Homework \# 5

P3.31* $L=2 H$

$v_{L}(t)=L \frac{d i_{L}(t)}{d t}$
$p(t)=v_{L}(t) i_{L}(t)$

$$
w(t)=\frac{1}{2} L\left[i_{L}(t)\right]^{2}
$$

P3.36*

$$
\begin{aligned}
i_{L}(t) & =\frac{1}{L} \int_{0}^{t} v_{L}(t) d t+i_{L}(0) \\
& =20 \times 10^{3} \int_{0}^{t} 10 d t-0.1 \\
& =2 \times 10^{5} t-0.1 \mathrm{~A}
\end{aligned}
$$

Solving for the time that the current reaches +100 mA , we have

$$
\begin{aligned}
i_{L}\left(t_{x}\right) & =0.1=2 \times 10^{5} t_{0}-0.1 \\
t_{x} & =1 \mu \mathrm{~s}
\end{aligned}
$$

P3.37* $\quad v_{L}=L \frac{d i}{d t}=0.5 \frac{4}{0.2}=10 \mathrm{~V}$
P3.39* (a) $L_{e q}=1+\frac{1}{1 / 2+1 /(1+3)}=2.333 \mathrm{H}$
(b) 2 H in parallel with 2 H is equivalent to 1 H . Also, 2 H in parallel with 6 H is equivalent to 1.5 H . Finally, we have $L_{e q}=\frac{1}{1 / 4+1 /(1+1.5)}=1.538 \mathrm{H}$

P3.42* $\quad i(t)=\frac{1}{L_{e q}} \int_{0}^{t} v(t) d t=\frac{L_{1}+L_{2}}{L_{1} L_{2}} \int_{0}^{t} v(t) d t$
$i_{1}(t)=\frac{1}{4} \int_{0}^{t} v(t) d t$
Thus, we can write $i_{1}(t)=\frac{L_{2}}{L_{1}+L_{2}} i(t)=\frac{2}{3} i(t)$.
Similarly, we have $i_{2}(t)=\frac{L_{1}}{L_{1}+L_{2}} i(t)=\frac{1}{3} i(t)$.
This is similar to the current-division principle for resistances. Keep in mind that these formulas assume that the initial currents are zero.

P3.47* With the dot moved to the bottom of L_{2}, we have

$$
\begin{aligned}
& v_{1}(t)=L_{1} \frac{d i_{1}(t)}{d t}-M \frac{d i_{2}(t)}{d t}=5 \cos (10 t) \\
& v_{2}(t)=-M \frac{d i_{1}(t)}{d t}+L_{2} \frac{d i_{2}(t)}{d t}=0
\end{aligned}
$$

P3.48* (a)

As in Figure 3.23a, we can write

$$
\begin{aligned}
& v_{1}(t)=L_{1} \frac{d i_{1}(t)}{d t}+M \frac{d i_{2}(t)}{d t} \\
& v_{2}(t)=M \frac{d i_{1}(t)}{d t}+L_{2} \frac{d i_{2}(t)}{d t}
\end{aligned}
$$

However, for the circuit at hand, we have $i(t)=i_{1}(t)=i_{2}(t)$. Thus,

$$
\begin{aligned}
& v_{1}(t)=\left(L_{1}+M\right) \frac{d i(t)}{d t} \\
& v_{2}(t)=\left(L_{2}+M\right) \frac{d i(t)}{d t}
\end{aligned}
$$

Also, we have $v(t)=v_{1}(t)+v_{2}(t)$.
Substituting, we obtain $v(t)=\left(L_{1}+2 M+L_{2}\right) \frac{d i(t)}{d t}$.
Thus, we can write $v(t)=L_{e q} \frac{d i(t)}{d t}$, in which

$$
L_{e q}=L_{1}+2 M+L_{2} .
$$

(b) Similarly, for the dot at the bottom end of L_{2}, we have

$$
L_{e q}=L_{1}-2 M+L_{2}
$$

