Homework \# 3

P2.29* $\quad v_{1}=\frac{R_{1}}{R_{1}+R_{2}+R_{3}} \times v_{s}=5 \mathrm{~V} \quad v_{2}=\frac{R_{2}}{R_{1}+R_{2}+R_{3}} \times v_{s}=7 \mathrm{~V}$
$v_{3}=\frac{R_{3}}{R_{1}+R_{2}+R_{3}} \times v_{s}=13 \mathrm{~V}$
P2.30* $\quad i_{1}=\frac{R_{2}}{R_{1}+R_{2}} i_{s}=1 \mathrm{~A} \quad i_{2}=\frac{R_{1}}{R_{1}+R_{2}} i_{s}=2 \mathrm{~A}$
P2.34* $\quad v=0.1 \mathrm{~mA} \times R_{w}=50 \mathrm{mV}$

$$
R_{g}=\frac{50 \mathrm{mV}}{2 \mathrm{~A}-0.1 \mathrm{~mA}}=25 \mathrm{~m} \Omega
$$

P2.36* Combining R_{2} and R_{3}, we have an equivalent resistance
$R_{e q}=\frac{1}{1 / R_{2}+1 / R_{3}}=10 \Omega$. Then using the voltage-division principle, we have
$v=\frac{R_{e q}}{R_{1}+R_{e q}} \times v_{s}=\frac{10}{20+10} \times 10=3.333 \mathrm{~V}$.
P2.38* At node 1 we have: $\frac{v_{1}}{20}+\frac{v_{1}-V_{2}}{10}=1$
At node 2 we have: $\frac{v_{2}}{5}+\frac{v_{2}-v_{1}}{10}=2$
In standard form the equations become

$$
\begin{aligned}
& 0.15 v_{1}-0.1 v_{2}=1 \\
& -0.1 v_{1}+0.3 v_{2}=2
\end{aligned}
$$

Solving, we find $v_{1}=14.29 \mathrm{~V}$ and $v_{2}=11.43 \mathrm{~V}$.
Then we have $i_{1}=\frac{v_{1}-v_{2}}{10}=0.2857 \mathrm{~A}$.
P2.39* Writing a KVL equation, we have $v_{1}-v_{2}=10$.
At the reference node, we write a KCL equation: $\frac{v_{1}}{5}+\frac{v_{2}}{10}=1$.
Solving, we find $v_{1}=6.667$ and $v_{2}=-3.333$.

Then, writing $K C L$ at node 1 , we have $i_{s}=\frac{v_{2}-v_{1}}{5}-\frac{v_{1}}{5}=-3.333 \mathrm{~A}$.

P2.46* First, we can write: $i_{x}=\frac{v_{1}-v_{2}}{5}$.
Then, writing KCL equations at nodes 1 and 2, we have:

$$
\frac{v_{1}}{10}+i_{x}=1 \text { and } \frac{v_{2}}{20}+0.5 i_{x}-i_{x}=0
$$

Substituting for i_{x} and simplifying, we have

$$
\begin{gathered}
0.3 v_{1}-0.2 v_{2}=1 \\
-0.1 v_{1}+0.15 v_{2}=0
\end{gathered}
$$

Solving, we have $v_{1}=6$ and $v_{2}=4$.
Then, we have $i_{x}=\frac{v_{1}-v_{2}}{5}=0.4 \mathrm{~A}$.

P2.48* $\quad v_{x}=v_{2}-v_{1}$
Writing KCL at nodes 1 and 2:

$$
\begin{aligned}
& \frac{v_{1}}{5}+\frac{v_{1}-2 v_{x}}{15}+\frac{v_{1}-v_{2}}{10}=1 \\
& \frac{v_{2}}{5}+\frac{v_{2}-2 v_{x}}{10}+\frac{v_{2}-v_{1}}{10}=2
\end{aligned}
$$

Substituting and simplifying, we have
$15 v_{1}-7 v_{2}=30$ and $v_{1}+2 v_{2}=20$.

Solving, we find $v_{1}=5.405$ and $v_{2}=7.297$.

P2.52* Writing KVL equations around each mesh we have

$$
5 i_{1}+15\left(i_{1}-i_{2}\right)=20 \text { and } 15\left(i_{2}-i_{1}\right)+10 i_{2}=10
$$

Putting the equations into standard from we have

$$
20 i_{1}-15 i_{2}=20 \text { and }-15 i_{1}+25 i_{2}=10
$$

Solving we obtain $i_{1}=2.364 \mathrm{~A}$ and $i_{2}=1.818 \mathrm{~A}$.

P2.54*

Writing and simplifying the mesh-current equations, we have:

$$
\begin{aligned}
& 28 i_{1}-10 i_{2}=12 \\
& -10 i_{1}+40 i_{2}-30 i_{3}=0 \\
& -30 i_{2}+60 i_{3}=0
\end{aligned}
$$

Solving, we obtain

$$
i_{1}=0.500 \quad i_{2}=0.200 \quad i_{3}=0.100
$$

Thus, $v_{2}=5 i_{3}=0.500 \mathrm{~V}$.

P2.61* Because of the current sources, two of the mesh currents are known.

Writing a KVL equation around the middle loop we have

$$
20\left(i_{1}-1\right)+10 i_{1}+5\left(i_{1}+2\right)=0
$$

Solving, we find $i_{1}=0.2857$.
P2.65* First, we write a node voltage equation to solve for the opencircuit voltage:
$\frac{v_{o c}-10}{10}+\frac{v_{o c}}{5}=1$
Solving, we find $v_{o c}=6.667 \mathrm{~V}$.

Then zeroing the sources, we have this circuit:

Thus, $R_{t}=\frac{1}{1 / 10+1 / 5}=3.333 \Omega$. The Thevenin and Norton equivalents are:

P2.67* The equivalent circuit of the battery with the resistance connected is

P2.75* To maximize the power to R_{L}, we must maximize the voltage across it. Thus we need to have $R_{t}=0$. The maximum power is

$$
\rho_{\max }=\frac{20^{2}}{5}=80 \mathrm{~W}
$$

P2.78* First, we zero the current source and find the current due to the voltage source.

$$
i_{v}=30 / 15=2 \mathrm{~A}
$$

Then we zero the voltage source and use the current-division principle to find the current due to the current source.

$$
i_{c}=3 \frac{10}{5+10}=2 \mathrm{~A}
$$

Finally, the total current is the sum of the contributions from each source.

$$
i=i_{v}+i_{c}=4 \mathrm{~A}
$$

P2.81* The circuits with only one source active at a time are:

Then the total current due to both sources is $i_{s}=i_{s, v}+i_{s, c}=-3.333 \mathrm{~A}$.

P2.87* (a) Rearranging Equation 2.80, we have

$$
R_{3}=\frac{R_{1}}{R_{2}} R_{x}=\frac{10 \mathrm{~K} \Omega}{10 \mathrm{~K} \Omega} \times 5932=5932 \Omega
$$

(b) The circuit is:

The Thevenin resistance is

$$
R_{t}=\frac{1}{1 / R_{3}+1 / R_{1}}+\frac{1}{1 / R_{2}+1 / R_{x}}=7447 \Omega
$$

The Thevenin voltage is

$$
\begin{aligned}
v_{t} & =v_{s} \frac{R_{3}}{R_{1}+R_{3}}-v_{s} \frac{R_{x}}{R_{x}+R_{2}} \\
& =0.3939 \mathrm{mV}
\end{aligned}
$$

Thus, the equivalent circuit is:

Thus the detector must be sensitive to very small currents if the bridge is to be accurately balanced.

