuity of t
wave-function envelopes, have been proposed for planar
erostructures.

~ii ! The second way~cf. Refs. 19–21! is to derive a multi-
band Hamiltonian valid for the entire heterostructure, inclu
ing the heterointerfaces, and then, if material parame
change abruptly at some interfaces, to find the boundary c
ditions ~BC’s! for the solutions of the envelope-functio
equation. To find these BC’s, one should use the multib
envelope-function equation (Ĥ2E)C50 at any point of the
heterostructure, including the heterointerfaces, and integ
this equation over the volume of an infinitely thin laye
which includes the considered heterointerface. Thus,
BC’s are derived starting from the requirement of continu
©2001 The American Physical Society28-1
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of the components of the wave function at the heteroin
face.

One can always choose the CR’s physically equivalen
the BC’s.22 Both approaches~i! and ~ii ! are usually used
when the wave function inside each layer of a heterostruc
can be found analytically, for example in planar or spheri
heterostructures. In case of an arbitrary shape of the he
interface, approach~ii ! can still be used because, when t
Hamiltonian is known for the entire heterostructure, one c
find an overall numerical solution of the Schro¨dinger equa-
tion.

A commonly used heuristic method to obtain a multiba
effective-mass Hamiltonian for heterostructures u
symmetrization23–27 of the correspondingk•p Hamiltonian.
This method consists of the symmetrical arrangement of
components of the momentum operator, that ensures the
micity of the resulting Hamiltonian. Namelybp̂→@b(r )p̂
1p̂b(r )#/2 and b p̂i p̂ j→@ p̂ib(r ) p̂ j1 p̂ jb(r ) p̂i #/2, where
b(r ) is a spatially varying effective-mass or other materi
dependent parameter which is usually considered a piece
constant, because in each layer of a heterostructure it ha
value for a corresponding bulk material. The symmetrizat
has been applied to QDH’s in Refs. 12, 13, and 17. An
sential fault of the symmetrization is that it is not anecessary
condition for the multiband Hamiltonian to be Hermitia
Besides that, as will be seen below, some intrinsic proper
of the heterointerface, such as reducing the symmetry of
problem and smoothing the abrupt change of the effect
mass parameters at a heterojunction, are completely
glected in the symmetrized Hamiltonian.

Burt has derived19–21 the exact envelope-function equ
tions for a heterostructure. The order of the component
the momentum operator arises as a part of that derivat
This theory has been used by Foreman to explicitly write
636 ~Ref. 28! and 838 ~Ref. 29! effective-mass Hamilto-
nians for planar heterostructures. General rules for constr
ing the valence-band effective-mass Hamiltonians with a c
rect operator ordering have been described in Ref. 30 for
heterostructures with arbitrary crystallographic orientatio
In Refs. 31 and 32, correct boundary conditions for pla
heterostructures with wurtzite symmetry have been p
sented. Comparing the conduction- and valence-subband
persion of a planar quantum well, calculated using the B
following from the exact nonsymmetrized and from the sy
24532
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metrized effective-mass Hamiltonians, it has been shown
the former BC’s give physically reasonable results, while
latter BC’s can produce nonphysical solutions.28,33 More re-
cently, these two sets of BC’s for a planar quantum well ha
been examined within the tight-binding approach.34 The re-
sult of the comparison allowed to give preference to the n
symmetrized model resulting from Burt’s derivation of th
envelope-function Hamiltonian, which was shown to gi
reliable results even when the well and barrier effective-m
parameters were very dissimilar.

In the present paper the envelope-function representa
of Refs. 19–21 is used to construct the nonsymmetri
eight-band Hamiltonian for an arbitrary three-dimension
heterostructure. As an application, the electronic structure
two-layer HgS/CdS, InAs/GaAs, and GaAs/AlAs spheric
QDH’s is investigated as a function of the dot radius.

It should be mentioned that thespurious solutions
~‘‘oscillating’’ 35 states and ‘‘gap’’ states11,35! did not become
apparent in the aforementioned QDH’s. However, such so
tions may appear for a different set of parameters.

The results of the calculation are compared with tho
obtained from the symmetrized 838 Hamiltonian. The rest
of the paper is organized as follows. In Sec. II the derivat
of the nonsymmetrized eight-band Hamiltonian for a QDH
presented. The corresponding radial Hamiltonian for
spherical QDH is obtained in Sec. III. In Sec. IV the BC’s f
both symmetrized and nonsymmetrized radial Hamiltonia
are compared with each other and with commonly us
CR’s. The results of the numerical calculation for spheri
QDH’s are obtained and discussed in Sec. V. Conclusions
given in Sec. VI. The 232 electron and 636 hole energy-
dependent nonsymmetrized Hamiltonians for a QDH, as w
as radial Hamiltonians and corresponding BC’s for a sph
cal QDH, are found in Appendix B from the nonsymmetriz
eight-band Hamiltonians.

II. NONSYMMETRIZED EIGHT-BAND HAMILTONIAN

We begin our derivation with the nonsymmetrized eig
band effective-mass Hamiltonian for a heterostructure, w
the spin-orbit coupling is ‘‘turned off.’’ In the Bloch function
basisuS&,uX&,uY&,uZ& this Hamiltonian is represented in th
following form:29
Ĥ45
\2

2m0S «c1 k̂a k̂
i

2
~v1k̂x1 k̂xv2!

i

2
~v1k̂y1 k̂yv2!

i

2
~v1k̂z1 k̂zv2!

2
i

2
~v2k̂x1 k̂xv1! «v82 k̂xb l k̂x2 k̂x

'bhk̂x
' 23~ k̂xg3

1k̂y1 k̂yg3
2k̂x! 23~ k̂xg3

1k̂z1 k̂zg3
2k̂x!

2
i

2
~v2k̂y1 k̂yv1! 23~ k̂xg3

2k̂y1 k̂yg3
1k̂x! «v82 k̂yb l k̂y2 k̂y

'bhk̂y
' 23~ k̂yg3

1k̂z1 k̂zg3
2k̂y!

2
i

2
~v2k̂z1 k̂zv1! 23~ k̂xg3

2k̂z1 k̂zg3
1k̂x! 23~ k̂yg3

2k̂z1 k̂zg3
1k̂y! «v82 k̂zb l k̂z2 k̂z

'bhk̂z
'

D , ~1!
8-2
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where «v85«v2d/3, k̂52 i¹, k̂x,y,z
' 5 k̂2 k̂x,y,z , b l5g1

14g2 , bh5g122g2,

v15v1j, v25v2j, ~2!

g3
15g31x, g3

25g32x. ~3!

j and x are called the dissymmetry parameters, beca
when j50 and x50, the Hamiltonian~1! becomes sym-
metrical. The explicit form of the parameterj[(v12v2)/2
follows from the formulas~A1! and~A2! in Appendix A, and
the parameterx is determined by Eq.~7!.

When the spin-orbit coupling is ‘‘turned on,’’ the consid
ered eight-band Hamiltonian is represented in the Blo
function basis uS↑&,uX↑&,uY↑&,uZ↑&,uS↓&,uX↓&,uY↓&,uZ↓&
as

Ĥ85S Ĥ4 0

0 Ĥ4
D 1Hso , ~4!

where Ĥ4 is defined by Eq.~1! and the spin-orbit Hamil-
tonianHso has the form25

Hso5
D

3 1
0 0 0 0 0 0 0 0

0 0 2 i 0 0 0 0 1

0 i 0 0 0 0 0 2 i

0 0 0 0 0 21 i 0

0 0 0 0 0 0 0 0

0 0 0 21 0 0 i 0

0 0 0 2 i 0 2 i 0 0

0 1 i 0 0 0 0 0

2 . ~5!

