Homework 2

6.3. (Section 6.2) Perform two-level logic size optimization for the function $F(a, b, c)=a$ $+a$ ab'c + a'c using a K-map. Express the answer as sum-of-products.
6.4. (Section 6.2) Perform two-level logic size optimization for the function $F(a, b, c, d)=$ a 'bc' $+a b c$ 'd' + abd using a K-map. Express the answer as sum-of-products.
2.36. (Section 2.6) Create the Boolean equations for the digital circuit in Figure 2.38.

Figure 2.38: Combinational circuit G.
2.38. (Section 2.6) Create a truth table for the circuit in Figure 2.38.
2.44. (Section 2.7) Using the combinational design process of Table 2.3, create a circuit for unlocking one of 8 doors capturing the circuit behavior using Boolean equations. Each door is unlocked by setting the door's unlock input to 1 . Door 0's input is named U0, door l's input is named U 1 , and so on. We specify which door to unlock using a 3-bit input value D . So $\mathrm{D}=000$ unlocks door $0, \mathrm{D}=001$ unlocks door 1 , etc.
2.47. (Section 2.8) Determine whether the two circuits in Figure 2.41 are equivalent circuits using algebraic manipulation, and then using truth tables.

Figure 2.41: Combinational circuits F and G.
2.57. (Section 2.9) Design a 3×8 decoder.
3.6. (Section 3.2) Trace the behavior of an SR latch for the following situation: Q, S and R are 0 and have been for a long time, then S changes to 1 and stays there for a long time, then S changes back to 0 . Using a timing diagram, show the values that appear on every wire for every change on a wire. Assume logic gates have a tiny but non-zero delay.
3.8. (Section 3.2) Trace the behavior of a level-sensitive SR latch for the following input pattern. Complete the timing diagram, assuming logic gates have a tiny but non-zero delay.

3.10. (Section 3.2) Trace the behavior of an edge-triggered D flip-flop using the masterslave design for the following input pattern. Complete the timing diagram, assuming logic gates have a tiny but non-zero delay.

