Homework \# 8

P12.3* $K=\frac{1}{2} K P(W / L)=0.25 \mathrm{~mA} / \mathrm{V}^{2}$
(a) Saturation because we have $v_{G S} \geq V_{t o}$ and $v_{D S} \geq v_{G S}-V_{t o}$. $i_{D}=K\left(v_{G S}-V_{t o}\right)^{2}=2.25 \mathrm{~mA}$
(b) Triode because we have $v_{D S}<v_{G S}-V_{t o}$ and $v_{G S} \geq V_{t o}$. $i_{D}=K\left[2\left(v_{G S}-v_{t o}\right) v_{D S}-v_{D S}^{2}\right]=2 \mathrm{~mA}$
(c) Cutoff because we have $v_{G S} \leq V_{t o .} . i_{D}=0$.

P12.5*

P12.17* The load-line equation is $V_{D D}=R_{D i D}+v_{D S}$, and the plots are:

Notice that the load line rotates around the point ($V_{D D}, 0$) as the resistance changes.

P13.7*

$$
\begin{aligned}
i_{E} & =i_{C}+i_{B} \\
& =9+0.3=9.3 \mathrm{~mA} \\
\alpha & =\frac{i_{C}}{i_{E}}=\frac{9}{9.3}=0.9677 \\
\beta & =\frac{i_{C}}{i_{B}}=\frac{9}{0.3}=30
\end{aligned}
$$

P13.17* At $180^{\circ} \mathrm{C}$ and $i_{B}=0.1 \mathrm{~mA}$, the base-to-emitter voltage is approximately:

$$
v_{B E}=0.7-0.002(180-30)=0.4 \mathrm{~V}
$$

P13.22* Following the approach of Example 13.2, we construct the load lines shown. We estimate that $V_{C E \max }=18.4 \mathrm{~V}, V_{C E Q}=15.6 \mathrm{~V}$, and $V_{C E \min }=12 \mathrm{~V}$. Thus, the voltage gain magnitude is $\left|A_{V}\right|=(18.4-12) / 0.4=16$