In Eq. ~1!, m0 is the free-electron mass,Ec5\2«c/2m0 is the
energy of the conduction-band~CB! minimum, Ev
5\2«v/2m0 is the energy of the valence-band~VB! maxi-
mum,D5\2d/2m0 is the spin-orbit splitting of the VB, and
V5\v/2m0 is the Kane velocity (V52 i\^Suk̂zuZ&/m0).
Contributions of remote bands to the hole effective mas
are written in terms of the ‘‘modified’’ Luttinger paramete
g15g1

L2Ep/3Eg , g25g2
L2Ep/6Eg , and g35g3

L

2Ep/6Eg , where Eg5Ec2Ev is the energy gap,Ep

52m0V2 is the Kane energy, andg i
L( i 51,2,3) are the Lut-

tinger parameters of the VB. Parametera can be evaluated
through the experimentally determined CB massmc using
the relation

1

mc
5

1

m0
S a1

Ep

3 F 2

Eg
1

1

Eg1DG D . ~6!

It is worth noting that all parameters entering the Ham
tonian ~4! are coordinate dependent. In a heterostruct
these parameters abruptly change from their values in
material to the corresponding values in the adjacent mate
therefore they are piecewise-constant functions ofr . Al-
though not symmetrical, the HamiltonianĤ8 is Hermitian as
seen from Eq.~4!. The parametersj andx @see Eqs.~2! and
~3!# are responsible for the nonsymmetrical form of t
24532
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Hamiltonian ~4!. The symmetrized eight-band Hamiltonia
can be obtained, therefore, takingj50 andx50.

In Eq. ~3!, g3
1 is the contribution tog3 from theG1 and

G12 remote bands, whileg3
2 is the contribution tog3 from

the G15 andG25 remote bands.29 Neglecting small contribu-
tions from theG25 remote bands, the parameterx(r ) is de-
termined as29

x~r !5@2g2~r !13g3~r !2g1~r !21#/3, ~7!

i.e., it is explicitly defined by the effective-mass paramet
of the bulk model. It is seen from Eq.~7! that in a homoge-
neous medium wheng i(r ) are constants,x(r ) is also a con-
stant, and therefore, it cancels from Eq.~1!. Consequently,
x(r ) is a specific function of a heterostructure, which give
nonzero contribution to the Hamiltonian only at the hete
interfaces. The value of this contribution at the pointr0 of a
heterointerface is proportional tox(r01en)2x(r02en),
where en is an infinitesimally small vector, normal to th
heterointerface at the pointr0. Parametersv1(r ) andv2(r ) of
the Hamiltonian~1!, which can be obtained from the gener
effective-mass equations as derived by Burt,19 are given in
Appendix A. In the definition~2!, the functionsv1(r ) and
v2(r ) are subdivided into the symmetricv(r ) and antisym-
metric j(r ) parts, wherej(r ), like x(r ) above, is a specific
parameter of a heterostructure. In general,j(r ) is a
piecewise-constant function ofr . The necessary and suffi
cient condition forj(r ) to give a nonzero contribution to th
838 Hamiltonian only at the heterointerfaces, and to b
come a constant in the homogeneous medium, simu
neously withv(r ), is

j~r !5cjv~r !, ~8!

where the coefficient of proportionalitycj is constant over
the entire heterostructure. Equation~8! is the general form of
j(r ) only for a two-layer heterostructure. For anN-layer het-
erostructure, there can beN21 independent constants —
one for each heterointerface. Each constant for a given
erointerface can be found experimentally considering a tw
layer heterostructure~see Sec. V!.

In order to diagonalize the spin-orbit HamiltonianHso , it
is convenient to carry out a unitary transformation of t
Bloch function basis uS↑&,uX↑&,uY↑&,uZ↑&,uS↓&,uX↓&,
uY↓&,uZ↓& into the following Bloch function basis:9

u1/2,1/2
c 5uS↑&,

u1/2,21/2
c 5uS↓&, ~9!

u3/2,3/2
v 5

1

A2
~ uX↑&1 i uY↑&),

u3/2,1/2
v 5

i

A6
~ uX↓&1 i uY↓&22uZ↑&),

u3/2,21/2
v 5

1

A6
~ uX↑&2 i uY↑&12uZ↓&),
8-3
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u3/2,23/2
v 5

i

A2
~ uX↓&2 i uY↓&),

u1/2,1/2
v 5

1

A3
~ uX↓&1 i uY↓&1uZ↑&),

u1/2,21/2
v 5

2 i

A3
~ uX↑&2 i uY↑&2uZ↓&), ~10!

whereuJ,m
c anduJ,m

v are the Bloch functions of the conduc
tion and valence bands,J is the Bloch function angular mo
24532
mentum, andm[Jz is its z component. The eight-ban

HamiltonianĤ in the new basis can be obtained now afte
unitary transformation

Ĥ5U* Ĥ8UT, ~11!

whereU is the matrix of the transformation from the bas
$uS↑&,uX↑&,uY↑&,uZ↑&,uS↓&,uX↓&,uY↓&,uZ↓&% to the new
basis $u1/2,1/2

c ,u1/2,21/2
c ,u3/2,3/2

v ,u3/2,1/2
v ,u3/2,21/2

v ,u3/2,23/2
v ,

u1/2,1/2
v ,u1/2,21/2

v %. U is defined by Eqs.~9! and~10!. Perform-
ing the transformation~11!, one obtains
Ĥ5
\2

2m0

¨

«c1T 0 iV1 A2

3
V0

i

A3
V21 0

i

A3
V0 A2

3
V21

0 «c1T 0
21

A3
V1 iA2

3
V0 2V21 iA2

3
V1

21

A3
V0

2 iV1
† 0 «v2P2Q 2S 2R 0

2 i

A2
S iA2R

A2

3
V0

†
21

A3
V1

† 2S† «v2P1Q 2C 2R iA2Q 2 iA3

2
S

2 i

A3
V21

† 2 iA2

3
V0

† 2R† 2C† «v2P* 1Q* ST iA3

2
S* iA2Q*

0 2V21
† 0 2R† S* «v2P* 2Q* iA2R† i

A2
S*

2 i

A3
V0

† 2 iA2

3
V1

†
i

A2
S† 2 iA2Q 2 iA3

2
ST 2 iA2R «v92P C

A2

3
V21

†
21

A3
V0

† 2 iA2R† iA3

2
S† 2 iA2Q*

2 i

A2
ST C† «v92P*

©
,

~12!
n,
where«v95«v2d,

k̂15
k̂x1 i k̂y

A2
, k̂25

k̂x2 i k̂y

A2
,

V15
1

2
~v1k̂11 k̂1v2!, V215

1

2
~v1k̂21 k̂2v2!,

V05
1

2
~v1k̂z1 k̂zv2!, T5 k̂1a k̂21 k̂2a k̂11 k̂za k̂z ,

P5 k̂1~g122x!k̂21 k̂2~g112x!k̂11 k̂zg1k̂z ,

Q5 k̂1~g22x!k̂21 k̂2~g21x!k̂122k̂zg2k̂z ,
R5A3~ k̂1~g22g3!k̂11 k̂2~g21g3!k̂2!,

S52 iA6~ k̂2~g31x!k̂z1 k̂z~g32x!k̂2!,

S52 iA6S k̂2S g32
x

3D k̂z1 k̂zS g31
x

3D k̂2D ,

C52 i2A2~ k̂2x k̂z2 k̂zx k̂2!. ~13!

In Eq. ~12!, daggers (†) denote the Hermitian conjugatio
i.e., A†[(AT)* @it is important to note that (v1,2k̂6)†

5 k̂7v1,2 and (v1,2k̂z)
†5 k̂z v1,2#. Unlike the bulk 838 k•p

Hamiltonian9 where the matrix elementC is zero, in the
Hamiltonian~12! the Bloch functionsu3/2,1/2

v andu3/2,21/2
v are
8-4
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coupled with each other, as well as the functionsu1/2,1/2
v and

u1/2,21/2
v . As seen from Eq.~13!, this coupling arises becaus

of the dissymmetry parameterx, which can reduce, in this
way, the symmetry of the problem. The Hamiltonian so o
tained can be used to investigate electronic properties
quantum-well, quantum-wire, and quantum dot heterostr
tures.

