Homework # 1

P1.6* The reference direction for i_{ab} points from a to b. Because i_{ab} has a negative value, the current is equivalent to positive charge moving opposite to the reference direction. Finally since electrons have negative charge, they are moving in the reference direction (i.e., from a to b).

For a constant (dc) current, charge equals current times the time interval. Thus, $Q = (5 A) \times (3 s) = 15 C$.

P1.7*
$$i(t) = \frac{dq(t)}{dt} = \frac{d}{dt}(2+3t) = 3 A$$

P1.9*
$$Q = \int_{0}^{\infty} i(t)dt = \int_{0}^{\infty} 2e^{-t}dt = -2e^{-t} \Big|_{0}^{\infty} = 2 \text{ coulombs}$$

- P1.13* $Q = \text{current} \times \text{time} = (5 \text{ amperes}) \times (36,000 \text{ seconds}) = 1.8 \times 10^5 \text{ coulombs}$ $\text{Energy} = QV = (1.8 \times 10^5) \times (12) = 2.16 \times 10^6 \text{ joules}$
- P1.14* (a) $P = -v_a i_a = -20$ W Energy is being supplied by the element.
 - (b) $P = v_b i_b = 50 \text{ W}$ Energy is being absorbed by the element.
 - (c) $P = -v_c i_c = 40 \text{ W}$ Energy is being absorbed by the element.

P1.19* Energy =
$$\frac{Cost}{Rate} = \frac{$40}{0.1$/kWh} = 400 \text{ kWh}$$

$$P = \frac{\text{Energy}}{\text{Time}} = \frac{400 \text{ kWh}}{30 \times 24 \text{ h}} = 555.5 \text{ W}$$
 $I = \frac{P}{V} = \frac{555.5}{120} = 4.630 \text{ A}$

Reduction =
$$\frac{40}{555.5} \times 100\% = 7.20\%$$

- P1.21* (a) P = 60 W taken from element A.
 - (b) P = 60 W delivered to element A.
 - (c) P = 60 W taken from element A.

- P1.26* Elements A and B are in series. Also elements E and F are in series.
- P1.28* At the node joining elements A and B, we have $i_a + i_b = 0$. Thus, $i_a = -2$ A. For the node at the top end of element C, we have $i_b + i_c = 3$. Thus, $i_c = 1$ A. Finally, at the top right-hand corner node, we have $3 + i_e = i_d$. Thus, $i_d = 4$ A. Elements A and B are in series.
- P1.29* We are given $i_a = 2 A$, $i_b = 3 A$, $i_d = -5 A$, and $i_h = 4 A$. Applying KCL, we find

$$i_c = i_b - i_a = 1 A$$
 $i_e = i_c + i_h = 5 A$
 $i_f = i_a + i_d = -3 A$ $i_g = i_f - i_h = -7 A$

- P1.32* Summing voltages for the lower left-hand loop, we have $-5 + \nu_a + 10 = 0$, which yields $\nu_a = -5$ V. Then for the top-most loop, we have $\nu_c 15 \nu_a = 0$, which yields $\nu_c = 10$ V. Finally, writing KVL around the outside loop, we have $-5 + \nu_c + \nu_b = 0$, which yields $\nu_b = -5$ V.
- P1.34* Applying KCL and KVL, we have

$$i_c = i_a - i_d = 1 \text{ A}$$

 $v_b = v_d - v_a = -6 \text{ V}$

 $i_b = -i_a = -2 A$ $v_c = v_d = 4 V$

The power for each element is

$$P_A = -v_a i_a = -20 \text{ W}$$

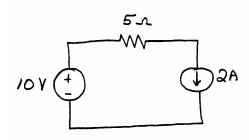
 $P_C = v_c i_c = 4 \text{ W}$

$$P_B = V_b i_b = 12 \text{ W}$$

 $P_D = V_d i_d = 4 \text{ W}$

Thus, $P_A + P_B + P_C + P_D = 0$

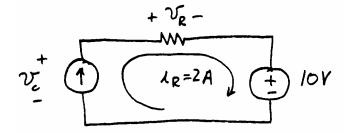
P1.37*



P1.43*
$$R = \frac{(V_1)^2}{P_1} = \frac{100^2}{100} = 100 \Omega$$

 $P_2 = \frac{(V_2)^2}{R} = \frac{90^2}{100} = 81 \text{ W for a 19\% reduction in power}$

P1.48*



As shown above, the 2 A current circulates clockwise through all three elements in the circuit. Applying KVL, we have

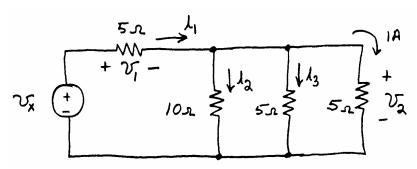
$$v_c = v_p + 10 = 5i_p + 10 = 20 \text{ V}$$

 $P_{current-source} = -v_c i_R = -40$ W. Thus, the current source delivers power.

 $P_R = (i_R)^2 R = 2^2 \times 5 = 20 \text{ W}$. The resistor absorbs power.

 $P_{voltage-source} = 10 \times i_R = 20 \text{ W}.$ The voltage source absorbs power.

P1.50*



Applying Ohm's law, we have $v_2 = (5 \Omega) \times (1 A) = 5 V$. However, v_2 is the voltage across all three resistors that are in parallel. Thus,

$$i_3 = \frac{v_2}{5} = 1 \, A$$
, and $i_2 = \frac{v_2}{10} = 0.5 \, A$. Applying KCL, we have $i_1 = i_2 + i_3 + 1 = 2.5 \, A$. By Ohm's law: $v_1 = 5i_1 = 12.5 \, V$. Finally using KVL, we have $v_x = v_1 + v_2 = 17.5 \, V$.

P1.52* (a) Applying KVL, we have $10 = v_x + 5v_x$, which yields $v_x = 10/6 = 1.667$ V

(b)
$$i_x = v_x / 3 = 0.5556 A$$

(c) $P_{voltage-source} = -10i_x = -5.556 \, \text{W}$. (This represents power delivered by the voltage source.)

$$P_R = 3(i_x)^2 = 0.926 \text{ W (absorbed)}$$

 $P_{controlled-source} = 5v_x i_x = 4.63 \text{ W (absorbed)}$

P1.57*



Applying KVL around the outside of the circuit:

$$v_s = 3i_s + 4 + 2 = 15 \text{ V}$$