Homework 3

4.2. (Section 4.2) Trace the behavior of an 8-bit parallel load register with input I, output Q, load control input $l d$, and clear input clr by completing the following timing diagram.

4.3. (Section 4.2) (Component Design) Design a 4-bit register with 2 control inputs s1 and s0, 4 data inputs I3, I2, I1 and I0, and 4 data outputs Q3, Q2, Q1 and Q0. When $\mathrm{s} 1 \mathrm{~s} 0=00$, the register maintains its value. When $\mathrm{s} 1 \mathrm{~s} 0=01$, the register loads $\mathrm{I} 3 \ldots \mathrm{I} 0$. When $\mathrm{s} 1 \mathrm{~s} 0=10$, the register clears itself to 0000 . When s1s0 $=11$, the register complements itself, so for example 0000 would become 1111, and 1010 would become 0101.
4.10. (Section 4.3) (Component Design) Design a 10-bit carry-ripple adder using 4-bit carry-ripple adders.
4.11. (Section 4.3) (Component Design) Design an adder that computes the sum of three 8 -bit numbers.
4.17. (Section 4.4) (Component Use) Design a circuit that outputs the average of four 8bit inputs (which are not in two's complement form).
4.34. (Section 4.6) (Component Design) Design a 4-bit up-counter that has two control inputs: cnt enables counting up, while clear synchronously resets the counter to all 0 s .
4.35. (Section 4.6) (Component Design) Design a 4-bit down-counter that has three control inputs: cnt enables counting up, clear synchronously resets the counter to all 0 s , and set synchronously sets the counter to all 1 s .
4.45. (Section 4.8) Convert the following two's complement binary numbers to decimal numbers:
a. 11100000
b. 01111111
c. 11110000
d. 11000000
e. 11100000
4.47. (Section 4.8) Convert the following decimal numbers to 8 -bit two's complement binary form:
a. 2
b. -1
c. -23
d. -128
e. 126
f. 127
g. 0
4.51. (Section 4.8) (Component Design) Using 4-bit subtractors, build a subtractor that has three 8 -bit inputs, a, b, and c, and a single 8 -bit output F, where $F=(a-b)-c$.