III. EIGHT-BAND HAMILTONIAN
FOR A SPHERICAL QDH

To study the electronic structure of spherical QDH’s, t
spherical approximation2 ~i.e., g2

L5g3
L[gL) can be applied.

If we take gL5(2g2
L13g3

L)/5, then the quantum states s
obtained are correct to the first order of the perturbat
theory. Using the relations between the Luttinger parame
g i

L and the ‘‘modified’’ Luttinger parametersg i we have

g5~2g213g3!/5, ~14!

and according to Eq.~7!

x5~5g2g121!/3. ~15!

In spherical QDH’s, where all effective-mass parameters
pend only on the absolute valuer of the radius vector, elec
tron and hole states are eigenfunctions of the total ang
momentumj and itsz componentm[ j z . Therefore, the elec
tron or hole wave function can be written as a linear exp
sion in the eight Bloch functionsuJ,m

c(v) :

C j ,m~r !5(
J,m

FJ,m
c; j ,m~r !uJ,m

c 1(
J,m

FJ,m
v; j ,m~r ! uJ,m

v , ~16!

where the envelope functionsFJ,m
c(v); j ,m(r ) are defined in the

chosen Bloch function bases~9! and ~10! as

F1/2,m
c; j ,m~r !5(

l ,l
C1/2,m; l ,l

j ,m R1/2,l
c; j ~r !Yl ,l~u,f!,

F3/2,m
v; j ,m~r !5 i m23/2(

l ,l
C3/2,m; l ,l

j ,m R3/2,l
v; j ~r !Yl ,l~u,f!,

F1/2,m
v; j ,m~r !5 i 1/22m(

l ,l
C1/2,m; l ,l

j ,m R1/2,l
v; j ~r !Yl ,l~u,f!. ~17!

Here, RJ,l
c(v); j (r ) are the radial envelope function

CJ,m; l ,l
j ,m are the Clebsch-Gordan coefficients, andYl ,l(u,f)

are the spherical harmonics. Noting that in the mat
representation of the Hamiltonian ~12!
u1/2,1/2

c 5(1 0 0 0 0 0 0 0)T, . . . ,u1/2,21/2
v

5(0 0 0 0 0 0 0 1)T one can rearrange Eq.~16! into
the form
24532
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C j ,m~r !5 (
l 5 j 21/2

j 11/2

R1/2,l
c; j ~r !Y 1/2,l

c; j ,m~u,f!

1 (
l 5 j 23/2

j 13/2

R3/2,l
v; j ~r !Y 3/2,l

v; j ,m~u,f!

1 (
l 5 j 21/2

j 11/2

R1/2,l
v; j ~r !Y 1/2,l

v; j ,m~u,f!, ~18!

where the 838 matricesY J,l
c(v); j ,m(u,f) next to the eight

radial envelope functionsRJ,l
c(v); j (r ), for a given j, can be

found by comparing Eq.~18! with Eqs.~16! and ~17!. Now,
integrating over the angular variablesu andf, it is possible
to obtain the radial Hamiltonian

Ĥj5E „Y J8,l 8
b8; j ,m

~u,f!…†ĤY J,l
b; j ,m~u,f!dV, ~19!

corresponding to the radial Schro¨dinger equation

(
b,J,l

ĤjRJ,l
b; j~r !5EjRJ,l

b; j~r !, ~20!

where Ej is the electron or hole eigenenergy to be det
mined, andb5c or v. The Hamiltonian~19! does not depend
on m, because within the spherical approximation the ene
spectrum is degenerate with respect to thez component of
the total momentum.

After some algebra, we derive the following relations f
the spherical harmonics:

k̂1Yl ,l~u,f!5Cl 11,l11;1,21
l ,l Bl

1Yl 11,l11~u,f!

1Cl 21,l11;1,21
l ,l Bl

2 Yl 21,l11~u,f!,

k̂2Yl ,l~u,f!52Cl 11,l21;1,1
l ,l Bl

1Yl 11,l21~u,f!

2Cl 21,l21;1,1
l ,l Bl

2Yl 21,l21~u,f!,

k̂zYl ,l~u,f!5Cl 11,l;1,0
l ,l Bl

1Yl 11,l~u,f!

1Cl 21,l;1,0
l ,l Bl

2Yl 21,l~u,f!, ~21!

where

Bl
152 iA l 11

2l 11
Al

(1) , Bl
252 iA l

2l 11
Al

(21) ,

Al
(p)52p

]

]r
1

l 11/22p/2

r
. ~22!

Using the relations~21!, the radial Hamiltonian~19! can be
obtained in an explicit form. If we choose the following o
der of the radial functionsR1/2,j 21/2

c; j , R3/2,j 11/2
v; j , R3/2,j 23/2

v; j ,
R1/2,j 11/2

v; j , R1/2,j 11/2
c; j , R3/2,j 21/2

v; j , R3/2,j 13/2
v; j , and R1/2,j 21/2

v; j ,

then the 838 matrix of the HamiltonianĤj takes the form

Ĥj5S Ĥj
(1) 0

0 Ĥj
(21)D . ~23!

Here,Ĥj
(1) is the 434 Hamiltonian of the ‘‘even’’ states and
8-5
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Ĥj
(21) is the 434 Hamiltonian of the ‘‘odd’’ states. It is see

that the parityp (p51 for even states andp521 for odd
states! is conserved in the spherical approximation, ev
n
a-

iq
ic

24532
n

when the Hamiltonian isnot symmetrized. The obtained ra

dial Hamiltonian Ĥj
(p) for the radial functionsR1/2,j 2p/2

c; j ,
R3/2,j 1p/2

v; j , R3/2,j 23p/2
v; j , andR1/2,j 1p/2

v; j has the form
Ĥj
(p)5

\2

2m0 S «c2Tj 2p/2 aj
pAj 1p/2

(2p) bj
pAj 23p/2

(p) pA2Aj 1p/2
(2p)

aj
pBj 2p/2

(p) «v1Pj 1p/2
(2p) 2cj

pQj 1p/2
(2p) aj

pbj
pRj 23p/2

(p) pA2aj
pQj 1p/2

(2p)

bj
pBj 2p/2

(2p) aj
pbj

pRj 1p/2
(2p) «v1Pj 23p/2

(p) 1cj
pQj 23p/2

(p) pA2bj
pRj 1p/2

(2p)

pA2Bj 2p/2
(p) pA2aj

pQj 1p/2
(2p) pA2bj

pRj 23p/2
(p) «v2d1Pj 1p/2

(2p)

D , ~24!
the

et-
b-

e
ve-

nt-
-
ra-

n
lid at
ero-
ial

two
where aj
p5A113h j

p, bj
p5A3(12h j

p), cj
p5123h j

p , h j
p

5p/(2 j 112p),

A l
(p)5

1

2A6
~v1Al

(p)1Al
(p)v2!,

B l
(p)5

1

2A6
~v2Al

(p)1Al
(p)v1!,

R l
(p)52Al 1p

(p) gAl
(p) . ~25!

Introducing the operator

D l
(p)~b!52Al 1p

(2p)bAl
(p) , ~26!

we can representTl , P l
(p) , andQ l

(p) as

Tl5
~ l 11!D l

(1)~a!1 lD l
(21)~a!

2l 11
,

P l
(p)5

~ l 11!D l
(1)~g122x!1 lD l

(21)~g122x!

2l 11
1D l

(p)~2x!,

Q l
(p)5

~ l 21/2!D l
(1)~g2x!1~ l 13/2!D l

(21)~g2x!

2l 11

1D l
(p)~x!. ~27!

