## Homework # 3

**P2.29\*** 
$$v_1 = \frac{R_1}{R_1 + R_2 + R_3} \times v_s = 5 \text{ V}$$
  $v_2 = \frac{R_2}{R_1 + R_2 + R_3} \times v_s = 7 \text{ V}$   
 $v_3 = \frac{R_3}{R_1 + R_2 + R_3} \times v_s = 13 \text{ V}$ 

**P2.30\*** 
$$i_1 = \frac{R_2}{R_1 + R_2} i_s = 1 A$$
  $i_2 = \frac{R_1}{R_1 + R_2} i_s = 2 A$ 

**P2.34\*** 
$$v = 0.1 \,\mathrm{mA} \times R_{w} = 50 \,\mathrm{mV}$$

$$\mathcal{R}_g = \frac{50 \,\mathrm{mV}}{2 \,\mathrm{A} - 0.1 \,\mathrm{mA}} = 25 \,\mathrm{m\Omega}$$

**P2.36\*** Combining  $R_2$  and  $R_3$ , we have an equivalent resistance  $R_{eq} = \frac{1}{1/R_2 + 1/R_3} = 10 \Omega$ . Then using the voltage-division principle, we have  $v = \frac{R_{eq}}{R_1 + R_{eq}} \times v_s = \frac{10}{20 + 10} \times 10 = 3.333 \text{ V}$ .

**P2.38\*** At node 1 we have:  $\frac{v_1}{20} + \frac{v_1 - v_2}{10} = 1$ At node 2 we have:  $\frac{v_2}{5} + \frac{v_2 - v_1}{10} = 2$ In standard form the equations become

$$\begin{array}{l} 0.15 \nu_1 - 0.1 \nu_2 = 1 \\ - 0.1 \nu_1 + 0.3 \nu_2 = 2 \end{array}$$
  
Solving, we find  $\nu_1 = 14.29$  V and  $\nu_2 = 11.43$  V.  
Then we have  $i_1 = \frac{\nu_1 - \nu_2}{10} = 0.2857$  A.

**P2.39\*** Writing a KVL equation, we have  $v_1 - v_2 = 10$ . At the reference node, we write a KCL equation:  $\frac{v_1}{5} + \frac{v_2}{10} = 1$ . Solving, we find  $v_1 = 6.667$  and  $v_2 = -3.333$ . Then, writing KCL at node 1, we have  $i_s = \frac{v_2 - v_1}{5} - \frac{v_1}{5} = -3.333 \text{ A}$ .

**P2.46\*** First, we can write:  $i_x = \frac{v_1 - v_2}{5}$ . Then, writing KCL equations at nodes 1 and 2, we have:  $\frac{v_1}{10} + i_x = 1$  and  $\frac{v_2}{20} + 0.5i_x - i_x = 0$ Substituting for  $i_x$  and simplifying, we have  $0.3v_1 - 0.2v_2 = 1$   $-0.1v_1 + 0.15v_2 = 0$ Solving, we have  $v_1 = 6$  and  $v_2 = 4$ . Then, we have  $i_x = \frac{v_1 - v_2}{5} = 0.4 A$ .

P2.48\*  $v_x = v_2 - v_1$ Writing KCL at nodes 1 and 2:

$$\frac{v_1}{5} + \frac{v_1 - 2v_x}{15} + \frac{v_1 - v_2}{10} = 1$$
$$\frac{v_2}{5} + \frac{v_2 - 2v_x}{10} + \frac{v_2 - v_1}{10} = 2$$

Substituting and simplifying, we have

 $15v_1 - 7v_2 = 30$  and  $v_1 + 2v_2 = 20$ .

Solving, we find  $v_1 = 5.405$  and  $v_2 = 7.297$ .

**P2.52\*** Writing KVL equations around each mesh we have  $5i_1 + 15(i_1 - i_2) = 20$  and  $15(i_2 - i_1) + 10i_2 = 10$ Putting the equations into standard from we have  $20i_1 - 15i_2 = 20$  and  $-15i_1 + 25i_2 = 10$ Solving we obtain  $i_1 = 2.364$  A and  $i_2 = 1.818$  A. P2.54\*



Writing and simplifying the mesh-current equations, we have:  $28i_1 - 10i_2 = 12$  $-10i_1 + 40i_2 - 30i_3 = 0$ 

$$-30i_{2}+60i_{3}=0$$

Solving, we obtain

$$i_1 = 0.500$$
  $i_2 = 0.200$   $i_3 = 0.100$ 

Thus,  $v_2 = 5i_3 = 0.500 \text{ V}$ .

P2.61\* Because of the current sources, two of the mesh currents are known.



Writing a KVL equation around the middle loop we have  $20(i_1 - 1) + 10i_1 + 5(i_1 + 2) = 0$ Solving, we find  $i_1 = 0.2857$ .

P2.65\* First, we write a node voltage equation to solve for the opencircuit voltage:  $\frac{V_{oc} - 10}{10} + \frac{V_{oc}}{5} = 1$ 

Solving, we find 
$$v_{ac} = 6.667 \text{ V}$$
.





Thus,  $R_{f} = \frac{1}{1/10 + 1/5} = 3.333 \Omega$ . The Thevenin and Norton equivalents are: 6.667 V  $\binom{+}{1}$  2A  $3.333 \Omega$ 

P2.67\* The equivalent circuit of the battery with the resistance connected is



**P2.75\*** To maximize the power to  $R_L$ , we must maximize the voltage across it. Thus we need to have  $R_r = 0$ . The maximum power is

$$P_{\rm max} = \frac{20^2}{5} = 80 {\rm W}$$

**P2.78\*** First, we zero the current source and find the current due to the voltage source.



Then we zero the voltage source and use the current-division principle to find the current due to the current source.



Finally, the total current is the sum of the contributions from each source.

$$i = i_{\nu} + i_{c} = 4$$
 A

P2.81\* The circuits with only one source active at a time are:



Then the total current due to both sources is  $i_s = i_{s,v} + i_{s,c} = -3.333 \text{ A}$ .

P2.87\* (a) Rearranging Equation 2.80, we have

$$R_{3} = \frac{R_{1}}{R_{2}}R_{x} = \frac{10k\Omega}{10k\Omega} \times 5932 = 5932 \,\Omega$$

(b) The circuit is:



The Thevenin resistance is

$$R_{r} = \frac{1}{1/R_{3} + 1/R_{1}} + \frac{1}{1/R_{2} + 1/R_{x}} = 7447 \ \Omega$$

The Thevenin voltage is

$$v_{\tau} = v_s \frac{R_3}{R_1 + R_3} - v_s \frac{R_x}{R_x + R_2}$$
$$= 0.3939 \,\mathrm{mV}$$

Thus, the equivalent circuit is:

$$V_{\pm} = 0.3939 \text{ mV} \stackrel{\pm}{=} \underbrace{V_{t}}_{R_{\pm} + R_{\text{detector}}} = 31.65 \times 10^{-9} \text{ A}$$

Thus the detector must be sensitive to very small currents if the bridge is to be accurately balanced.