Homework 1

1.5. (Section 1.2) Convert the following binary numbers to decimal numbers:
a. 100
b. 1011
c. 0000000000001
d. 111111
e. 101010
1.8. (Section 1.2) Convert the following decimal numbers to binary numbers using the subtraction method:
a. 9
b. 15
c. 32
d. 140
1.15. (Section 1.2) Convert the following binary numbers to hexadecimal:
a. 11110000
b. 11111111
c. 01011010
d. 1001101101101
1.18. (Section 1.2) Convert the following hexadecimal numbers to binary:
a. FF
b. F0A2
c. 0F100
d. 100
2.11. (Section 2.4) We want to design a system that sounds a buzzer inside our home whenever motion outside is detected at night. Assuming we have a motion sensor with output M that indicates whether motion is detected ($M=1$ means motion detected) and a light sensor with output L that indicates if light is detected (L means light is detected). The buzzer inside the home has a single input B that when 1 creates a loud warning sound. Using AND, OR, and NOT gates, create a simple digital circuit to implement the motion detector at night system.
2.13. (Section 2.4) Convert each of the following equations directly to gate-level circuits:
a. $F=a b+b^{\prime}$
b. $F=a b c+\operatorname{def}+\mathrm{acf}+\mathrm{f}^{\prime}$
c. $F=((a+b) *(c))+(d+e+f g)$
2.18. (Section 2.5) Use algebraic manipulation to convert the following equation to sum-of-products form: $\mathrm{F}=\mathrm{a}(\mathrm{b}+\mathrm{c})\left(\mathrm{d}^{\prime}\right)+\mathrm{ac}$ ' $(\mathrm{b}+\mathrm{d})$
2.24. (Section 2.6) Convert the following Boolean equations to a truth table.
a. $F(a, b, c)=a^{\prime} b+a c$
b. $F(a, b, c)=a b c+a^{\prime} b c+a^{\prime} c^{\prime}$
c. $F(a, b, c)=a b c+a^{\prime} b^{\prime} c^{\prime}+b^{\prime} c$
d. $F(a, b, c, d)=a{ }^{\prime} b c d+a b \prime c d+a b c^{\prime} d+a b c d^{\prime}$
2.28. (Section 2.6) Convert the function F shown in the truth table in Table 2.6 to an equation. Don't minimize the equation.

Table 2.6: Truth table.

a	b	c	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

2.29. (Section 2.6) Use algebraic manipulation to minimize the equation obtained in Exercise 2.28.