Inside each spherical layer, the radial Hamiltonian~24! for a
spherical QDH coincides with the bulk radial Hamiltonia
from Ref. 9 for a spherical QD, when the following denot
tions for the radial functions are used:

R1/2,j 21/2
c; j 5Rc, j

1 , R1/2,j 11/2
c; j 52Rc, j

2 ,

R3/2,j 11/2
v; j 5Rh1,j

1 , R3/2,j 21/2
v; j 5Rh1,j

2 ,

R3/2,j 23/2
v; j 52Rh2,j

1 , R3/2,j 13/2
v; j 52Rh2,j

2 ,

R1/2,j 11/2
v; j 5Rs, j

1 , R1/2,j 21/2
v; j 5Rs, j

2 . ~28!

Therefore, in order to find the radial wave functionsRJ,l
c(v); j

inside each spherical layer, one can use the same techn
as in Ref. 9. When the wave functions inside each spher
ue
al

layer are known, the BC’s should be applied to match
wave functions from two adjacent layers.

IV. BOUNDARY CONDITIONS FOR A SPHERICAL QDH

When considering the multiband models for planar h
erostructures, the BC’s for the wave function are often o
tained by integrating the Schro¨dinger equation across th
heterointerface and assuming the continuity of the wa
function envelopes.36,23,19The resulting BC’s are of the fol-
lowing form:

CAuz5205CBuz510 , ĴzCAuz5205ĴzCBuz510 ,
~29!

whereA andB are two materials separated by the heteroi
erfacez50, andĴz is the normal to the heterointerface com
ponent of the current operator. The aforementioned integ
tion is actually justified only for Burt’s envelope-functio
equations, because only these have been shown to be va
the heterointerface. Analogously to the case of planar het
structures, for spherical QDH’s one integrates the rad
Schrödinger equation

~Ĥj
(p)2Ej

(p)!Rj
(p)50, Rj

(p)5S R1/2,j 2p/2
c; j

R3/2,j 1p/2
v; j

R3/2,j 23p/2
v; j

R1/2,j 1p/2
v; j

D , ~30!

whereĤj
(p) is defined by Eq.~24! and Ej

(p) is the eigenen-
ergy. This integration is carried out across the pointr 5a,
wherer 5a is the spherical heterointerface that separates
materials:A ~at r ,a) andB ~at r .a). Including the conti-
nuity of the radial wave functionRj

(p) , the required BC’s
have the form

~Rj
(p)!Aur 5a205~Rj

(p)!Bur 5a10 ,

Ĵ j
(p)~Rj

(p)!Aur 5a205Ĵ j
(p)~Rj

(p)!Bur 5a10 . ~31!

Here the radial component of the current operatorĴ j
(p) is
8-6
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obtained from the radial HamiltonianĤj
(p) using the follow-

ing procedure. In those terms of the Hamiltonian~24! that
contain the operatorAl

(p) , the utmost left-hand sideAl
(p) is
th

q.
ra

in

24532
replaced by2p @in conformity with Eq.~22!#; the rest of the
terms are set to zero, and the result is multiplied by 2i /\.
Thus we find
Ĵ j
(p)5

i\

m0 1
2a

]

]r

p

2A6
aj

p~v2j!
2p

2A6
bj

p~v2j!
1

2A3
~v2j!

2p

2A6
aj

p~v1j! g1

]

]r
2cj

pgDr1 f 28
j ,p x

r
paj

pbj
pgAj 23p/2

(p) pA2aj
pS gDr1 f 1

j ,p x

r D
p

2A6
bj

p~v1j! 2paj
pbj

pgAj 1p/2
(2p) g1

]

]r
1cj

pgDr23 f 4
j ,p x

r
2A2bj

pgAj 1p/2
(2p)

21

2A3
~v1j! pA2aj

pS gDr1 f 1
j ,p x

r D A2bj
pgAj 23p/2

(p) g1

]

]r
12 f 22

j ,p x

r

2 , ~32!
e

e

ot
also

rs

t
n

where

Dr5
]

]r
1

3/2

r
, f n

j ,p5p~ j 11/22np/2!. ~33!

While the radial HamiltonianĤj
(p) is Hermitian, the radial

component of the current operatorĴ j
(p) is not @as seen from

Eq. ~32!#.
It is important to compare the obtained BC’s~31! and~32!

with the commonly used CR’s~the wave function and the
normal component of the velocity are continuous at
heterointerface!.11,16 The velocity operatorV̂ is defined as

V̂5
i

\
@Ĥ,r #[

1

\

]Ĥ

] k̂
, ~34!

where the HamiltonianĤ has been determined earlier by E
~12!. Therefore, the normal component of the velocity ope
tor is obtained as follows:

V̂r[
1

\

r

r

]Ĥ

] k̂
5

1

\ S n1

]Ĥ

] k̂1

1n2

]Ĥ

] k̂2

1nz

]Ĥ

] k̂z
D , ~35!

where

n15
x1 iy

rA2
, n25

x2 iy

rA2
, nz5

z

r
. ~36!

The differentiation of the Hamiltonian can be realized
such a way that

V̂r5V̂r
L1V̂r

R , ~37!

where
e

-

V̂r
L(R)5

1

\ S n1

]ĤL(R)

] k̂1

1n2

]ĤL(R)

] k̂2

1nz

]ĤL(R)

] k̂z
D . ~38!

Here ĤL (ĤR) denotes the Hamiltonian, in which th
right~left!-hand operatorsk̂1 , k̂2 , and k̂z are treated asc
numbers, i.e., only the left~right!-hand operatorsk̂1 , k̂2 ,
and k̂z are differentiated. Using the explicit form of th
HamiltonianĤ @see Eq.~12!#, one finds thatV̂r

L can be ob-

tained multiplying by 1/\ the HamiltonianĤ, in which all
the left-hand operatorsk̂1 , k̂2 , andk̂z are replaced byn1 ,
n2, andnz , correspondingly, while all the terms that do n
contain the former operators are set to zero. It can be
shown that

V̂r
R~j,x!5 t̂V̂r

L~2j,2x!, ~39!

where the operatort̂ draws all effective-mass paramete
through the operatorsk̂1 , k̂2 , and k̂z to the utmost right-
hand positions.

The radial velocityV̂ j
(p),L is obtained fromV̂r

L in the same

way that the radial HamiltonianĤj
(p) was obtained fromĤ,

i.e., by the definition~19!. Forn1 , n2, andnz @see Eq.~36!#
the expressions similar to Eq.~21! are valid if one replaces
2 iAl

(p) by 2p. Therefore,V̂ j
(p),L can be found by multiply-

ing the HamiltonianĤj
(p) by i /\, replacing all the left-hand

operatorsAl
(p) by 2p, and setting all the terms, which do no

contain the operatorAl
(p) , to zero. This procedure results i

V̂ j
(p),L5

1

2
Ĵ j

(p) , ~40!

whereĴ j
(p) has been defined by Eq.~32!. Using Eqs.~37!,

~40!, and~39! one obtains
8-7
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V̂ j
(p)5

1

2
@Ĵ j

(p)~j,x!1 t̂Ĵ j
(p)~2j,2x!#. ~41!

Considering the explicit form of the matrixĴ j
(p) we see that

all the terms, containing parametersj andx, responsible for
the nonsymmetrical form of the Hamiltonian, cancel. Con
quently, we obtain

V̂ j
(p)5

11 t̂

2
Ĵ j

(p)~j50,x50!. ~42!

If all the effective-mass parameters are piecewise-cons
functions ofr, then at any point of the heterostructure exce
the spherical heterointerfaces, we can replacet̂ by 1, and
therefore

V̂ j
(p)5Ĵ j

(p)~j50,x50!. ~43!

