Homework \# 7

P10.6*

(b)

(c)

With the switch open, we have:

$$
\begin{aligned}
& i_{01}=10^{-3}=I_{s}\left[\exp \left(v / n V_{T}\right)-1\right] \\
& \cong I_{s} \exp \left(v / n V_{T}\right)
\end{aligned}
$$

Thus, we determine that:

$$
I_{s} \cong \frac{10^{-3}}{\exp \left(v / V_{T}\right)}=\frac{10^{-3}}{\exp (0.6 / 0.026)}=9.5 \times 10^{-14} \mathrm{~A}
$$

With the switch closed, we have:

$$
\begin{aligned}
& i_{01}=i_{02}=0.5 \mathrm{~mA} \\
& 0.5 \times 10^{-3}=I_{s} \exp \left(v / V_{T}\right) \\
& v=n V_{T} \ln \frac{0.5 \times 10^{-3}}{I_{s}}=582 \mathrm{mV}
\end{aligned}
$$

Repeating the calculations with $n=2$, we obtain:

$$
\begin{aligned}
& I_{s}=9.75 \times 10^{-9} \mathrm{~A} \\
& v=564 \mathrm{mV}
\end{aligned}
$$

P10.15* (a) Writing KVL for the circuit, we have:

$$
4=1500 i+v
$$

Plotting this on the characteristic for the diode, we have

Thus, the answers are:

$$
v \cong 0.8 \mathrm{~V} \text { and } i \cong 2.13 \mathrm{~mA}
$$

(b) Replacing the $5-\mathrm{mA}$ current source and $200-\Omega$ resistance by its Thévenin equivalent, we have:

The KVL equation for the equivalent circuit is

$$
1=400 i_{x}+v_{x}
$$

Drawing the load line on the device characteristic, we have:

Thus, we have $I_{b}=i_{x} \cong 1.65 \mathrm{~mA}$ and $V_{b}=v_{x}+200 i_{x} \cong 0.66 \mathrm{~V}$.
(c) Replacing the circuit seen by the nonlinear device by its Thévenin equivalent, we have:

Writing KVL for the equivalent circuit, we have

$$
0.5=250 i_{x}+v_{x}
$$

The load line is drawn in part (b) of this solution. From the load line, we have $i_{x} \cong 1.15 \mathrm{~mA}$ and $v_{x} \cong 0.21 \mathrm{~V}$.

$$
\begin{aligned}
& I_{c}=i_{x} \cong 1.15 \mathrm{~mA} \\
& V_{c}=0.5-V_{x}=0.29 \mathrm{~V}
\end{aligned}
$$

P10.18* The circuit diagram of a simple voltage regulator is:

P10.27* (a) $\quad D_{1}$ is on and D_{2} is off. $V=10$ volts and $I=0$.
(b) $\quad D_{1}$ is on and D_{2} is off. $V=6$ volts and $I=6 \mathrm{~mA}$.
(c) Both D_{1} and D_{2} are on. $V=30$ volts and $I=33.6 \mathrm{~mA}$.

P11.4* The equivalent circuit is:

$$
\begin{aligned}
& \begin{array}{l}
A=\frac{V_{o}}{V_{i}}=A_{\text {oc }} \frac{R_{L}}{R_{o}+R_{L}}=100 \frac{4}{4+4}=50 \\
\begin{aligned}
A_{s}= & =\frac{V_{o}}{V_{s}}
\end{aligned}=A_{o c} \frac{R_{i}}{R_{i}+R_{s}} \frac{R_{L}}{R_{o}+R_{L}} \\
\\
=100 \frac{100 \times 10^{3}}{100 \times 10^{3}+50 \times 10^{3}} \frac{4}{4+4} \\
\\
=33.33
\end{array} \\
& \begin{array}{c}
A_{i}=A_{v} \frac{R_{i}}{R_{L}}=50 \frac{10^{5}}{4}=1.25 \times 10^{6} \\
G=A A_{i}=62.5 \times 10^{6}
\end{array}
\end{aligned}
$$

P11.5* $\quad A_{i}=\frac{G}{A_{i}}=\frac{5000}{50}=100$

$$
R_{i}=\frac{A_{i}}{A_{l}} R_{L}=\frac{100}{50} \times 100=200 \Omega
$$

P11.14* The equivalent circuit for the cascade is:

We have:

$$
\begin{aligned}
R_{i}= & R_{i 1}=2 \mathrm{k} \Omega \\
R_{o}= & R_{o 3}=3 \mathrm{k} \Omega \\
A_{o c}= & A_{o c 1} A_{o c 2} A_{o c 3} \frac{R_{i 2}}{R_{i 2}+R_{o 1}} \frac{R_{i 3}}{R_{i 3}+R_{o 2}} \\
& =100(200)(300) \frac{4000}{4000+1000} \frac{6000}{6000+2000} \\
& =3.6 \times 10^{6}
\end{aligned}
$$

P11.30* The equivalent circuit is:

We can write:

$$
\begin{align*}
& I_{i}=\frac{V_{x}}{R_{i}} \tag{1}\\
& I_{x}=I_{i}+\frac{V_{x}-R_{m o c} I_{i}}{R_{0}} \tag{2}
\end{align*}
$$

Using Equation (1) to substitute for I_{i} in Equation (2) and solving, we have:

$$
R_{x}=\frac{V_{x}}{I_{x}}=\frac{1}{1 / R_{i}+1 / R_{o}-R_{\text {moc }} /\left(R_{i} R_{o}\right)}=-2.23 \Omega
$$

P11.39* We are given

$$
v_{\text {in }}(t)=0.1 \cos (2000 \pi t)+0.2 \cos \left(4000 \pi t+30^{\circ}\right)
$$

and

$$
v_{o}(t)=10 \cos \left(2000 \pi t-20^{\circ}\right)+15 \cos \left(4000 \pi t+20^{\circ}\right)
$$

The phasors for the $1000-\mathrm{Hz}$ components are $\mathrm{V}_{\text {in }}=0.1 \angle 0^{\circ}$ and $V_{o}=10 \angle-20^{\circ}$. Thus the complex gain for the $1000-\mathrm{Hz}$ component is

$$
A_{v}=\frac{V_{o}}{V_{\text {in }}}=\frac{10 \angle-20^{\circ}}{0.1 \angle 0^{\circ}}=100 \angle-20^{\circ}
$$

Similarly, the complex gain for the 2000-Hz component is

$$
A_{v}=\frac{V_{o}}{V_{\text {in }}}=\frac{15 \angle 20^{\circ}}{0.2 \angle 30^{\circ}}=75 \angle-10^{\circ}
$$

