Homework # 8

P12.3*
$$K = \frac{1}{2} KP(W/L) = 0.25 \text{ mA/V}^2$$

- (a) Saturation because we have $v_{GS} \ge V_{to}$ and $v_{DS} \ge v_{GS} V_{to}$. $i_D = K(v_{GS} - V_{to})^2 = 2.25 \text{ mA}$
- (b) Triode because we have $v_{DS} < v_{GS} V_{to}$ and $v_{GS} \ge V_{to}$. $i_D = K[2(v_{GS} - V_{to})v_{DS} - v_{DS}^2] = 2 \text{ mA}$
- (c) Cutoff because we have $v_{GS} \le V_{to}$. $i_D = 0$.

P12.5*

P12.17* The load-line equation is $V_{DD} = R_D i_D + \nu_{DS}$, and the plots are:

Notice that the load line rotates around the point (V_{DD} , 0) as the resistance changes.

$$i_{E} = i_{C} + i_{B}$$

$$= 9 + 0.3 = 9.3 \text{ mA}$$

$$\alpha = \frac{i_{C}}{i_{E}} = \frac{9}{9.3} = 0.9677$$

$$\beta = \frac{i_{C}}{i_{B}} = \frac{9}{0.3} = 30$$

P13.17* At 180° C and $i_{g}=0.1\,\mathrm{mA}$, the base-to-emitter voltage is approximately:

$$v_{BE} = 0.7 - 0.002(180 - 30) = 0.4 \text{ V}$$

P13.22* Following the approach of Example 13.2, we construct the load lines shown. We estimate that $V_{CE\,max}=18.4\,V$, $V_{CEQ}=15.6\,V$, and $V_{CE\,min}=12\,V$. Thus, the voltage gain magnitude is $|\mathcal{A}_{\nu}|=(18.4-12)/0.4=16$