It is clearly seen now that the commonly used CR’s
spherical QDH’s~Refs. 11 and 16! are the same as BC’s~31!
and ~32! obtained from the symmetrized Hamiltonian (j

50,x50). Like Ĵ j
(p) , the radial component of the velocit

operator~42! is not Hermitian whent̂51. Therefore, in or-
der to prove that both current and velocity are conser
simultaneously, we should verify whether the real parts
the current density and of the velocity density are the sa
i.e., we should check whether the equality

Re@~Rj
(p)!†Ĵ j

(p)Rj
(p)#5Re@~Rj

(p)!†V̂ j
(p)Rj

(p)# ~44!

holds true. HereRj
(p) is the radial wave function defined b

Eq. ~30!. Substituting Eq.~32! into the left-hand side of Eq
~44!, we see that all the terms containing the parametej
andx cancel, because their contribution to the current d
sity is purely imaginary. Therefore, in conformity with Eq
~43!, Eq. ~44! is proven to be fair.

V. RESULTS OF THE CALCULATION AND DISCUSSION

In this section we investigate the electronic structure
three spherical QDH’s with different values of the ener
gaps: a zero-gap semiconductor embedded into a wide
semiconductor~HgS/CdS!, a narrow-gap semiconductor em
bedded into a medium-gap semiconductor~InAs/GaAs!, and
a medium-gap semiconductor embedded into a wide-
semiconductor~GaAs/AlAs!. Note that in these widely use
experimentally relevant materials, the effective-mass par
eters are substantially different. The bulk eight-band para
eters of the used III-V and IV-VI materials are listed
Tables I and II, correspondingly. For electron and hole lev
obtained within the spherical eight-band model, we us
common notation:nQj

(e) denotes an electron state andnQj
(h)

denotes a hole state, wheren is the number of the level with
a given symmetry andQ5S,P,D, . . . denotes the lowes
value of the momentuml in the spherical harmonics of Eq
~18! in front of the CB Bloch functions for an electron sta
24532
-

nt
t

r

d
f
e,

-

f

ap

p

-
-

s,
a

and in front of the VB Bloch functions for a hole state, i.e
Q5 j 2p/2 for an electron andQ5min(j1p/2,u j 23p/2u) for
a hole.

A. Electron energy levels

The electron energy levels of the HgS/CdS, InAs/GaA
and GaAs/AlAs QDH’s are depicted in Figs. 1–3, corr

TABLE I. The eight-band effective-mass parameters of so
III-V materials. The VB offsetEv is chosen to be zero in GaAs. Th
parametersa, g1 , g, andx of the spherical model are calculate
from the effective-mass parameters listed here.

Parameters GaAs AlAs InAs

mc(m0) 0.0665a 0.150a 0.02226b

g1
L 7.10c 3.76c 19.67a

g2
L 2.02c 0.90c 8.37a

g3
L 2.91c 1.42c 9.29a

Ep(eV) 28.0d 21.1a 22.2a

Eg(eV) 1.519a 3.130a 0.418a

D(eV) 0.341a 0.275a 0.380a

Ev(eV) 0 20.532c 0.186e

a 22.27 0.11 0.24
g1 0.96 1.51 1.97
g 20.52 0.09 0.07
x 21.52 20.69 20.87

aReference 37.
bReference 38.
cReference 39.
dReference 40.
eReference 13.

TABLE II. The eight-band effective-mass parameters of so
IV-VI materials. The VB offsetEv is chosen to be zero in HgS. Th
parameters of the spherical modela, g1 , g, andx for CdS andx
for HgS are calculated from the effective-mass parameters li
here. The parametersmc , g1

L , andgL are not presented for HgS
because in a semimetal the band structure is inverted and t
parameters do not have their original sense.

Parameters HgS CdS

mc(m0) 0.18a

g1
L 1.71a

gL 0.62a

Ep(eV) 13.2b 21.0c

Eg(eV) 20.190b 2.56d

D(eV) 0.07d 0.07d

Ev(eV) 0 20.93e

a 21.0d 22.57
g1 0.35f 21.02
g 20.67f 20.75
x 21.57 21.24

aReference 41. dReference 45.
bReference 42. eReference 44.
cReference 43. fReference 46.
8-8



is

f
’s
ta

al
on

r

re
’s
ect

el

er

m-
l

in
ft of

r

g
ial.
t
nts

is
ergy

of
r

s
istic
il-
q.
dot

As
a

As
are

dS

n

ze
-
e

du
e

d

DEVELOPMENT OF AN EIGHT-BAND THEORY FOR . . . PHYSICAL REVIEW B64 245328
spondingly, as a function of the quantum dot radiusa. The
value of the spin-orbit splitting of electron energy levels
small ('3meV) for all considered QDH’s~see Table III and
Appendix B!. Therefore, only the lowest level of the pair o
split levels is shown in Figs. 1–3. For all examined QDH
the lowest level of such a pair is the level with the least to
momentumj.

Analyzing Figs. 1–3 we arrive at the following empiric
formula, which determines the energy shift of all electr
levels withn51 when a nonzero value of the parameterx is
considered:

Ee2Eeux5052
\2

m0a2
~x12x2!. ~45!

Here the indices ‘‘1’’ and ‘‘2’’ denote interior and exterio
materials, correspondingly. Forn.1 the value of this shift is
much smaller than forn51. It is seen that the shiftEe

FIG. 2. All the discrete electron energy levels in the InAs/Ga
QDH as a function of the quantum dot radius. Other denotations
the same as in Fig. 1.

FIG. 1. All the discrete electron energy levels in the HgS/C
QDH as a function of the quantum dot radius. TheP3/2

(e) and D5/2
(e)

energy levels are not shown here nor in Figs. 2 and 3 because i
chosen scale they coincide with the levelsP1/2

(e) and D3/2
(e) , corre-

spondingly. Solid lines represent the result of the symmetri
eight-band model (cj50,x50). With the nonsymmetrized valence
band part of the Hamiltonian (xÞ0), dashed lines show the cas
cj50 while grey bands represent the continuous change ofcj from
1 to 21. The grey bands refer to a possible variation in energy
to conduction-band/valence-band coupling via the position dep
dence of the interband momentum matrix element. Here an
Figs. 2–6, the inset with inscriptionscj521 andcj51 shows to
which values ofcj the edges of the grey bands are related.
24532
,
l

2Eeux50 is about 16 meV for HgS/CdS (a52 nm) and
about 4 meV for InAs/GaAs (a54 nm) and GaAs/AlAs
(a53 nm) QDH’s~see Table III!. As provided by Eq.~45!,
the value of this shift is inversely proportional to the squa
of the quantum dot radius. Consequently, for large QDH
one can use with high accuracy the symmetrized with resp
to x Hamiltonian, and the expression~45! is the measure of
accuracy. Ifx1,x2, then the nonsymmetrized energy lev
lies higher than the symmetrized one~see Figs. 1 and 3!, and
if x1.x2, then the nonsymmetrized energy level lies low
than the symmetrized one~see Fig. 2!.

Gray bands in Figs. 1–3 reflect the change of the para
eter cj @see Eq.~8!# from 1 to 21. The chosen interva
includes the following specific values ofcj : cj50 ~symme-
trized Hamiltonian! andcj561 ~see Appendixes A and B!.
With such a change ofcj , the electron energy increases
Figs. 1 and 2 and decreases in Fig. 3. Therefore, the shi
an energy level withn51 with respect to the level position
whencj50 can be estimated by the formula

Ee2Eeucj505b cj~AEp,12AEp,2! ~b.0!, ~46!

where we take into account Eq.~8! and the fact thatv1,2

;AEp,1,2. Ep is the Kane energy~see Tables I and II!. For
n.1 the shiftEe2Eeucj50 becomes much smaller than fo

n51. The parameterb in Eq. ~46! decreases with increasin
a and with increasing the energy gap in the interior mater
Such a behavior of the parameterb is connected with the fac
that it is proportional to the value of hole radial compone
of the electron wave function at the heterointerface. It
clear now that the observed strong dependence of the en
levels in the HgS/CdS QDH oncj ~see Fig. 1! is due to the
large value of the differenceAEp,12AEp,2 and to the zero
energy gap in HgS. For two other QDH’s the dependence
the energy levels oncj is a few times weaker than that fo
the HgS/CdS QDH.

Hence, Eqs.~45! and~46! allow us to estimate correction
to the eigenenergies due to the replacement of the heur
symmetrized Hamiltonian with the nonsymmetrized Ham
tonian avoiding complicated calculations. It follows from E
~45! that such corrections rise with a decreasing quantum

re

FIG. 3. All the discrete electron energy levels in the GaAs/Al
QDH as a function of the quantum dot radius. Other denotations
the same as in Fig. 1.the

d

e
n-
in
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TABLE III. The spin-orbital splitting of electron energy levels~at cj521), the energy-dependent elec
tron effective masses~at cj521), the energy shift of electron and hole levels due to finite values ofx ~at
cj50), and the difference ofxL in adjacent materials for the 636 model ~at cj51). If not indicated
explicitly, xÞ0. Ee andEh are the electron and hole ground-state energies corresponding to the stateS1/2

(e)

and 1S3/2
(h) . The indices ‘‘1’’ and ‘‘2’’ denote the interior and exterior materials, correspondingly.

HgS/CdS InAs/GaAs GaAs/AlAs
a52 nm a54 nm a53 nm

E1P
3/2
(e)2E1P

1/2
(e) (meV) a 2.6 ~2.0! 3.0 ~1.4! 2.7 ~3.0!

E1D
5/2
(e)2E1D

3/2
(e) (meV) a 2.0 ~2.3! 3.8 ~2.2! 4.5 ~7.1!

mc,1(Ee) (m0) b 0.056 0.038~0.022! 0.083~0.067!
mc,2(Ee) (m0) b 0.097~0.180! 0.040~0.067! 0.115~0.150!

Ee2Eeux50 (meV) c 16.1 ~6.3! 23.5 (23.1) 4.8~7.0!
Eh2Ehux50 (meV) c 9.3 ~6.3! 24.1 (23.1) 4.1~7.0!

x1
L(Eh)2x2

L(Eh) d 36.28 (20.33) 4.86~0.65! 0.73 (20.83)

aThe theoretical estimate based on the 232 energy-dependent Hamiltonian for an electron~see Appendix B!
is given in parentheses.

bThe corresponding bulk effective mass~see Tables I and II! is given in parentheses.
cThe result of the empirical estimateEe(h)2Ee(h)ux5052(\2/m0a2)(x12x2) is given in parentheses.
dThe differencex12x2 for the eight-band model~see Tables I and II! is given in parentheses.
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radius as 1/a2. Therefore, one should use the nonsymm
trized Hamiltonian for a description of quantum dots w
small radii.

B. Hole energy levels

All the hole energy levels ofS and P types in the HgS/
CdS QDH, with j 53/2 in the InAs/GaAs QDH’s and with
j 53/2 in the GaAs/AlAs QDH’s are depicted in Figs. 4–
correspondingly, as a function of the quantum dot radius.
seen from these figures that the empirical formula~45! holds
for hole levels, too, i.e., for a nonzero value ofx, the hole
energy levels shift in the same direction as the electron
ergy levels do. For the HgS/CdS QDH (a52 nm) the shift
of the hole ground-state level is about 9 meV, which
smaller than the shift of the electron ground-state level.
the same time, for InAs/GaAs (a54 nm) and GaAs/AlAs
(a53 nm) QDH’s the shift for the hole ground-state level
almost the same as that for the electron ground-state l
~see Table III!. For the higher hole levels (n.1) the value of
the shift under consideration decreases with increasingn,
much weaker than it does for the electron levels.

The dependence of the hole levels on the parametercj is
substantially different from such a dependence for the e
tron levels. The formula~46! can be approximately applie
here only for the level 1S3/2

(h) , which is the hole ground-stat
energy for all examined QDH’s. It is seen that this ene
level strongly depends oncj even for InAs/GaAs and GaAs
AlAs QDH’s. All the other hole energy levels under analys
depend oncj very weakly, and such a dependence is
vealed only in Fig. 4 for the HgS/CdS QDH.

C. Electron and hole wave functions and pair energies

In Figs. 7–9, theS components of the radial wave func
tions of the electron ground state (1S1/2

(e)) and of the hole
24532
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ground state (1S3/2
(h)) are depicted for HgS/CdS (a52 nm),

InAs/GaAs (a54 nm), and GaAs/AlAs (a53 nm)
QDH’s, correspondingly. It is seen that in all these QDH
the hole density in the interior material is higher than t
electron density, and the electron density is higher in
exterior material. It is also seen that whencj changes from 1
to 21, the electron density in the centers of the HgS/C
and InAs/GaAs QDH’s increases and the hole density
creases. The opposite trends of behavior of the electron
hole densities are observed in the center of the GaAs/A
QDH. The abrupt change of the derivative of the electr
radial component with the change ofcj is well seen at the
heterointerfaces of all QDH’s under consideration. At t
same time, the derivative of the hole radial compon
changes smoothly. The contribution of the hole radial co
ponents to the density of the electron state~at cj50) is as
high as 33 % for HgS/CdS, 20 % for InAs/GaAs, and 14
for GaAs/AlAs QDH’s. Such contributions show that th
nonparabolicity of the electron dispersion law is substan
even for the QD’s of the medium-gap semiconducto
~GaAs! and certainly should be taken into considerati
when the QD’s of the narrow-gap semiconductors~InAs! are
investigated. The contribution of the electron radial comp
nent to the density of the hole state~at cj50) is 6% for
HgS/CdS, 1% for InAs/GaAs, and 1% for GaAs/AlA
QDH’s. This fact leads to the conclusion that the addition
nonparabolicity of the hole dispersion law connected w
the influence of the conduction band can be neglected
both narrow- and medium-gap semiconductor QD’s.

Taking into account the principal role of the dissymme
coefficientcj , one can evaluate the influence of this para
eter on the observable effects. With this purpose we calcu
the lowest electron-hole pair energies as a function ofcj for
8-10
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all QDH’s under consideration~see Fig. 10!. It is seen from
Fig. 10 that when the parametercj changes from22 to 2,
the corresponding energy differencesEe2h(cj52)
2Ee2h(cj522) constitute2175 meV for HgS/CdS (a
52 nm!, 215 meV for InAs/GaAs (a54 nm!, and 20 meV

FIG. 4. All the discrete hole energy levels ofS andP types in
the HgS/CdS QDH as a function of the quantum dot radius. O
denotations are the same as in Fig. 1.
24532
for GaAs/AlAs (a53 nm! QDH’s. These differences shoul
be quite accessible for experimental detection.

VI. CONCLUSIONS

The exact nonsymmetrized eight-band effective-m
Hamiltonian for an arbitrary three-dimensional heterostr
ture has been obtained using Burt’s envelope-function re

r

FIG. 5. All the discrete hole energy levels withj 53/2 in the
InAs/GaAs QDH as a function of the quantum dot radius. Oth
denotations are the same as in Fig. 1.

FIG. 6. All the discrete hole energy levels withj 53/2 in the
GaAs/AlAs QDH as a function of the quantum dot radius. Oth
denotations are the same as in Fig. 1.
8-11
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sentation. The 232 electron and 636 hole energy-
dependent Hamiltonians have been deduced. Within
spherical approximation, the 838, 232, and 636 radial
Hamiltonians and the necessary BC’s have been derived
spherical QDH’s. The boundary conditions for radial symm
trized and nonsymmetrized Hamiltonians are different a
lead therefore to different energy levels and wave functio
We have shown, further, that the CR’s, which are commo
used to match the solutions of the appropriate bulkk•p
Hamiltonians, coincide with BC’s for the symmetrize
Hamiltonians. A theoretical estimate for the value of t

FIG. 7. S-type radial components of the wave functions of t
electron and hole ground states in the HgS/CdS QDH~radius a
52 nm) within the nonsymmetrized eight-band model. Solid a
dashed lines denote the casescj51 andcj521, correspondingly,
while grey bands represent the continuous change ofcj within these
limits. Each radial wave function is normalized by unity, i.e., t
integral probability(m*0

`r 2Rm
2 (r )dr51, wherem labels the radial

components. Contributions to the integral probability from the
picted radial components vary from 68.6% to 64.8% for an elect
and from 74.3% to 81.1% for a hole whencj changes from 1 to
21. At the same time the electron energy changes from 533.6 m
to 678.8 meV and the hole energy changes from2247.2 meV to
2202.1 meV.

FIG. 8. S-type radial components of the wave functions of t
electron and hole ground states in the InAs/GaAs QDH~radiusa
54 nm) within the nonsymmetrized eight-band model. Normali
tion of each radial wave function and denotations are same a
Fig. 7. Contributions to the integral probability from the depict
radial components vary from 80.6% to 79.2% for an electron
from 75.3% to 78.7% for a hole whencj changes from 1 to21. At
the same time the electron energy changes from 736.0 meV to 7
meV and the hole energy changes from273.6 meV to268.2 meV.
24532
e

or
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d
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spin-orbit splitting of electron levels has been found. T
energy levels of the nonsymmetrized eight-band Hamilton
have been calculated as a function of the dot radius for th
spherical QDH’s: a zero-gap semiconductor embedded in
wide-gap semiconductor~HgS/CdS!, a narrow-gap semicon
ductor embedded into a medium-gap semiconductor~InAs/
GaAs!, and a medium-gap semiconductor embedded int
wide-gap semiconductor~GaAs/AlAs!. It has been demon
strated that parameters of dissymmetryx(r ) andj(r ), giving
nonzero contributions to the multiband Hamiltonians only
the heterointerfaces, have, nevertheless, a strong effec
the electron and hole spectra. Thus, for practically import
cases of relatively small QDH’s with noticeably differe
effective-mass parameters of the constituent materials,
use of the obtained Hamiltonian is necessary for the adeq
description of experiment. Using the method developed
the present paper, electron and hole states are studie
CdS/HgS/CdS/H2O and CdTe/HgTe/CdTe/H2O quantum dot
quantum-well heterostructures@E. P. Pokatilovet al., Phys.
Rev. B64, 245329~2001!#.

d

-
n

V

-
in

d

.1

FIG. 9. S-type radial components of the wave functions of t
electron and hole ground states in the GaAs/AlAs QDH~radiusa
53 nm) within the nonsymmetrized eight-band model. Normaliz
tion of each radial wave function and denotations are the same
Fig. 7. Contributions to the integral probability from the depict
radial components vary from 85.4% to 86.9% for an electron a
from 88.9% to 86.6% for a hole whencj changes from 1 to21. At
the same time the electron energy changes from 1880.4 me
1850.4 meV and the hole energy changes from2111.6 meV to
2122.9 meV.

FIG. 10. The lowest electron-hole pair energies in differe
QDH’s as a function ofcj (xÞ0). Each dot is related to the close
curve and indicates the corresponding result of the symmetr
model (cj50,x50).
8-12
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APPENDIX A: INTERBAND MOMENTUM MATRIX
ELEMENTS

Using the general effective-mass equations@Eq. ~6.3! of
Ref. 19#, one can see the origin of the interband moment
matrix elementsv1(r ) andv2(r ) from Eq. ~1!:

v1~E,r !52
4i

\
^Su p̂zuZ&2

4i

\ (
n

@E2Hnn~r !#21HSn~r !

3^nu p̂zuZ&; ~A1!

v2~E,r !52
4i

\ (
n

@E2Hnn~r !#21^Su p̂zun&HnZ~r !.

~A2!

To obtain Eqs.~A1! and~A2! it should be taken into accoun
that within the developed eight-band approach the cond
tion band with the Bloch functionuS& and the valence ban
with the Bloch functionsuX&, uY&, and uZ& are included ex-
plicitly, while all other bands with the Bloch functionsun&
are considered to be remote. Further, following the techni
of Ref. 19 it is necessary to exclude the energy depende
from Eqs. ~A1! and ~A2! by replacingE with an average
energy, for instance the energy at the middle of the narrow
gap for the heterostructure compounds. Parametersv1(r ) and
v2(r ) are approximately considered to be constant in e
layer of a heterostructure.

In bulk, if Burt’s material-independent basis functions c
incide with the bulk Bloch functions, the second terms in t
right-hand side of Eq.~A1! and the right-hand side of Eq
~A2! vanish, because in this caseHSn(r )50 and HnZ(r )
50. Therefore, one obtainsv152v (v522i ^Su p̂zuZ&/\)
and v250, which results inj5v @see Eq.~2!# and cj51
@see Eq.~8!#. When materials constituting the heterostructu
have close parameters, the second terms in the right-h
side of Eq. ~A1! and the right-hand-side of Eq.~A2! are
small compared with the first term in the right-hand-side
Eq. ~A1!. In this casej does not differ significantly fromv,
andcj is close to 1. In a general case of disparate mater
cj can take arbitrary values.

APPENDIX B: ENERGY-DEPENDENT SEPARATE
HAMILTONIANS FOR ELECTRONS AND HOLES

For narrow-gap semiconductors, the accurate way to t
into account the coupling of conduction and valence band
to consider the eight-band Hamiltonian. However, sometim
it is easier to solve a CB or VB Schro¨dinger equation with
energy-dependent effective-mass parameters. Solution
these equations are just an approximation to the results o
eight-band model. In what follows, we deduce the 232
energy-dependent Hamiltonian for an electron and the 636
energy-dependent Hamiltonian for a hole from the ex
24532
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eight-band nonsymmetrized effective-mass Hamiltonian.

1. 2Ã2 energy-dependent Hamiltonian for an electron

a. Nonsymmetrized CB Hamiltonian

We start with the nonsymmetrized eight-band Ham
tonian Ĥ defined by Eq.~12!. The wave functionC, i.e., a
vector of eight envelope functionsC1 , . . . ,C8 is an eigen-
function of the matrix Schro¨dinger equation

ĤC5E C, ~B1!

whereE is an eigenenergy. To find the CB Hamiltonian, o
should treat all VB’s as remote. Therefore, we should
clude all VB envelopes, i.e.,C3 , . . . ,C8, from Eq.~B1!. As
seen, this exclusion is possible only within the approxim
tion g150, g250, and g350, in other words, when the
contributions to the hole effective-mass parameters from
remote bands~all bands except two CB’s and six VB’s! are
negligible. This is a very close approximation, because
parametersg1 , g2, andg3 are small for almost all material
and, determining contributions to the VB, they certainly ha
small influence on the electron levels. Under this approxim
tion x521/3 @see Eq.~7!# and it cancels from the Hamil
tonian. Another necessary approximation iscj521, i.e., j
52v, and thereforev150, v252v @see Eqs.~8! and ~2!#.
This is the only approximation that does not lead to the d
continuity of CB envelopesC1 and C2 at the heterointer-
face. Now we can express six VB envelopesC3 , . . . ,C8 in
terms of two CB envelopesC1 and C2 using the last six
equations of the set~B1!. This procedure results in

C352 i
v

«2«v
k̂2C1,

C45
v

«2«v
SA2

3
k̂zC12

1

A3
k̂2C2D ,

C55
v

«2«v
S 2 i

A3
k̂1C12 iA2

3
k̂zC2D ,

C652
v

«2«v
k̂1C2,

C75
v

«2«v1d S 2 i

A3
k̂zC12 iA2

3
k̂2C2D ,

C85
v

«2«v1d SA2

3
k̂1C12

1

A3
k̂zC2D , ~B2!

where«52m0E/\2. Substituting the envelopes~B2! into the
first two equations of the set~B1!, one obtains the sought
after CB Hamiltonian for the electron envelopesC1 andC2.
This Hamiltonian has the form

Ĥe5
\2

2m0
S «c1Pe Ce

Ce
† «c1Pe*

D , ~B3!
8-13
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where

Pe5 k̂1S m0

mc~«!
1gc~«! D k̂21 k̂2S m0

mc~«!
2gc~«! D k̂1

1 k̂z

m0

mc~«!
k̂z ,

Ce52A2~ k̂zgc~«!k̂22 k̂2gc~«!k̂z!, ~B4!

m0

mc~«!
5a1

v2

3 S 2

«2«v
1

1

«2«v1d D ,

gc~«!5
v2

3 S 1

«2«v
2

1

«2«v1d D . ~B5!

Here,m0 /mc(«) is the inverse of the energy-dependent
fective mass of an electron, andgc(«) is an energy-
dependent interfacial parameter, which vanishes when
spin-orbit splittingd is zero. Likex, this parameter gives a
nonzero contribution to the Hamiltonian only at the hete
interface. The parametergc(«) is responsible for the non
symmetrical form of the Hamiltonian~B3! and for the mix-
ing of the envelopesC1 and C2. When one solves the
Schrödinger equation for an electron using the energ
dependent Hamiltonian~B3!, one finds the eigenenergyE
and eigenfunctionsC1 and C2. Then, substituting thes
n
lu

p-

nd

24532
-
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eigenfunctions into Eq.~B2!, one obtains the rest envelope
C3 , . . . ,C8, and thereforeC. While the functionsC1 and
C2 are continuous at the heterointerface, the functio
C3 , . . . ,C8, like the envelope functions of all the other re
mote bands, are not.19 Note that only the wave functionsC,
i.e., vectors of eight envelope functionsC1 , . . . ,C8, are
orthonormalized. The envelopesC1 and C2 are neither or-
thogonal nor properly normalized. When the nonparabolic
is not strong, in other words, whenmc(«) only weakly de-
pends on the energy, it is possible to choose one approp
value of the energy, e.g.,«0 to find mc(«0) andgc(«0), and
to substitute them into the Hamiltonian~B3!. In such a way
one obtains the HamiltonianĤe(«0). The eigenfunctionsC1
andC2 of this Hamiltonian will be orthonormalized and th
rest of the six envelopes will be no longer needed.

b. CB Hamiltonian and BC’s for a spherical QDH

The radial CB HamiltonianĤe, j
(p) for spherical QDH’s can

be derived from the Hamiltonian~B3! by the same way as
the radial Hamiltonian~24! has been obtained from th
Hamiltonian ~12! in the spherical approximation~see Sec.
III !. Thus we find

Ĥe, j
(p)5

\2

2m0
~«c2Pe, j 2p/2

(p) !, ~B6!

where
Pe,l
(p)5

~ l 11!D l
(1)S m0

mc~«!
1gc~«! D1 lD l

(21)S m0

mc~«!
1gc~«! D

2l 11
2D l

(p)@gc~«!# ~B7!
of
.
rgy
o

rum

t
s
d:
and the operatorD l
(p)(b) is defined by Eq.~26!. Inside the

i th spherical layer, the Hamiltonian~B6! takes the form

Ĥe, j
i ,(p)5

\2

2m0
S «c2

m0

mc,i~«!
D j 2p/2D , ~B8!

where D l is the spherical Laplacian andmc,i(«) is the
energy-dependent CB mass of thei th material. Further, one
should solve the Schro¨dinger equation with the Hamiltonia
~B8! for each spherical layer and match the obtained so
tions at the spherical heterointerfaces using the BC’s~31!
~see Sec. IV!. The radial component of the CB current o
erator Ĵ e, j

(p) is obtained from the Hamiltonian~B6! in the
same way the radial component of the current operator~32!
has been obtained from the Hamiltonian~24!. Thus,

Ĵ e, j
(p)5

i\

m0
S 2

m0

mc~«!

]

]r
2p~ j 11/22p!

gc~«!

r D . ~B9!

In a two-layer spherical QDH the electron energy depe
on the differencegc,1(«)2gc,2(«) @as seen from the BC’s
~31! and ~B9!#, where the indices ‘‘1’’ and ‘‘2’’ denote the
-

s

interior and exterior materials, correspondingly. The value
this difference is usually very small for typical QDH’s
Therefore, in the first approximation, one can find the ene
spectrumEl ( l 5 j 2p/2) neglecting the term proportional t
p( j 11/22p)@gc,1(«)2gc,2(«)# in the BC’s. Then, includ-
ing this term as a perturbation, one finds the energy spect
El

j . It is seen that the energy levels withl 50 remain un-
changed, while each energy levelEl with l>1 splits into two
levels:El

l 11/2 andEl
l 21/2. For the electron levels that are no

very close to the CB minimum~as is the case for the QDH’
under consideration!, the following estimate can be obtaine

El5
~ l 11!El

l 11/21 l El
l 21/2

2l 11
,

El
l 11/22El

l 21/25
\2~2l 21!

m0a2
@gc,1~« l !2gc,2~« l !#,

~B10!

where« l52m0El /\2. In Table III we have used Eq.~B10! to
estimate the spin-orbit splitting of the lowestP andD levels.
8-14
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It is seen that the value of the splitting of the electron lev
is of the order of 3 meV in all considered QDH’s, and the
fore this splitting can be neglected. This fact does not im
that the dependence of the parameters of the CB Hamilto
on the energy can be neglected, too. As seen from Table
the electron effective masses in QDH’s can differ by a fac
of 2 from their values in the corresponding bulk materials

2. 6Ã6 energy-dependent Hamiltonian for a hole

a. Nonsymmetrized VB Hamiltonian

The deduction of the VB Hamiltonian is analogous to t
deduction of the CB Hamiltonian with only one differenc
one should treat two CB’s as remote. In order to express
CB envelopesC1 and C2 in terms of the VB envelopes
C3 , . . . ,C8 and to exclude them from the Schro¨dinger
equation~B1!, one should apply the approximationa50 and
cj51. This approximation has the same grounds as the
proximation used above to obtain the CB Hamiltonian. No
we express the CB envelopesC1 andC2 in terms of the VB
envelopesC3 , . . . ,C8 from the first two equations of the
set~B1! and substitute them into the last six equations of

same set. As a result we have the VB HamiltonianĤh ,

which coincides with the HamiltonianĤ @see Eq. ~12!#
where the first two rows and the first two columns are d
leted and the effective-mass parameters are changed in
following way:
v

d

N

i

it

24532
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-
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g1→g1
L~«!5g11

v2

3~«c2«!
,

g2,3→g2,3
L ~«!5g2,31

v2

6~«c2«!
. ~B11!

Here,g i
L(«) are the energy-dependent Luttinger paramet

In conformity with Eq.~7!, one should change the parame
of dissymmetryx as follows:

x→xL~«!5x1
v2

6~«c2«!
. ~B12!

As a result of the change~B12!, the parameter of dissymme
try increases~see Table III!, therefore the results of the sym
metrized Hamiltonian~with xL50) will deviate sharply
from the exact solutions. The parametersg i

L usually weakly
depend on the energy. Consequently, to obtain the hole s
trum one can use the HamiltonianĤh(«0), where«0 is an
average hole energy.

b. VB Hamiltonian and BC’s for a spherical QDH

The radial VB HamiltonianĤh, j
(p) for a spherical QDH

coincides with the radial Hamiltonian~24! in which g1
→g1

L(«) andx→xL(«) @in conformity with Eqs.~B11! and
~B12!#, g→gL(«)5g1@v2/6(«c2«)# @in conformity with
Eqs. ~B11! and ~14!# and where the first two rows and th
first two columns are deleted. For the radial components
the hole wave function one should use the BC’s~31!, in

which the radial component of the current operatorĴ h, j
(p) is

given by the matrix~32! where the first row and the firs
column are deleted and the parametersg1 , g, and x are
replaced by the parametersg1

L , gL, andxL, correspondingly.
.:
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